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15-251 
Great Theoretical Ideas 

in Computer Science 
for 

Some 
Complexity Theory:  

The P vs NP question 
Lecture 27 (Nov 23, 2010) 

$$$ 
The $1M Questions 

The Clay Mathematics Institute 
 Millenium Prize Problems 

1.  Birch and Swinnerton-Dyer Conjecture  
2.  Hodge Conjecture  
3.  Navier-Stokes Equations  
4.  P vs NP  
5.  Poincaré Conjecture  
6.  Riemann Hypothesis  
7.  Yang-Mills Theory  

← solved! 

The P versus NP problem 

Is perhaps the biggest open problem 
in computer science (and mathematics!) today. 

(Even featured in the TV show NUMB3RS) 

But what is the P-NP problem? 

Sudoku 

3 x 3 x 3 
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Sudoku 

3 x 3 x 3 

Sudoku 

4 x 4 x 4 

Sudoku 

4 x 4 x 4 

Sudoku 

n x n x n 

..
. 

Suppose it takes you S(n) to 
solve n x n x n 

V(n) time to verify the solution 

Fact: V(n) = O(n2 x n2) 

Question: is there some 
constant c such that 
S(n) ≤ nc  ? 

n x n x n 

..
. 

P vs NP problem 

= 

Does there exist an 
algorithm for n x n x n 
Sudoku that runs in  
time p(n) for some 
polynomial p( ) ?   

The P versus NP problem 
(informally) 

Is proving a theorem much more difficult 
than checking the proof  of  a theorem? 
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Let’s start at the beginning… 

Hamilton Cycle 

Given a graph G = (V,E), a cycle that visits all 
the nodes exactly once 

The Problem “HAM” 

The Set “HAM” 

Input: Graph G = (V,E) 

Output: YES if  G has a Hamilton cycle 

NO if  G has no Hamilton cycle 

HAM = { graph G | G has a Hamilton cycle } 

AND 

AND 

NOT 

Circuit-Satisfiability 
Input: A circuit C with one output 

Output: YES if  C is satisfiable 

NO if  C is not satisfiable 

The Set “SAT” 

SAT = { all satisfiable circuits C } 

Bipartite Matching 

Input: A bipartite graph G = (U,V,E) 

Output: YES if  G has a perfect matching 

NO if  G does not 
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The Set “BI-MATCH” 

BI-MATCH = { all bipartite graphs that have a 
perfect matching } 

Sudoku 

Input: n x n x n sudoku instance 

Output: YES if  this sudoku has a solution 

NO if  it does not 

The Set “SUDOKU” 

SUDOKU = { All solvable sudoku instances } 

Decision Versus Search Problems 

Decision Problem 

YES/NO answers 

Does G have a 
Hamilton cycle? 

Search Problem 

Find a Hamilton cycle 
in G if  one exists, 

else return NO 

Can G be  
3-colored ? 

Find a 3-coloring of  
G if  one exists, else 

return NO 

Reducing Search to Decision 

Given an algorithm for decision Sudoku, 
devise an algorithm to find a solution 

Idea: 
Fill in one-by-one and 
use decision algorithm 

Reducing Search to Decision 

Given an algorithm for decision HAM, 
devise an algorithm to find a solution 

Idea: 
Find the edges of  the 
cycle one by one 

Decision/Search Problems 

We’ll study decision problems because 
they are almost the same (asymptotically) 

as their search counterparts 
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Polynomial Time and 
The Class “P” of  

Decision Problems 

What is an efficient algorithm? 

polynomial time 

O(nc) for some  
constant c 

non-polynomial 
time 

Is an O(n) algorithm efficient? 

How about O(n log n)? 

O(n2) ? 

O(n10) ? 

O(nlog n) ? 

O(2n) ? 

O(n!) ? 

We consider non-polynomial time 
algorithms to be inefficient. 

And hence a necessary condition for an 
algorithm to be efficient is that it should 

run in poly-time. 

Does an algorithm 
running in O(n100) time  

count as efficient? 
Asking for a poly-time algorithm for a 

problem sets a (very) low bar when asking 
for efficient algorithms. 

The question is: can we achieve even this 
for 3-coloring?  

SAT? 
Sudoku? 

HAM? 

The Class P 

We say a set L ⊆ Σ* is in P if  there is 
  a program A and 
  a polynomial p( ) 

such that for any x in Σ*,  

A(x) runs for at most p(|x|) time 
and answers question “is x in L?” correctly. 

The class of all sets L that can be 
recognized in polynomial time. 

The class of all decision problems that 
can be decided in polynomial time. 

The Class P 
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Why are we looking only at sets ⊆ Σ*? 

What if  we want to work with graphs or 
boolean formulas? 

Languages/Functions in P? 

Example 1: 
   CONN = {graph G: G is a connected graph} 

Algorithm A1: 

If  G has n nodes, then run depth first search 
from any node, and count number of  distinct 
nodes you see. If  you see n nodes, G ∈ CONN, 
else not. 

Time: p1(|x|) = Θ(|x|). 

Languages/Functions in P? 

HAM, SUDOKU, SAT are not known to be in P 

CO-HAM = { G | G does NOT have a 
Hamilton cycle} 

CO-HAM ∈ P if  and only if  HAM ∈ P  

Onto the new class, NP 

Verifying Membership 

Is there a short “proof” I can give you for: 

G ∈ HAM? 

G ∈ BI-MATCH? 

C ∈ SAT? 

G ∈ CO-HAM? 

