11/23/10

15-251 Complexity Theory:
Some : The P vs NP question
Great Theoretical Ideas
for
The $1M Questions
The Clay Mathematics Institute
Millenium Prize Problems
1. Birch and Swinnerton-Dyer Conjecture
2. Hodge Conjecture
3. Navier-Stokes Equations
4. Pvs NP
5. Poincaré Conjecture < solved!
6. Riemann Hypothesis
7. Yang-Mills Theory
The P versus NP problem Sudoku
Is perhaps the biggest open problem 2 3 3 4 2 9 2
in computer science (and mathematics!) today. 8 al7 3 4
6 7 9
(Even featured in the TV show NUMB3RS) 9 8 1.7
5 6 9
But what is the P-NP problem? 31917 2
4/ 6|5 2 8
2 9 3 1
J 3x3x3

11/23/10

Sudoku Sudoku
29 4]3 78|15 6 I BEICE T NO
1/7/3|6/4 5[9 8 2 e P e L.
56/8|2 1/9]7 3 4 o3| |7 A B
65 7|19 2|34 8 SN BN PN S
982 436 517 92 £ SWEBF;Z 0 24
4/3/1|18 5 716 29 [4 |ale] [olole]s| |25
3 1/9[784[2765 O B L
746521 893 BO 7 23(1: 32F29g
82 5|9 6 3[4 7 1 5| | AlelolB D|
2 DA 9 1 4
I 3x3x3 4x4x4
Sudoku Tl Sudoku
pEEEnEEn oeEE ceas R s e
dCNE B00E NEE0 BE e Suppose it takes you S(n) to
AGEE NENE ANDE BOEE ——— solvenxnxn
41913 5]7[1]C[OJDTAF[B|E[E[6]2 :
R T MO e R V(n) time to verify the solution
ANAER BEEE BREE BERE
DOEE BEDEEEEE BERE Fact: V(n) = O(n2 x n?)
4 6/A 8 D|/o|e]B 2|5
2 A:o'D;'5§'§+ 7[2|E[F
— Question: is there some
I EK BEEE CERE NEEC] . constant ¢ such that
£ 5 1.2 Ale 0|B E|6|/D|3
ALNA ERE i R o S(n)=n®?
4x4x4 nxnxn
P vs NP problem
The P versus NP problem
—T T = (informally)
i Does‘thereexiSta\n Is proving a theorem much more difficult
RERR A oF algorithm for n x nxn than checking the proof of a theorem?
i i Sudoku that runs in
EiiF) R R e time p(n) for some
| A
. polynomial p() ?
L]
[]
nxnxn

11/23/10

Let’s start at the beginning...

Hamilton Cycle

Given a graph G = (V,E), a cycle that visits all
the nodes exactly once

The Problem “HAM”

Input: Graph G = (V,E)
Output: YES if G has a Hamilton cycle
NO if G has no Hamilton cycle

The Set “HAM”
HAM = { graph G | G has a Hamilton cycle }

Circuit-Satisfiability
Input: A circuit C with one output

Output: YES if C is satisfiable
NO if C is not satisfiable

L
w

The Set “SAT”
SAT ={ all satisfiable circuits C }

Bipartite Matching
Input: A bipartite graph G = (U,V,E)

Output: YES if G has a perfect matching
NO if G does not

0 —0

o

3 0 o o
0 0 '
0 0 0 0
0 N\, 0

s

The Set “BI-MATCH”

BI-MATCH = { all bipartite graphs that have a
perfect matching }

Sudoku

Input: n x n x n sudoku instance

Output: YES if this sudoku has a solution
NO if it does not

The Set “SUDOKU”
SUDOKU = { All solvable sudoku instances }

Decision Versus Search Problems

Decision Problem Search Problem
YES/NO answers
Find a Hamilton cycle
Does G have a in G if one exists,
Hamilton cycle? else return NO
Can G be gmfd a 3-co'loringI of
3-colored ? if one exists, else
return NO

Reducing Search to Decision

Given an algorithm for decision Sudoku,
devise an algorithm to find a solution

2 3

Idea:
Fill in one-by-one and
use decision algorithm

Reducing Search to Decision

Given an algorithm for decision HAM,
devise an algorithm to find a solution

Idea:
Find the edges of the
cycle one by one

Decision/Search Problems

We’ll study decision problems because
they are almost the same (asymptotically)
as their search counterparts

11/23/10

Polynomial Time and
The Class “P” of
Decision Problems

11/23/10

What is an efficient algorithm?

\

Is an O(n) algorithm efficient?
How about O(n log n)? , polynomial time
o(n?) ? 0O(n°) for some

constant c
O(n%) ? y
o(nlog n?

non-polynomial
02" ? ™ time
Oo(n!) ? J

Does an algorithm
running in O(n1%°) time
count as efficient?

We consider non-polynomial time
algorithms to be inefficient.

And hence a necessary condition for an
algorithm to be efficient is that it should
run in poly-time.

Asking for a poly-time algorithm for a
problem sets a (very) low bar when asking
for efficient algorithms.

The question is: can we achieve even this
for 3-coloring?
SAT?
Sudoku?
HAM?

The Class P

Wesay asetLC > *isinP if thereis
a program A and
a polynomial p()

such that for any xin Z*,

A(x) runs for at most p(|x|) time
and answers question “is x in L?” correctly.

The Class P

The class of all sets L that can be
recognized in polynomial time.

The class of all decision problems that
can be decided in polynomial time.

11/23/10

Why are we looking only at sets C % *?

What if we want to work with graphs or
boolean formulas?

