15-251

Great Theoretical Ideas
in Computer Science

What does this do?

oo W <=2 (,__+1,
Y%)2 (, +1,0):__ % ==

/

&&! 2(printf("%d\t",__ |), (_,_

+1,0) % >1&& %_<_ | 2 (

_LA+

o ¥ % %)) <t

2 (., +1,__):0;}main(){_(100,0,0);}

What does this do?

#include <stdio.h>

main(t,_,a)char *a;{return!0<t?t<3?main(-79,-13,a+main(-87,1-_,
main(-86,0,a+1)+a)):1,t<_?main(t+1,_,a):3,main(-94,-
27+t,a)&&t==2?7_<13? main(2,_+1,"%s %d %d\n"):9:16:t<0?t<-
72?main(_t,"@n'+ #*Jw+iw#cdnr/+,{Jri*de}+, <+, Iw{%+, IwH#ag#n+,1#
{1+, In{n+,[+#n+ [#\ H#giin+ [+ + 't 'd*' 3, {w+K W'K:"+}e#';dg#'l \
qit'+d'K#!/+k#; g# rieKK#}w'rie KK{nl]'/#;#q#n’){)#w'){){nl]'/+#n";d}rw’
#){Nn{n#; r{#wW'r ne{nl]'#{,+'K {rw' iK{;[{n1]'/w#g#n'wk nw'\
iWk{KK{nI]'/w{%'l##w#' i; :{nl]'/*{g#'ld;r'Yniwb!/*de}'c \ ;;{nl'-

{rw]'/+ Y Hine,' #nw]'[+kd'+e}+;# rdg#w! nr'l ') HHri#{n')#\
YHHH(1") :t<-50?_==*a?putchar(31[a]):main(-
65,_,a+1):main((*a=="/")+t,_,a+1)
:0<t?main(2,2,"%s"):*a==""||main(0,main(-61,*a, "!ek;dc i@bK'(q)-
[w]*%n+r3#l,{}:\nuwloca-O;m .vpbks,fxntdCeghiry"),a+1);}

Turing’s Legacy:
The Limits Of Computation

Lecture 24 (November 11, 2010)

From the last lecture:

Are all reals describable? NO
Are all reals computable? NO

We saw that

computable = describable
but do we also have

describable = computable?

We’ll answer this question today...

© IEEE Spectrum

Theorem: S can’t be put into bijection with P(S)
s P(S)

G
ot

Suppose f:S — P(S) is a bijection.
Let CONFUSE; ={x|x € S, x ¢ f(x) }

Since f is onto, exists y € S such that f(y) = CONFUSE..
Isy in CONFUSE;?

Let CONFUSE; ={x|x € S, x ¢ f(x) }
Lety e S such that f(y) = CONFUSE;.
Isy in CONFUSE;?

Suppose y in CONFUSE

Theny ¢ f(y) Butf(y)=CONFUSE =y ¢ CONFUSE
by def of CONFUSE By choice of y Contradiction!

Suppose y notin CONFUSE
Soy ¢ f(y) =y in CONFUSE

hey, f(y) = CONFUSE By defn of CONFUSE

Contradiction!

Theorem:
aset S can’t be put into bijection
with its power set P(S)

Computable Function

Fix a finite set of symbols, X
Fix a precise programming language, e.g., Java

A program is any finite string of
characters that is syntactically valid.

A function f: Z"—»X" is computable if there is a
program P that when executed on an ideal
computer, computes f.

That is, for all strings x in Z*, f(x) = P(x).

Hence: countably many computable functions!

There are only \
countably many Java
programs.

Hence, there are only
countably many
computable
functions.

Uncountably Many Functions

The functions f: =* — {0,1} are in
1-1 onto correspondence with the
subsets of =" (the powerset of =").

Subset Sof 2* <« Function fg

xinS = fs(x)=1
xnotin S = fs(x)=0

Hence, the set of all f:X* — {0,1} has
the same size as the power set of 2,
which is uncountable.

/ Countably many \

computable functions.

Uncountably many
functions from =" to {0,1}.

Thus, most functions
from =" to {0,1} are not

computable. /

~

Can we explicitly
describe an
uncomputable
function?

J

The HELLO assignment

Write a JAVA program to output the words
“HELLO WORLD?” on the screen and halt.

Space and time are not an issue.
The program is for an ideal computer.

PASS for any working HELLO program, no
partial credit.

Grading Script
The grading script G must be able to take any
Java program P and grade it.

Pass, if P prints only the words
G(P)= “HELLO WORLD” and halts.

Fail, otherwise.

How exactly might such a script work?

What does this do?

o W <=1 (L, 1,
M %)? (., +1,0)._ % ==
/

&&! 2(printf("%d\t",__ 1), (_,_
+1,0) % >1&& %_<_ | 2 (
_1+

W% %)) < *
2 (., +1,__):0;}main(){_(100,0,0);}

Nasty Program

n:=0;
while (n is not a counter-example
to the Riemann Hypothesis) {

n++;

}
print “Hello”;

The nasty program is a PASS if and only if the
Riemann Hypothesis is false.

