Godel’s Legacy:
Proofs and Their Limitations

1 5_ 2 5 1 Lecture 25 (November 16, 2010)

Great Theoretical Ideas
in Computer Science

The Halting Problem

Is there a program HaltsOnltself such that
A Quick Recap of for all programs P:

the Previous Lecture
HaltsOnltself(P)

HaltsOnltself(P)

yes, if P(P) halts
no, if P(P)does not halt

Halting Set K = { Java P | P(P) halts }

Alan Turing (1912-1954) CONFUSE

\ Suppose HaltsOnltself exists

Theorem: [1937] CONFUSE(P)
{ if (HaltsOnltself(P))
then loop forever; Ili.e., we dont halt
else exit; lli.e., we halt
I text of HaltsOnltself goes here

There is no program to
solve the halting
problem

}
' Does CONFUSE(CONFUSE) halt? |




Alan Turing (1912-1954)

Theorem: [1937]

There is no program to
solve the halting
problem

Note: The impossibility proof even holds for
“good” programs P with

1. at most one (clearly specified) input stmt
2. at most one (clearly specified) exit statement

PROGRAM
{ read input INP;  // input stmt
blah blah;
blah;
exit; I exit stmt
}

Computability Theory:
Vocabulary Lesson

We call a set ScX* decidable or recursive if
there is a program P such that:

P(x) = yes, if xeS
P(x) = no, if xS

We saw: the halting set K is undecidable
\ (No program can decide membership in K) \

Computability Theory:
Some More Vocabulary

We call a set of strings Sc=* enumerable
or recursively enumerable (r.e.)
if there is a program P such that:

1. P prints an (infinite) list of strings.

2. Any element on the list should be in S.

3. Each element in S appears after a finite
amount of time.

We saw: the halting set K is enumerable

The Halt, Problem

Is there a program Halts such that
for all programs Q which take no input:

Halts(Q)
Halts(Q)

yes, if Q halts
no, if Q does not halt

SetK,={Java Q| Q halts }

Claim: The set K is undecidable.

Claim: The set K is undecidable.

Proof: If K, decidable, there exists Halts

Using this, we claim we can decide K.

Take any program P L

readinput INP;  //input stmt
blah blah;
exit; Il exit stmt

= Q
Make program Q P(P) var INP = “text of P”;
blah blah;

exit; 1l exit stmt

}

Now can use Halts to decide K.  Contradiction!




Flackback to
Lecture 10

What’s a proof?

What is a proof?

A sequence of statements,
each of which

is an axiom,
or a hypothesis,

or follows from previous statements
using an inference rule

A Logical System

A “logic” consists of:
1) A collection S of well-formed sentences
2) Some sentences in S called “axioms”

3) A setof “rules of inference”

E.g., Logical System for Propositions

Axiom:
(A V A)

Inference Rules:

expansion

AV (BVvC) AVA A
(AvB)vC A contraction BV A
associativity
(AVvB),(-AVvC)
cutrule (B v C)

A Logical System

A “logic” consists of:
1) A collection S of well-formed sentences

2) Some sentences in S called “axioms”

3) A setof “rules of inference”

A “truth concept” consists of:
1) A collection S of well-formed sentences

2) Some sentences in S called “truths”

Our logical system for propositions is

sound “all theorems are true”
and
complete “all truths are theorems”

for propositional truths (tautologies)




A Logical System

A “logic” consists of:

1) A collection S of well-formed sentences
2) Some sentences in S called “axioms”

3) A setof “rules of inference”

A “truth concept” consists of:

1) A collection S of well-formed sentences

2) Some sentences in S called “truths”

Another example: Peano Arithmetic
a) 0 is a natural number.

b) For every natural number n, its
“successor” S(n) is a natural number.

c) For every natural number n, S(n) = 0.

d) For all natural numbers m and n, if
S(m)=S8(n),thenm=n.

