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15-251
Great Theoretical Ideas 
in Computer Science ∞

Cantor’s Legacy: 

Infinity and Diagonalization

Lecture 23 (November 9, 2010)

Ideas from the course

Induction

Numbers, Number theory and Algebra

Representation

Finite Counting and Probability

Automata and Computation 

A hint of the infinite

Infinite row of dominoes

Infinite sums (formal power series)

Infinite choice trees, and infinite probability 

Infinite RAM Model

Platonic Version:
One memory location for each 
natural number 0, 1, 2, …

Aristotelian Version:
Whenever you run out of memory, 
the computer contacts the factory. 
A maintenance person is flown by 
helicopter and attaches 1000 Gig of 
RAM and all programs resume their 
computations, as if they had never 
been interrupted.

The Ideal Computer:
no bound on amount of memory
no bound on amount of time

Ideal Computer is defined as a 
computer with infinite RAM. 

You can run a Java program and never have 
any overflow, or out of memory errors.

An Ideal Computer

It can be programmed to print out:

2: 2.0000000000000000000000…

1/3: 0.33333333333333333333…

φ: 1.6180339887498948482045…

e: 2.7182818284559045235336…

π: 3.14159265358979323846264…
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Printing Out An Infinite 
Sequence..

A program P prints out the infinite sequence 
s0, s1, s2, …, sk, …

if when P is executed on an ideal computer, it 
outputs a sequence of symbols such that

-The kth symbol that it outputs is sk

-For every k∈N, P eventually outputs the kth symbol. 

I.e., the delay between symbol k and symbol k+1 is 
not infinite.

Computable Real Numbers

A real number R is computable if there is a 
program that prints out the decimal representation 
of R from left to right. 

Thus, each digit of R will eventually be output.

Are all real numbers 
computable?

Describable Numbers

A real number R is describable if it can be denoted 
unambiguously by a finite piece of English text.

2: “Two.”

π: “The area of a circle of radius one.”

Are all real numbers 
describable?

Is every 
computable real number, 
also a describable real 

number?

And what about the other 
way?

Computable R: some program outputs R

Describable R: some sentence denotes R

Computable ⇒ describable

Theorem:

Every computable real is also describable

Proof: 
Let R be a computable real that is output by a   
program P. The following is an unambiguous
description of R:

“The real number output by the 
following program:” P

MORAL: A computer 
program can be viewed as a 
description of  its output.

Syntax: The text of  the program

Semantics: The real number output by P
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Are all reals describable?
Are all reals computable?

We saw that
computable⇒
describable, 

but do we also have
describable ⇒
computable?

Questions we will answer in this (and next) lecture…

Correspondence Principle

If two finite sets can be placed into 
1-1 onto (bijective) correspondence, 

then they have the same size.

Correspondence Definition

In fact, we can use the correspondence as 
the definition: 

Two finite sets are defined to have the 
same size if and only if they can be placed 
into 1-1 onto (bijective) correspondence.

Georg Cantor (1845-1918)

Cantor’s Definition (1874)

Two sets are defined to have 
the same size if and only if they can be 
placed into 1-1 onto correspondence.

If  there exists a bijection between them.

Cantor’s Definition (1874)

Two sets are defined to have 
the same cardinality if and only if 

they can be placed into 
1-1 onto correspondence.

If  there exists a bijection between them.
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Do N and E have the same cardinality?

N = { 0, 1, 2, 3, 4, 5, 6, 7, … }

E = { 0, 2, 4, 6, 8, 10, 12, … }

The even, natural numbers.

E and N do not have the 
same cardinality! E is a 
proper subset of  N with 

plenty left over.  

The attempted 
correspondence f(x)=x 
does not take E onto N.

E and N do have the 

same cardinality!

N = 0, 1, 2, 3, 4, 5, … 
E = 0, 2, 4, 6, 8,10, …

f(x) = 2x is 1-1 onto.  

Lesson: 

Cantor’s definition only 
requires that some 1-1 

correspondence between the 
two sets is onto, not that all 1-1 
correspondences are onto. 

This distinction never arises 
when the sets are finite.

Cantor’s Definition (1874)

Two sets are defined to have 
the same size if and only if they can be
placed into 1-1 onto correspondence.

You just have to get used 
to this slight subtlety in 
order to argue about 

infinite sets!
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Do N and Z have the same cardinality?

N = { 0, 1, 2, 3, 4, 5, 6, 7, … }

Z = { …, -2, -1, 0, 1, 2, 3, … }

No way!  Z is infinite in two 

ways: from 0 to positive 
infinity and from 0 to 

negative infinity.  

Therefore, there are far 
more integers than 

naturals.

Actually, no!

N and Z do have the same

cardinality!

N = 0, 1,  2, 3,  4, 5,   6 …

Z = 0, 1, -1, 2, -2, 3, -3, ….

f(x) =  x/2 if  x is odd
-x/2    if  x is even

Transitivity Lemma

Lemma: If 

f: A→B is a bijection, and 

g: B→C is a bijection.