NP 
A set L ∈ NP 

if  there exists an algorithm A and a 
polynomial p( ) 

For all x ∈ L 

there exists y with 
|y| ≤ p(|x|)  

such that A(x,y) = YES 

in p(|x|) time 

For all xʹ′ ∉ L 

For all yʹ′ with 
|yʹ′| ≤ p(|xʹ′|)  

in p(|x|) time 

we have A(xʹ′,yʹ′) = NO 
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can think of  A as “proving” that x is in L 

Recall the Class P 

We say a set L ⊆ Σ* is in P if  there is 
  a program A and 
  a polynomial p() 

such that for any x in Σ*,  

A(x) runs for at most p(|x|) time 
and answers question “is x in L?” correctly. 

NP 
A set L ∈ NP 

if  there exists an algorithm A and a 
polynomial p( ) 

For all x ∈ L 

there exists a y with 
|y| ≤ p(|x|)  

such that A(x,y) = YES 

in p(|x|) time 

For all xʹ′ ∉ L 

For all yʹ′ with 
|yʹ′| ≤ p(|xʹ′|)  

in p(|x|) time 

Such that A(xʹ′,yʹ′) = NO 

Example: HAM ∈ NP  

Let A(x,y) be a program that takes two 
strings x and y, and returns YES if  the 
following conditions hold otherwise it 
returns NO. 

•  y is a representation of  a labeled graph 
•  x is a representation of  a cycle with the 

 same labeled vertices as y 
•  every edge of  the cycle x is in the graph y 

(All of  these conditions can be easily checked in linear time) 

By our definition, this proves HAM ∈ NP  

The Class NP 

The class  of sets L for which there exist 
“short” proofs of membership  

(of polynomial length)  

that can be “quickly” verified  
(in polynomial time). 

Recall: A doesn’t have to find these proofs y; it just needs to be 
able to verify that y is a “correct” proof. 

P ⊆ NP 

For any L in P, we can just take y to be the 
empty string and satisfy the requirements. 

Hence, every language in P is also in NP. 

Languages/Functions in NP? 

G ∈ HAM? 

G ∈ BI-MATCH? 

G ∈ SAT? 

G ∈ CO-HAM? 

(Yes, already saw) 

(is in P) 

(Yes. explain it) 

(not clear) 

Proof  that something is in NP is often trivial. 
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Summary: P versus NP 

Set L is in P if  membership in L can be 
decided in poly-time. 

Set L is in NP if  each x in L has a short “proof  
of  membership” that can be verified in poly-
time. 

Fact: P ⊆ NP 

Question: Is NP ⊆ P ? 

Why Care? 

Classroom Scheduling 
Packing objects into bins 

Scheduling jobs on machines 
Finding cheap tours visiting a subset of cities 

Allocating variables to registers 

Finding good packet routings in networks 
Decryption 

… 

NP Contains Lots of  Problems 
We Don’t Know to be in P 

OK, OK, I care... 

But where do I begin 
if  I want to reason about 

the P=NP problem? 

How can we prove that 
NP ⊆ P? 

I would have to show that 
every set in NP has a 

polynomial time algorithm… 

How do I do that? 
It may take a long time! 

Also, what if  I forgot one of   
the sets in NP? 

We can describe  
just one problem L in NP,  

such that  
if  this problem L is in P,  

then NP ⊆ P. 

It is a problem that can 
capture all other problems 

in NP. 
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The “Hardest” Set in NP 

Sudoku 

n x n x n 

..
. 

Sudoku has a  
polynomial time 

algorithm  

if  and only if   

P = NP 

The “Hardest” Sets in NP 

Sudoku 

SAT 

3-Colorability 

Clique 

HAM 

Independent-Set 

These problems are all  
“polynomial-time equivalent”. 

I.e., each of  these can be reduced to any 
of  the others in poly-time 

“Poly-time reducible to each other” 

Reducing problem Y to problem X in poly-time 

Oracle for 
problem X 

Oracle for 
problem Y 

Instance IY of  
problem Y 

Instance  
IX = F(IY ) of  
problem X 

F is poly-time 
computable 

Answer 

Answer 

How do you prove these 
are the hardest? 

Theorem [Cook/Levin]: 

SAT is one language in NP, such that if  we 
can show SAT is in P, then we have shown 
NP ⊆ P. 

SAT is a language in NP that can capture all 
other languages in NP. 

We say SAT is NP-complete. 
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AND 

AND 

NOT 

3-colorability Circuit Satisfiability 

Last lecture… 

SAT and 3COLOR: Two problems that seem 
quite different, but are substantially the 
same. 

Also substantially the same as CLIQUE and 
INDEPENDENT SET. 

If you get a polynomial-time algorithm for one, 
you get a polynomial-time algorithm for ALL. 

Last lecture… 

Proving a problem Q is NP-Complete 

1.  Prove that Q is in NP. 

2.  Give a reduction that allows an 
instance of  a known NP-complete 
problem to be reduced to an instance 
of  Q. 

Examples of  such reductions were given 
in the last lecture – e.g. reducing SAT to 
3-coloring. 

Any language in NP 

SAT 

can be reduced  
(in polytime to) 
an instance of   

hence SAT is NP-complete 

3COLOR 

can be reduced  
(in polytime to) 
an instance of  

hence 3COLOR is NP-complete 

Here’s What 
You Need to 

Know… 

Definition of  P and NP 

Definition of  problems 

   SAT, 3-COLOR, HAM,  
   SUDOKU, BI-MATCH 

SAT, 3-COLOR, HAM, SUDOKU 
all essentially equivalent. 

Solve any one in poly-time 
   ⇒ solve all of  them in poly-time 


