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15-251
Great Theoretical Ideas 
in Computer Science

Gödel’s Legacy: 
Proofs and Their Limitations

Lecture 25 (November 16, 2010)

A Quick Recap of 
the Previous Lecture

The Halting Problem

Is there a program HaltsOnItself such that
for all programs P:

HaltsOnItself(P)   =  yes, if P(P) halts

HaltsOnItself(P)   =  no,   if P(P) does not halt

Halting Set K = { Java P | P(P) halts }

Alan Turing (1912-1954)

Theorem: [1937]

There is no program to 
solve the halting 

problem

CONFUSE

Does CONFUSE(CONFUSE) halt?

CONFUSE(P)

{  if (HaltsOnItself(P)) 

then loop forever; //i.e., we dont halt

else exit; //i.e., we halt

// text of HaltsOnItself goes here

}

Suppose HaltsOnItself exists
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Alan Turing (1912-1954)

Theorem: [1937]

There is no program to 
solve the halting 

problem

Note: The impossibility proof  even holds for 
“good” programs P with

1. at most one (clearly specified) input stmt

2. at most one (clearly specified) exit statement

PROGRAM

{ read input INP;       // input stmt

blah blah;

blah;

exit;                            // exit stmt

}

Computability Theory:
Vocabulary Lesson

We call a set S⊆Σ* decidable or recursive if 
there is a program P such that:

P(x) = yes, if x∈S

P(x) = no,  if  x∉S

We saw: the halting set K is undecidable

(No program can decide membership in K)

Computability Theory:
Some More Vocabulary

We call a set of strings S⊆Σ* enumerable
or recursively enumerable (r.e.)
if there is a program P such that:

1. P prints an (infinite) list of strings. 

2. Any element on the list should be in S.

3. Each element in S appears after a finite 
amount of time. 

We saw: the halting set K is enumerable

The Halt0 Problem

Is there a program Halts such that
for all programs Q which take no input:

Halts(Q)   =  yes, if Q halts

Halts(Q)   =  no,   if Q does not halt

Set K0 = { Java Q | Q halts }

Claim: The set K0 is undecidable.

Claim: The set K0 is undecidable.

Proof: If K0 decidable, there exists Halts

Using this, we claim we can decide K.

P {

read input INP;       // input stmt

blah blah;

exit;                            // exit stmt

}      

Take any program P

Make program Q = P(P) Q {

var INP = “text of P”;

blah blah;

exit;                            // exit stmt

}

Now can use Halts to decide K. Contradiction!
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What’s a proof?

Flackback to 
Lecture 10

What is a proof?

A sequence of  statements,
each of  which

is an axiom,

or a hypothesis,

or follows from previous statements
using an inference rule

A Logical System

A “logic” consists of:

1) A collection S of  well-formed sentences

2) Some sentences in S called “axioms”

3) A set of  “rules of  inference”

E.g., Logical System for Propositions

Axiom:

Inference Rules:

A Ç (B Ç C)

(A Ç B) Ç C

A Ç A
A

A

B Ç A

(A Ç B), (¬A Ç C)

(B Ç C)

(¬A Ç A)

associativity

contraction

expansion

cut rule

A Logical System

A “logic” consists of:

1) A collection S of  well-formed sentences

2) Some sentences in S called “axioms”

3) A set of  “rules of  inference”

A “truth concept” consists of:

1) A collection S of  well-formed sentences

2) Some sentences in S called “truths”

Our logical system for propositions is

sound 

and 

complete

for propositional truths (tautologies)

“all theorems are true”

“all truths are theorems”
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A Logical System

A “logic” consists of:

1) A collection S of  well-formed sentences

2) Some sentences in S called “axioms”

3) A set of  “rules of  inference”

A “truth concept” consists of:

1) A collection S of  well-formed sentences

2) Some sentences in S called “truths”

a) 0 is a natural number. 

d) For all natural numbers m and n, if  
S(m) = S(n), then m = n. 

b) For every natural number n, its 
“successor”  S(n) is a natural number. 

c) For every natural number n, S(n) ≠ 0.