Peano Arithmetic (contd.)

e) For every naturaln,n=n

f) For all naturals, if n=m, then m =n.

h) If nis a natural number and n=m,
then m is also a natural number.

g) For all naturals if k=m and m=nthen k =n.

Peano: and soon...

You can build an edifice for arithmetic
and use this logical system

to conceivably prove all arithmetic truths

Thm: the Peano system is sound for arithmetic

We asked: Is it complete?

We’ll answer this today...

General Picture

A set of (well-formed) statements S.

A logic L.

A truth concept
Truthg: S — (T, F}




Extra condition 1

We want the set of statements to be decidable

l.e., there exists an algorithm to
check well-formedness

Recursive Program to decide S
(for propositional logic)
ValidProp(S) {
return True if any of the following:

S has the form —(S,) and ValidProp(S,)

S has the form (S; A S,) and
ValidProp(S4) AND ValidProp(S,)

S has the form .....

General Picture

A decidable set of statements S.

A logic L.

A truth concept
Truthg: S — (T, F}

Extra condition 2

We want the logic to be computable

l.e., there exists an algorithm to decide:
a) given a statement s, is it an axiom?

b) given a statement s and s’, if
s’ follows from s using an inference rule

General Picture

A decidable set of statements S.

A computable logic L.

A truth concept
Truthg: S — {T, F}

What conditions on truth concept?

None.

This is the elusive “right or wrong”
we are trying to capture...




Truths of Propositional Logic

PropositionalTruth =

All expressions in propositional
logic that are tautologies.

Truths of Euclidean Geometry

EuclidTruth =

All TRUE expressions of the
language of Euclidean
geometry.

Truths of Natural Arithmetic

ArithmeticTruth =

All TRUE expressions of the
language of arithmetic (logical
symbols and quantification over
Naturals).

Truths of JAVA Program Behavior

JAVATruth =

All TRUE expressions of the form
program “P on input X will halt” or
“not halt”

General Picture

A decidable set of statements S.

A computable logic L.

A (possibly uncomputable)
truth concept
Truthg: S - {T, F}

Super Important Fact

Let S be any (decidable) set of statements.
Let L be any (computable) logic.

Theorem: We can write a program to
enumerate all the theorems of L.

l.e., Provableg , is enumerable.




Enumerating the Set Provableg |

for k =0 to forever do

let PROOF loop through all strings of length k
let STMT loop through all strings of length < k
if proofchecks, (STMT, PROOF) = Valid

output STMT; Iithis is a theorem

General Picture

A decidable set of statements S.

A computable logic L.

We can enumerate all the theorems of
propositional logic, Elements of Euclid,

A (possibly uncomputable)
truth concept
Truthg: S — (T, F}

Peano arithmetic! (and all programs in K.)

We can enumerate Theoremsg,

Soundness:
Every theorem of (S,L) is true
(according to TRUTHy)

Completeness:
Every truth (according to TRUTH)
is a theorem of (S,L)

Truth versus Provability

Happy News:
Provablep,,, 4ic = PropositionalTruth

The logical system we gave
was sound and complete for
Prop.Logic

Truth versus Provability

Happy News:
Provableg,.ments = EuclidTruth

The Elements of Euclid are
sound and complete
for (Euclidean) geometry.

Truth versus Provability

Not-so-Happy News:

Provablep,,,,, # ArithmeticTruth




Hilbert’s Second Question [1900]

Is there a foundation for mathematics that
would, in principle, allow us to decide the
truth of any mathematical proposition?

Such a foundation would have to give us a
clear procedure (algorithm) for making the

decision.
—

Foundation for mathematics:
F = (statements S, logical system L) ‘
+ soundness 4

Hilbert

Godel’s
Incompleteness Theorem

In 1931, Kurt Gédel stunned the world by
proving that for any consistent axioms F
there is a true statement of first order
number theory that is not provable or
disprovable by F.

l.e., a true statement that can be made
using 0, 1, plus, times, for every, there
exists, AND, OR, NOT, parentheses, and
variables that refer to natural numbers.