A TA nightmare: Despite\
the simplicity of the
HELLO assignment,

there is no program to
correctly grade it!

;KAnd we will prove thisJ

The theory of what can\
and can’t be computed
by an ideal computer is
called
Computability Theory

or Recursion Theory.)

Notation And Conventions
Fix a single programming language (Java)

When we write program P we are talking
about the text of the source code for P

P(x) means the output that arises from
running program P on input x, assuming
that P eventually halts.

P(x) = L means P did not halt on x

The meaning of P(P)

It follows from our conventions that P(P)
means the output obtained when we run
P on the text of its own source code

The Halting Problem

Is there a program HALT such that:

HALT(P) = yes, if P(P) halts
HALT(P) = no, if P(P) does not halt

THEOREM: There is no program to
solve the halting problem
(Alan Turing 1937)

Suppose a program HALT existed that
solved the halting problem.

HALT(P)
HALT(P)

yes, if P(P) halts
no, if P(P) does not halt

We will call HALT as a subroutine in a new
program called CONFUSE.

CONFUSE
CONFUSE(P)
{ if (HALT(P))
then loop forever; lli.e., we dont halt
else exit; lli.e., we halt
Il text of HALT goes here

}
' Does CONFUSE(CONFUSE) halt? |

CONFUSE

CONFUSE(P)
{ if (HALT(P))
then loop forever; Ili.e., we dont halt
else exit; Ili.e., we halt
I text of HALT goes here }

Suppose CONFUSE(CONFUSE) halts:

then HALT(CONFUSE) = TRUE
= CONFUSE will loop forever on input CONFUSE

Suppose CONFUSE(CONFUSE) does not halt

then HALT(CONFUSE) = FALSE
— CONTRADICTION

Alan Turing (1912-1954)

Theorem: [1937]

There is no program to
solve the halting
problem

4 Turing’s argument is
essentially the
reincarnation of Cantor’s
Diagonalization
argument that we saw
\in the previous lecture.

All Programs (the input)

Po | Py | Py | oo | P
n Po
g P,
[o)]
e
a
< P

Programs (computable functions) are countable,
so we can put them in a (countably long) list

All Programs (the input)

Po | Py [Py | oo | P
o Fo
g P
)]
e
a
< P 4

YES, if P(P;) halts
No, otherwise

All Programs (the input)

Po P1 P2 cee Pj

o Fo do

g

g P d,

<)

o

o

< P d;
... | Letd=
L I HALT(P)

CONFUSE(P)) halts iff d;=no
(The CONFUSE function is the negation of the diagonal.)

Hence CONFUSE cannot be on this list.

Alan Turing (1912-1954)

Theorem: [1937]

There is no program to
solve the halting
problem

Is there a real
number that can be
described, but not
computed?

/Consider the real
number R whose
binary expansion

has a1 inthe
jth position iff the jth
program halts on

\ input itself. m

-

Proof that R cannot be computed

Suppose it is, and program Q computes it.
then consider the following program:

MYSTERY(program text P)
for j=0 to forever do {
if (P==P))
then use Q to compute jth bit of R
return YES if (bit == 1), NO if (bit == 0)
}

MYSTERY solves the halting problem!

The Halting Set K

Definition:
K is the set of all programs P
such that P(P) halts.

K ={Java P | P(P) halts }

Computability Theory:
Vocabulary Lesson

We call a set SC>" decidable or recursive if
there is a program P such that:

P(x) = yes, if xS
P(x) = no, if x¢S

Today we saw: the halting set K is undecidable

| No program can decide membership in K |

Decidable and Computable

Subset Sof =* <« Function fg

xin$S = fs(x) =1
xnotin$S = fs(x)=0

Set S is decidable < function fg is computable

Sets are “decidable” (or “undecidable”),
functions are “computable” (or not)

Computable vs. Enumerable

Computability Theory:
Some More Vocabulary

We call a set of strings Sc>" enumerable
or recursively enumerable (r.e.)
if there is a program P such that:

1. P prints an (infinite) list of strings.
2. Any element on the list should be in S.

3. Each element in S appears after a finite
amount of time.

Can you
enumerate
all strings in >* ?

for n =0 to infinity do
for all strings s of length n do
print(s)

Can you
enumerate all
(syntactically valid)
Java programs?

for n =0 to infinity do

for all strings s of length n do
N e if check-syntax(s) then
print(s)

Is
the halting set K
enumerable?

Enumerating K

Enumerate-K {
for n =0 to forever {
for W = all strings of length <ndo {
if W(W) halts in n steps then output W;
}
}
}

(x,y) = check if program P, halts on yt" input

) o] @)

K is not decidable
butitis
enumerable!