Another example: Peano Arithmetic

h) If  n is a natural number and n = m, 
then m is also a natural number. 

e) For every natural n, n = n 

f) For all naturals, if  n = m, then m = n. 

g) For all naturals if  k = m and m = n then k = n. 

Peano Arithmetic (contd.) Peano: and so on…

You can build an edifice for arithmetic

to conceivably prove all arithmetic truths

and use this logical system

Thm: the Peano system is sound for arithmetic

We asked: Is it complete?

We’ll answer this today… General Picture

A set of  (well-formed) statements S. 

A logic L.

A truth concept 
TruthS: S → {T, F}
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Extra condition 1

We want the set of  statements to be decidable

I.e., there exists an algorithm to 
check well-formedness

Recursive Program to decide S

ValidProp(S) {

return True if any of the following:

S has the form ¬(S1) and ValidProp(S1)

S has the form (S1 ∧ S2) and

ValidProp(S1) AND ValidProp(S2)

S has the form  …..

}

(for propositional logic)

General Picture

A decidable set of  statements S. 

A logic L.

A truth concept 
TruthS: S → {T, F}

Extra condition 2

We want the logic to be computable

I.e., there exists an algorithm to decide:

a) given a statement s, is it an axiom?

b) given a statement s and s’, if  
s’ follows from s using an inference rule

General Picture

A decidable set of  statements S. 

A computable logic L.

A truth concept 
TruthS: S → {T, F}

What conditions on truth concept?

None.

This is the elusive “right or wrong”
we are trying to capture…
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Truths of Propositional Logic

PropositionalTruth =

All expressions in propositional 
logic that are tautologies.

Truths of Euclidean Geometry

EuclidTruth =

All TRUE expressions of the 
language of Euclidean 
geometry.

Truths of Natural Arithmetic

All TRUE expressions of the 
language of arithmetic (logical 
symbols and quantification over 
Naturals).

ArithmeticTruth =

Truths of JAVA Program Behavior

JAVATruth =

All TRUE expressions of  the form 
program “P on input X will halt” or 
“not halt”

General Picture

A decidable set of  statements S. 

A computable logic L.

A (possibly uncomputable) 
truth concept 

TruthS: S → {T, F}

Super Important Fact

Let S be any (decidable) set of statements.

Let L be any (computable) logic.

Theorem: We can write a program to 
enumerate all the theorems of L.

I.e., ProvableS,L is enumerable.
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Enumerating the Set ProvableS,L

for k = 0 to forever do 

let PROOF loop through all strings of  length k

let STMT loop through all strings of  length < k

if  proofcheckS,L(STMT, PROOF) = Valid

output STMT; //this is a theorem

We can enumerate all the theorems of 
propositional logic, Elements of Euclid, 
Peano arithmetic! (and all programs in K.)

General Picture

A decidable set of  statements S. 

A computable logic L.

A (possibly uncomputable) 
truth concept 

TruthS: S → {T, F}

We can enumerate TheoremsS,L

Soundness:
Every theorem of (S,L) is true

(according to TRUTHS) 

Completeness:
Every truth (according to TRUTHS) 

is a theorem of (S,L)

Truth versus Provability

Happy News:

ProvablePropLogic = PropositionalTruth

The logical system we gave
was sound and complete for 

Prop.Logic

Truth versus Provability

Happy News:

ProvableElements = EuclidTruth

The Elements of Euclid are 
sound and complete

for (Euclidean) geometry.

Truth versus Provability

Not-so-Happy News:

ProvablePeano ≠ ArithmeticTruth
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Hilbert’s Second Question [1900]

Is there a foundation for mathematics that 
would, in principle, allow us to decide the 
truth of any mathematical proposition? 

Such a foundation would have to give us a 
clear procedure (algorithm) for making the 
decision.

Hilbert

Foundation for mathematics:

F = (statements S, logical system L)
+ soundness

Gödel’s 
Incompleteness Theorem

In 1931, Kurt Gödel stunned the world by 
proving that for any consistent axioms F 
there is a true statement of  first order 
number theory that is not provable or 
disprovable by F.  

