
11/23/10

1

15-251
Great Theoretical Ideas

in Computer Science
for

Some
Complexity Theory:

The P vs NP question
Lecture 27 (Nov 23, 2010)

$$$
The $1M Questions

The Clay Mathematics Institute
 Millenium Prize Problems

1.  Birch and Swinnerton-Dyer Conjecture
2.  Hodge Conjecture
3.  Navier-Stokes Equations
4.  P vs NP
5.  Poincaré Conjecture
6.  Riemann Hypothesis
7.  Yang-Mills Theory

← solved!

The P versus NP problem

Is perhaps the biggest open problem
in computer science (and mathematics!) today.

(Even featured in the TV show NUMB3RS)

But what is the P-NP problem?

Sudoku

3 x 3 x 3

11/23/10

2

Sudoku

3 x 3 x 3

Sudoku

4 x 4 x 4

Sudoku

4 x 4 x 4

Sudoku

n x n x n

..
.

Suppose it takes you S(n) to
solve n x n x n

V(n) time to verify the solution

Fact: V(n) = O(n2 x n2)

Question: is there some
constant c such that
S(n) ≤ nc ?

n x n x n

..
.

P vs NP problem

=

Does there exist an
algorithm for n x n x n
Sudoku that runs in
time p(n) for some
polynomial p() ?

The P versus NP problem
(informally)

Is proving a theorem much more difficult
than checking the proof of a theorem?

11/23/10

3

Let’s start at the beginning…

Hamilton Cycle

Given a graph G = (V,E), a cycle that visits all
the nodes exactly once

The Problem “HAM”

The Set “HAM”

Input: Graph G = (V,E)

Output: YES if G has a Hamilton cycle

NO if G has no Hamilton cycle

HAM = { graph G | G has a Hamilton cycle }

AND

AND

NOT

Circuit-Satisfiability
Input: A circuit C with one output

Output: YES if C is satisfiable

NO if C is not satisfiable

The Set “SAT”

SAT = { all satisfiable circuits C }

Bipartite Matching

Input: A bipartite graph G = (U,V,E)

Output: YES if G has a perfect matching

NO if G does not

11/23/10

4

The Set “BI-MATCH”

BI-MATCH = { all bipartite graphs that have a
perfect matching }

Sudoku

Input: n x n x n sudoku instance

Output: YES if this sudoku has a solution

NO if it does not

The Set “SUDOKU”

SUDOKU = { All solvable sudoku instances }

Decision Versus Search Problems

Decision Problem

YES/NO answers

Does G have a
Hamilton cycle?

Search Problem

Find a Hamilton cycle
in G if one exists,

else return NO

Can G be
3-colored ?

Find a 3-coloring of
G if one exists, else

return NO

Reducing Search to Decision

Given an algorithm for decision Sudoku,
devise an algorithm to find a solution

Idea:
Fill in one-by-one and
use decision algorithm

Reducing Search to Decision

Given an algorithm for decision HAM,
devise an algorithm to find a solution

Idea:
Find the edges of the
cycle one by one

Decision/Search Problems

We’ll study decision problems because
they are almost the same (asymptotically)

as their search counterparts

11/23/10

5

Polynomial Time and
The Class “P” of

Decision Problems

What is an efficient algorithm?

polynomial time

O(nc) for some
constant c

non-polynomial
time

Is an O(n) algorithm efficient?

How about O(n log n)?

O(n2) ?

O(n10) ?

O(nlog n) ?

O(2n) ?

O(n!) ?

We consider non-polynomial time
algorithms to be inefficient.

And hence a necessary condition for an
algorithm to be efficient is that it should

run in poly-time.

Does an algorithm
running in O(n100) time

count as efficient?
Asking for a poly-time algorithm for a

problem sets a (very) low bar when asking
for efficient algorithms.

The question is: can we achieve even this
for 3-coloring?

SAT?
Sudoku?

HAM?

The Class P

We say a set L ⊆ Σ* is in P if there is
 a program A and
 a polynomial p()

such that for any x in Σ*,

A(x) runs for at most p(|x|) time
and answers question “is x in L?” correctly.

The class of all sets L that can be
recognized in polynomial time.

The class of all decision problems that
can be decided in polynomial time.

The Class P

11/23/10

6

Why are we looking only at sets ⊆ Σ*?

What if we want to work with graphs or
boolean formulas?

Languages/Functions in P?

Example 1:
 CONN = {graph G: G is a connected graph}

Algorithm A1:

If G has n nodes, then run depth first search
from any node, and count number of distinct
nodes you see. If you see n nodes, G ∈ CONN,
else not.

Time: p1(|x|) = Θ(|x|).

Languages/Functions in P?

HAM, SUDOKU, SAT are not known to be in P

CO-HAM = { G | G does NOT have a
Hamilton cycle}

CO-HAM ∈ P if and only if HAM ∈ P

Onto the new class, NP

Verifying Membership

Is there a short “proof” I can give you for:

G ∈ HAM?

G ∈ BI-MATCH?

C ∈ SAT?

G ∈ CO-HAM?