Truth versus Provability

Foundational Crisis:

Itis impossible to have a
logical system F such that

Provableg g = ArithmeticTruth

F is sound for
arithmetic will imply
F is not complete.

Here’s what we have

A language S.
A truth concept Truthg.

A logic L that is sound (maybe even
complete) for the truth concept.

An enumerable list Provableg | of provable
statements (theorems) in the logic.

JAVATruth is Not Enumerable

Suppose JAVATruth is enumerable, and the
program Javalist enumerates JAVATruth.

Can now make a program HaltsOnltself(P):

Run JavalL.ist until either of the two
statements appears:
“P(P) halts”, or “P(P) does not halt”.

Output the appropriate answer.

Contradiction of undecidability of K.

JAVATruth has No Proof System

Theorem: There is no sound and
complete proof system for JAVATruth.

Proof:
Suppose (S,L) is sound and complete.
Recall, we can enumerate Provableg, .
By soundness+completeness,
Provableg, = JAVATruth

Contradicts the fact that JAVATruth
is not recursively enumerable.




The Halting problem is not
decidable.

Hence, JavaTruth is not recursively
enumerable.

Hence, JavaTruth does not have a
sound+complete logical system.

We can show that the existence of
integer roots for Diophantine equations
is not decidable.

Polynomials capture the
behavior of programs here!!!

Hence, ArithmeticTruth is
not recursively enumerable.

Hence, ArithmeticTruth has no sound
and complete proof system!!!!

Incompleteness

Let us fix F=(S,L) to be any attempt to
give a foundation for mathematics. We
have already proved that it cannot be
sound and complete. Furthermore...

We can even construct a statement
that we will all believe to be true,
but is not provable in F.

Suppose F is sound+complete for JAVATruth.

Then for each P, F can prove either
“P halts” or “P does not halt”

CONFUSE(P) {
Loop though all sequences of sentences in S

If S is a valid F-proof of “P halts”,
then loop-forever

If S is a valid F-proof of “P never
halts”, then halt.

Program CONFUSE((P)

Loop though all sequences of
sentences in S

If S is a valid F-proof of “P halts”,
then loop-forever

If S is a valid F-proof of “P never
halts”, then halt.

GODEL; =
AUTO_CANNIBAL_MAKER(CONFUSE;)

Thus, when we run GODEL. it will do the same
thing as:
CONFUSE;(GODEL)

Program CONFUSE(P)
GODEL¢ =

F
Loop though all sequences of AUTO_CANNIBAL_MAKER(CONFUSE)

sentences in S
Thus, when we run GODEL, it will do the

If S is a valid F-proof of “P halts”, same thing as CONFUSE-(GODEL;)
then loop-forever

If S is a valid F-proof of “P never
halts”, then halt.

Can F prove GODEL halts?

If Yes, then CONFUSE(GODEL;) does not
halt: Contradiction

Can F prove GODEL; does not halt?

If Yes , then CONFUSE(GODEL;) halts:
Contradiction




GODEL,

F can’t prove or disprove that GODEL, halts.

But GODEL, = CONFUSE (GODEL,) is the
program:

Loop though all sequences of sentencesin S

If Sis a valid F-proof of “GODEL; halts”, then
loop-forever

If S is a valid F-proof of “GODEL¢ never
halts”, then halt.

And this program does not halt!

No fixed set of assumptions F can
provide a complete foundation for
mathematical proof.

In particular, it can’t prove the true
statement “GODEL; does not hait.”

i

So What is Mathematics?

We can still have rigorous, precise axioms
that we agree to use in our reasoning (like
the Peano Axioms, or axioms for Set
Theory). We just can’t hope for them to be
complete.

Most working mathematicians never hit
these points of uncertainty in their work,
but it does happen!

10