Languages/Functions in P?

Example 1:
CONN = {graph G: G is a connected graph}

Algorithm A;:

If G has n nodes, then run depth first search
from any node, and count number of distinct
nodes you see. If you see n nodes, G € CONN,
else not.

Time: p,(Ix) = ©(|x|).

Languages/Functions in P?
HAM, SUDOKU, SAT are not known to be in P

CO-HAM ={G | G does NOT have a
Hamilton cycle}

CO-HAM € P if and only if HAM € P

Onto the new class, NP

Verifying Membership
Is there a short “proof” | can give you for:
G € HAM?
G € BI-MATCH?
C € SAT?

G € CO-HAM?

NP
AsetLE NP

if there exists an algorithm A and a
polynomial p()

ForallxeL Forallx' &L
there exists y with For all y’ with
Iyl = p(IxI) Iyl = p(Ix'1)

such that A(x,y) = YES we have A(x',y') = NO

in p(|x]) time in p(|x]) time

11/23/10

Recall the Class P

We say asetLC X *isin P if thereis
a program A and
a polynomial p()

such that for any x in % *,

A(x) runs for at most p(|x|) time

<{and answers question “is x in L?” correctly.

can think of A as “proving” that xisinL

NP
AsetLE NP

if there exists an algorithm A and a
polynomial p()

ForallxeL Forallx' &L
there exists a y with For all y’ with
Iyl = p(Ix]) Iyl = p(Ix'1)

such that A(x,y) = YES Such that A(x',y’) = NO

in p(|x]) time in p(|x]) time

Example: HAM € NP

Let A(x,y) be a program that takes two
strings x and y, and returns YES if the
following conditions hold otherwise it
returns NO.

+y is a representation of a labeled graph

* x is a representation of a cycle with the
same labeled vertices as y

* every edge of the cycle x is in the graph y

(All of these conditions can be easily checked in linear time)

By our definition, this proves HAM € NP

The Class NP

The class of sets L for which there exist

“short” proofs of membership
(of polynomial length)

that can be “quickly” verified
(in polynomial time).

Recall: A doesn’t have to find these proofs y; it just needs to be
able to verify that y is a “correct” proof.

PC NP

For any L in P, we can just take y to be the
empty string and satisfy the requirements.

Hence, every language in P is also in NP.

Languages/Functions in NP?

G € HAM? (Yes, already saw)
G € BI-MATCH? (isinP)

G € SAT? (Yes. explain it)
G € CO-HAM? (not clear)

Proof that something is in NP is often trivial.

11/23/10

Summary: P versus NP

Set L is in P if membership in L can be
decided in poly-time.

SetLis in NP if each x in L has a short “proof
of membership” that can be verified in poly-

time.
Fact: PC NP

Question: IsNPC P ?

Why Care?

NP Contains Lots of Problems
We Don’t Know to be in P

Classroom Scheduling
Packing objects into bins
Scheduling jobs on machines

Finding cheap tours visiting a subset of cities

Allocating variables to registers
Finding good packet routings in networks
Decryption

OK, OK, | care...

But where do | begin
if | want to reason about
the P=NP problem?

How can we prove that
NP C P?

| would have to show that
every setin NP has a
polynomial time algorithm...

How do | do that?
It may take a long time!
Also, what if | forgot one of
the sets in NP?

We can describe
just one problem L in NP,
such that
if this problem Lis in P,
then NP CP.

Itis a problem that can
capture all other problems
in NP.

The “Hardest” Set in NP

11/23/10

B Rl e Sudoku
(el | Sudoku has a
- omm polynomial time
algorithm
if and only if
— P=NP

nxnxn

The “Hardest” Sets in NP
Sudoku Clique
SAT Independent-Set

3-Colorability HAM

These problems are all
“polynomial-time equivalent”.

l.e., each of these can be reduced to any
of the others in poly-time

“Poly-time reducible to each other”
Reducing problem Y to problem X in poly-time

F is poly-time
computable

Answer
Instance |y of | I:sFt(anlm):if
problem Y v»"’::\\ X oblem X f,w:i\

It
ey < Ly
e | Answer | AL

Oracle for Oracle for
problem Y problem X

AN

T
>

How do you prove these
are the hardest?

Theorem [Cook/Levin]:

SAT is one language in NP, such that if we
can show SAT is in P, then we have shown
NP CP.

SAT is a language in NP that can capture all
other languages in NP.

We say SAT is NP-complete.

11/23/10

Last lecture... Last lecture...
3-colorability Circuit Satisfiability SAT and 3COLOR: Two problems that seem

quite different, but are substantially the
same.

Also substantially the same as CLIQUE and
INDEPENDENT SET.

If you get a polynomial-time algorithm for one,
you get a polynomial-time algorithm for ALL.

Proving a problem Q is NP-Complete

Any language in NP
1. Prove that Qis in NP. | y guag I

can be reduced
(in polytime to)

2. Give a reduction that allows an 1= instance of
instance of a known NP-complete :
problem to be reduced to an instance EAE
of Q.

can be reduced
(in polytime to)
an instance of

v
Examples of such reductions were given

in the last lecture - e.g. reducing SAT to 3COLOR | [hence 3coLoris NP-complete

3-coloring.

Definition of P and NP

Definition of problems

SAT, 3-COLOR, HAM,
SUDOKU, BI-MATCH

SAT, 3-COLOR, HAM, SUDOKU
all essentially equivalent.

Here’s What . .
You Need to Solve any one in poly-time
ou = solve all of them in poly-time
Know...

10