NP
A set L ∈ NP

if there exists an algorithm A and a
polynomial p()

For all x ∈ L

there exists y with
|y| ≤ p(|x|)

such that A(x,y) = YES

in p(|x|) time

For all xʹ′ ∉ L

For all yʹ′ with
|yʹ′| ≤ p(|xʹ′|)

in p(|x|) time

we have A(xʹ′,yʹ′) = NO

11/23/10

7

can think of A as “proving” that x is in L

Recall the Class P

We say a set L ⊆ Σ* is in P if there is
 a program A and
 a polynomial p()

such that for any x in Σ*,

A(x) runs for at most p(|x|) time
and answers question “is x in L?” correctly.

NP
A set L ∈ NP

if there exists an algorithm A and a
polynomial p()

For all x ∈ L

there exists a y with
|y| ≤ p(|x|)

such that A(x,y) = YES

in p(|x|) time

For all xʹ′ ∉ L

For all yʹ′ with
|yʹ′| ≤ p(|xʹ′|)

in p(|x|) time

Such that A(xʹ′,yʹ′) = NO

Example: HAM ∈ NP

Let A(x,y) be a program that takes two
strings x and y, and returns YES if the
following conditions hold otherwise it
returns NO.

•  y is a representation of a labeled graph
•  x is a representation of a cycle with the

 same labeled vertices as y
•  every edge of the cycle x is in the graph y

(All of these conditions can be easily checked in linear time)

By our definition, this proves HAM ∈ NP

The Class NP

The class of sets L for which there exist
“short” proofs of membership

(of polynomial length)

that can be “quickly” verified
(in polynomial time).

Recall: A doesn’t have to find these proofs y; it just needs to be
able to verify that y is a “correct” proof.

P ⊆ NP

For any L in P, we can just take y to be the
empty string and satisfy the requirements.

Hence, every language in P is also in NP.

Languages/Functions in NP?

G ∈ HAM?

G ∈ BI-MATCH?

G ∈ SAT?

G ∈ CO-HAM?

(Yes, already saw)

(is in P)

(Yes. explain it)

(not clear)

Proof that something is in NP is often trivial.

11/23/10

8

Summary: P versus NP

Set L is in P if membership in L can be
decided in poly-time.

Set L is in NP if each x in L has a short “proof
of membership” that can be verified in poly-
time.

Fact: P ⊆ NP

Question: Is NP ⊆ P ?

Why Care?

Classroom Scheduling
Packing objects into bins

Scheduling jobs on machines
Finding cheap tours visiting a subset of cities

Allocating variables to registers

Finding good packet routings in networks
Decryption

…

NP Contains Lots of Problems
We Don’t Know to be in P

OK, OK, I care...

But where do I begin
if I want to reason about

the P=NP problem?

How can we prove that
NP ⊆ P?

I would have to show that
every set in NP has a

polynomial time algorithm…

How do I do that?
It may take a long time!

Also, what if I forgot one of
the sets in NP?

We can describe
just one problem L in NP,

such that
if this problem L is in P,

then NP ⊆ P.

It is a problem that can
capture all other problems

in NP.

11/23/10

9

The “Hardest” Set in NP

Sudoku

n x n x n

..
.

Sudoku has a
polynomial time

algorithm

if and only if

P = NP

The “Hardest” Sets in NP

Sudoku

SAT

3-Colorability

Clique

HAM

Independent-Set

These problems are all
“polynomial-time equivalent”.

I.e., each of these can be reduced to any
of the others in poly-time

“Poly-time reducible to each other”

Reducing problem Y to problem X in poly-time

Oracle for
problem X

Oracle for
problem Y

Instance IY of
problem Y

Instance
IX = F(IY) of
problem X

F is poly-time
computable

Answer

Answer

How do you prove these
are the hardest?

Theorem [Cook/Levin]:

SAT is one language in NP, such that if we
can show SAT is in P, then we have shown
NP ⊆ P.

SAT is a language in NP that can capture all
other languages in NP.

We say SAT is NP-complete.

11/23/10

10

AND

AND

NOT

3-colorability Circuit Satisfiability

Last lecture…

SAT and 3COLOR: Two problems that seem
quite different, but are substantially the
same.

Also substantially the same as CLIQUE and
INDEPENDENT SET.

If you get a polynomial-time algorithm for one,
you get a polynomial-time algorithm for ALL.

Last lecture…

Proving a problem Q is NP-Complete

1.  Prove that Q is in NP.

2.  Give a reduction that allows an
instance of a known NP-complete
problem to be reduced to an instance
of Q.

Examples of such reductions were given
in the last lecture – e.g. reducing SAT to
3-coloring.

Any language in NP

SAT

can be reduced
(in polytime to)
an instance of

hence SAT is NP-complete

3COLOR

can be reduced
(in polytime to)
an instance of

hence 3COLOR is NP-complete

Here’s What
You Need to

Know…

Definition of P and NP

Definition of problems

 SAT, 3-COLOR, HAM,
 SUDOKU, BI-MATCH

SAT, 3-COLOR, HAM, SUDOKU
all essentially equivalent.

Solve any one in poly-time
 ⇒ solve all of them in poly-time