LetK’={JavaP |
P(P) does not halt}

Is K’ enumerable?

No! If both K and K’ are enumerable,
then K is decidable.

Run both enumeration programs in parallel.

Every P will be eventually output in one of
these, can use to decidein P in K.

Oracles and Reductions

Oracle For Set S

Is xeS? l‘f | 3

N
Cd

A
mj:

YES/NO Oracle

Example Oracle
S = Odd Naturals
4? e
C e
<€ o
No] l?ij*-”";-. "
"J| .J i
81? |
P - Oracle
- Yes for S

K,= the set of programs that take
no input and halt

Hey, | ordered an) ':"'.__;._._I.l-""
oracle for the . l- 5
famous halting i "ﬁ*‘m“' 3
set K, but when | J'
opened the
package it was an GIVEN:
oracle for the
different set K,.) ?;ff(l:

But you can use this oracle for K,
to build an oracle for K.

K,= the set of programs that take
no input and halt
P =[input |; Q]
Does P(P) halt?

AN

R (F
e k_ Y T et L
‘*—' L bt 9
*ﬁ'f'h Does [I1:=P;Q] halt? i &%y, <

L

BUILD: € GIVEN
Oracle Oracle
forK for K,

me’ve reduced the problem

of deciding membership in
K to the problem of

deciding membership in K.

Hence, deciding
membership for K, must be
at least as hard as deciding

membership for K.

(Thus if K, were
decidable
then K would be as well.

We already know K is not
decidable, hence K, is
\ not decidable.

HELLO = the set of programs that
print hello and halt

Does P halt?
\ Let P’ be P with all print
M statements removed.
ﬂ-« (assume there are e
o lt Ly no side effects) f sl 1
A |
pﬁ "‘E" g5 l;. 1 l:;.j L L ':l
Is [P’; print HELLO] | *l 5
a hello program? ﬁ
BUILD: | ~ | GIVEN:
Oracle HELLO

for K, Oracle

Hence, the set HELLO is
not decidable.

EQUAL = All <P,Q> such that P and Q have
identical output behavior on all inputs

Is P in set HELLO?

N

Let HI = [print HELLO]

ey T
T R L Ty
i lL'u i) 5 g s
(e faey
SR 2

- __);';’Lh Are P and HI equal;? ;

BUILD: € GIVEN:
HELLO EQUAL
Oracle Oracle

Halting with input, Halting
without input, HELLO, and
EQUAL are all undecidable.

Diophantine Equations

Does polynomial 4X2Y + XY2+ 1 =0 have an
integer root? l.e., does it have a zero at a
point where all variables are integers?

D = {multivariate integer polynomials P s.t.
P has root where all variables are integers}

Famous Theorem: D is undecidable! A

[This is the solution to Hilbert’s 10t ‘
problem] -
Hilbert

Resolution of Hilbert’s 10t Problem

Martin Davis, Julia Robinson, Yuri Matiyasevich (in 1982)

Polynomials can Encode
Programs

There is a computable function

F: Java programs that take no input —
Polynomials over the integers

such that
program P halts < F(P) has an integer root

10

D = the set of all integer
polynomials with integer roots

Does program P
halt?

N

{ et | e
i ot F(P) has NS Ry
i |~ . ? A
"._??.:':E‘ 1-.:& integer root > ',ﬁﬁ *-."""..,
= f §J f :
BUILD: <€ GIVEN:
HALTING Oracle
Oracle forD

Philosophical
Interlude

Church-Turing Thesis

Any well-defined procedure that can
be grasped and performed by the
human mind and pencil/paper, can be
performed on a conventional digital
computer with no bound on memory.

The Church-Turing Thesis is NOT a
theorem. It is a statement of belief
concerning the universe we live in.

Your opinion will be influenced by your
religious, scientific, and philosophical
beliefs...

...your mileage may vary

Empirical Intuition

No one has ever given a counter-
example to the Church-Turing thesis.
l.e., no one has given a concrete
example of something humans
compute in a consistent and well
defined way, but that can’t be
programmed on a computer. The
thesis is true.

Mechanical Intuition

The brain is a machine. The
components of the machine obey fixed
physical laws. In principle, an entire
brain can be simulated step by step on
a digital computer. Thus, any thoughts
of such a brain can be computed by a
simulating computer. The thesis is
true.

Quantum Intuition

The brain is a machine, but not a
classical one. It is inherently quantum
mechanical in nature and does not
reduce to simple particles in motion.
Thus, there are inherent barriers to

being simulated on a digital computer.

The thesis is false. However, the
thesis is true if we allow quantum
computers.

Here’s What
You Need to
Know...

Computable and Decidable

Halting Problem
Definition
Halting set K
Proof that K is not decidable
Diagonalization (again!)

Enumerable
Definition
K is enumerable

Oracles
Reductions (super important!)

12