I.e., a true statement that can be made 
using 0, 1, plus, times, for every, there 
exists, AND, OR, NOT, parentheses, and 
variables that refer to natural numbers.

Truth versus Provability

F is sound for 
arithmetic will imply 
F is not complete.

Foundational Crisis:

It is impossible to have a 
logical system F such that

ProvableF,S = ArithmeticTruth

Here’s what we have

A language S.

A truth concept TruthS.

A logic L that is sound (maybe even 
complete) for the truth concept.

An enumerable list ProvableS,Lof provable 
statements (theorems) in the logic.

JAVATruth is Not Enumerable

Suppose JAVATruth is enumerable, and the 
program JavaList enumerates JAVATruth.

Can now make a program HaltsOnItself(P):

Run JavaList until either of  the two 
statements appears: 

“P(P) halts”, or “P(P) does not halt”. 

Output the appropriate answer.

Contradiction of  undecidability of  K.

JAVATruth has No Proof System

Theorem: There is no sound and 
complete proof system for JAVATruth.

Suppose (S,L) is sound and complete. 

Contradicts the fact  that JAVATruth 
is not recursively enumerable.

By soundness+completeness,  
ProvableS,L = JAVATruth

Proof: 

Recall, we can enumerate ProvableS,L.  
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The Halting problem is not 
decidable.

Hence, JavaTruth is not recursively 
enumerable.

Hence, JavaTruth does not have a
sound+complete logical system.

We can show that the existence of  
integer roots for Diophantine equations 
is not decidable.  

Polynomials capture the 
behavior of  programs here!!!

Hence, ArithmeticTruth is 
not recursively enumerable.

Hence, ArithmeticTruth has no sound 
and complete proof  system!!!!

Incompleteness

Let us fix F=(S,L) to be any attempt to 
give a foundation for mathematics. We 
have already proved that it cannot be 
sound and complete. Furthermore…

We can even construct a statement 
that we will all believe to be true, 

but is not provable in F.

Loop though all sequences of sentences in S

If  S is a valid F-proof  of  “P halts”, 
then loop-forever

If  S is a valid F-proof  of  “P never
halts”, then halt.

Suppose F is sound+complete for JAVATruth.

Then for each P, F can prove either 
“P halts” or “P does not halt”

CONFUSE(P) {

}

Program CONFUSEF(P)

Loop though all sequences of  
sentences in S

If  S is a valid F-proof  of  “P halts”, 

then loop-forever

If  S is a valid F-proof  of  “P never
halts”, then halt.

GODELF  = 
AUTO_CANNIBAL_MAKER(CONFUSEF)

Thus, when we run GODELF it will do the same 
thing as:

CONFUSEF(GODELF)

GODELF  = 
AUTO_CANNIBAL_MAKER(CONFUSEF)

Thus, when we run GODELF it will do the 
same thing as CONFUSEF(GODELF)

Program CONFUSEF(P)

Loop though all sequences of  
sentences in S

If  S is a valid F-proof of  “P halts”, 

then loop-forever

If  S is a valid F-proof of  “P never
halts”, then halt.

Can F prove GODELF halts?

If  Yes, then CONFUSEF(GODELF) does not 
halt: Contradiction

Can F prove GODELF does not halt?

If  Yes , then CONFUSEF(GODELF) halts: 
Contradiction
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GODELF

And this program does not halt!

F can’t prove or disprove that GODELF halts.

But GODELF = CONFUSEF(GODELF) is the 
program:

Loop though all sequences of  sentences in S

If  S is a valid F-proof  of  “GODELF halts”, then 
loop-forever

If  S is a valid F-proof  of  “GODELF never 
halts”, then halt.

No fixed set of  assumptions F can 
provide a complete foundation for 

mathematical proof. 

In particular, it can’t prove the true 
statement “GODELF does not halt.”

So What is Mathematics?

We can still have rigorous, precise axioms 
that we agree to use in our reasoning (like 
the Peano Axioms, or axioms for Set 
Theory). We just can’t hope for them to be 
complete. 

Most working mathematicians never hit 
these points of uncertainty in their work, 
but it does happen!