Then h(x) = g(f(x)) defines a function

h: A→C that is a bijection too.

Hence, N, E, and Z all have the same 

cardinality.

Do N and Q have the same cardinality?

N= { 0, 1, 2, 3, 4, 5, 6, 7, …. }

Q = The Rational Numbers

No way!

The rationals are dense: 
between any two there is a 
third. You can’t list them 

one by one without leaving 
out an infinite number of  

them.
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Don’t jump to conclusions!

There is a clever way to list 
the rationals, one at a time, 
without missing a single 

one!

First, let’s warm up 
with another 

interesting example:

N can be paired with 
N×N

Theorem: N and N×N have the 
same cardinality

Theorem: N and N×N have the 
same cardinality

0 1 2 3 4 …

…

4

3

2

1

0

The point (x,y)
represents 
the ordered 
pair (x,y)

Theorem: N and N×N have the 
same cardinality

0 1 2 3 4 …

…

4

3

2

1

0 0

1

2

3

4

5

6

7

8

9

The point (x,y)
represents 
the ordered 
pair (x,y)

The first few tuples output…

(0,0)

(0,1), (1,0)

(0,2), (1,1), (2,0)

(0,3), (1,2), (2,1), (3,0)

…
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Defining bijection f: N -> N×N 

let i := 0; //will range over N

for (sum = 0 to forever) {

//generate all pairs with this sum

for (x = 0 to sum) {

y := sum-x

define f(i) := the point (x,y)

i++;
}

} 

Onto the Rationals!

The point at x,y represents x/y The point at x,y represents x/y

Cantor’s 1877 letter to Dedekind:

“I see it, but I don't believe it! ”

Countable Sets

We call a set countable if it can be 
placed into 1-1 onto correspondence 

with the natural numbers N.

Hence

N, E, Q and Z are all countable.
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Do N and R have the same cardinality?

N = { 0, 1, 2, 3, 4, 5, 6, 7, … }

R = The Real Numbers

No way!

You will run out of  
natural numbers long 
before you match up 

every real.

Now hang on a minute!

You can’t be sure that 
there isn’t some clever 

correspondence that you 
haven’t thought of  yet.

I am sure!
Cantor proved it.

To do this, he invented a 
very important technique 

called
“Diagonalization”

Theorem: The set R[0,1] of reals 

between 0 and 1 is not countable.

Proof: (by contradiction)

Suppose R[0,1] is countable. 

Let f be a bijection from N to R[0,1]. 

Make a list L as follows:

0: decimal expansion of  f(0)
1: decimal expansion of  f(1)
2: decimal expansion of  f(2)

…

k: decimal expansion of  f(k)

…

Theorem: The set R[0,1] of reals 

between 0 and 1 is not countable.

Proof: (by contradiction)

Suppose R[0,1] is countable. 

Let f be a bijection from N to R[0,1]. 

Make a list L as follows:

0: 0.33333333333333333…
1: 0.314159265657839593…
2: 0.125912591259125912…

…

k: 0.235094385543905834…

…
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L 0 1 2 3 4 …

0

1

2

3

…

In
d
e
x

Position after decimal point

L 0 1 2 3 4 …

0 3 3 3 3 3 3

1 3 1 4 1 5 9

2 1 2 5 9 1 2

3 4 1 2 5 6 8

…

In
d
e
x

Position after decimal point

L 0 1 2 3 4 …

0 d0

1 d1

2 d2

3 d3

… …

digits along 
the diagonal

L 0 1 2 3 4

0 d0

1 d1

2 d2

3 d3

… …

Define the following real number
ConfuseL = . C0 C1 C2 C3 C4 C5 …

L 0 1 2 3 4

0 d0

1 d1

2 d2

3 d3

… …

Define the following real number
ConfuseL = . C0 C1 C2 C3 C4 C5 …

5, if   dk=6

6, otherwise
Ck=

L 0 1 2 3 4

0

1 d1

2 d2

3 d3

… …

5, if   dk=6

6, otherwise
Ck=

C0≠dd00 C1 C2 C3 C4 …



11/9/2010

10

L 0 1 2 3 4

0 d0

1

2 d2

3 d3

… …

5, if   dk=6

6, otherwise
Ck=

C0  C1≠dd11 C2 C3 C4 …

L 0 1 2 3 4

0 d0

1 d1

2

3 d3

… …

5, if   dk=6

6, otherwise
Ck=

C0       C1   C2≠dd22 C3 C4 …

By design, ConfuseL can’t be on the list L!

ConfuseL differs from the kth element on the 
list L in the kth position. 

This contradicts the assumption that 
the list L is complete; i.e., that the map

f: N to R[0,1] is surjective.

Diagonalized! The set of  reals is 
uncountable!

(Even the reals between 0 
and 1.)

An aside:, you can set up a

correspondence between

R and R[0,1] .

Hold it!
Why can’t the same 
argument be used to 
show that the set of  

rationals Q is 

uncountable?

The argument is the same 
for Q until the punchline. 

However, since CONFUSEL

is not necessarily rational, 
so there is no contradiction 

from the fact that it is 
missing from the list L.
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Another diagonalization proof

Problem from a 15-251 final:

Show that the set of real numbers in [0,1] whose 
decimal expansion has the property that every digit 
is a prime number (2,3,5, or 7) is uncountable.

E.g., 0.2375 and 0.55555… are in the set, but

0.145555… and 0.3030303… are not.

Another diagonalization proof

Show that the set of real numbers in [0,1] whose 
decimal expansion has the property that every digit 

is a prime number (2,3,5, or 7) is uncountable.

Another diagonalization proof

Show that the set of real numbers in [0,1] whose 
decimal expansion has the property that every digit 

is a prime number (2,3,5, or 7) is uncountable.

Another diagonalization proof

Show that the set of real numbers in [0,1] whose 
decimal expansion has the property that every digit 

is a prime number (2,3,5, or 7) is uncountable.

A) Assume this set is countable and therefore it can be 
placed in a list L. 

B) Given L, show how to define a number called Confuse.

C) Show that Confuse is not in L.

D) Explain why Confuse not being in L implies the set is not 
countable.

Countable and Uncountable

N, E, Q and Z are all countable sets

R is an uncountable set

Back to the questions 
we were asking earlier
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Are all reals describable?
Are all reals computable?

We saw that
computable⇒
describable, 

but do we also have
describable ⇒
computable?

Standard Notation

Σ = Any finite alphabet

Ex.: {a,b,c,d,e,…,z} or {a,b} or {0,1}

Σ∗ = All finite strings of symbols from Σ 
including the empty string ε

Theorem: Every subset S of Σ* is 
countable

Try #1:

Sort S alphabetically, map first word 
to 0, second  word to 1, and so on…

What if S = 
{a, b, aa, bb, aaa, bbb, aaaa, bbbb, …. } ?

Theorem: Every subset S of Σ* is 
countable

Proof: Sort S by first by length and then
alphabetically. 

Map the first word to 0, the second  to 1, 
and so on….

This sorting on length, and then 
aphabetically, is similar in spirit to…

0 1 2 3 4 …

…

4

3

2

1

0 0

1

2

3

4

5

6

7

8

9

Stringing Symbols Together

Σ = The symbols on a standard keyboard

For example:

The set of all possible Java programs is a 
subset of Σ∗

The set of all possible finite pieces of 
English text is a subset of Σ∗
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Thus:

The set of  all possible Java 
programs is countable.

The set of  all possible finite 
length pieces of  English 

text is countable.

There are countably 
many Java programs 
and uncountably many 

reals.

Hence,
Most reals are not 

computable!

I see!

There are countably many 
descriptions and 

uncountably many reals.

Hence:
Most real numbers are

not describable!

Are all reals describable?
Are all reals computable?

We saw that
computable⇒
describable, 

but do we also have
describable ⇒
computable?

NO

NO

Is there a real number 
that can be described, 
but not computed?

Wait till the

next lecture!

We know there are 
at least 2 infinities.

(the number of  naturals,
the number of  reals.)

Are there more?
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Definition: Power Set

The power set of S is the set of all 
subsets of S. 

The power set is denoted as P(S).

Proposition: 

If S is finite, the power set of S has  
cardinality 2|S|

Since f  is onto, exists y ∈ S such that f(y) = CONFUSEf.

A

B

C

SSSS

{B}

∅

{A}

{C}

P(S)

{A,B}

{B,C} {A,C}

{A,B,C}

Suppose f:S → P(S) is a bijection.

Theorem: S can’t be put into bijection with P(S)

Let CONFUSEf = { x | x ∈ S, x ∉ f(x) }

Is y in CONFUSEf?

YES: Definition of  CONFUSEf implies no

NO: Definition of  CONFUSEf implies yes

This proves that there are at 
least a countable number of  

infinities.

The first infinity is called:

ℵ0

ℵ0,ℵ1,ℵ2,…

Are there any 
more infinities?

ℵ0,ℵ1,ℵ2,…

Let S = {ℵk | k ∈ N }
P(S) is provably larger than  any 

of  them. 

In fact, the same 
argument can be used to 

show that no single 
infinity is big enough to 
count the number of  

infinities!



11/9/2010

15

ℵ0,ℵ1,ℵ2,…

Cantor wanted to 
show that the number 

of  reals was ℵ1

Cantor called his 
conjecture that ℵ1 was the 

number of  reals the 
“Continuum Hypothesis.”  

However, he was unable to 
prove it.  This helped fuel 

his depression.

The Continuum 
Hypothesis can’t be 

proved or disproved from 
the standard axioms of  

set theory!

This has been proved!
Here’s What 
You Need to 
Know…

Cantor’s Definition: 
Two sets have the same cardinality if  
there exists a bijection between them.

E, N, Z and Q all have 
same cardinality (and proofs)

Proof  that there is no 
bijection between N and R

Countable 
versus Uncountable

Power sets and their properties


