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+ T(n) = amount of 
time grade school 

addition uses to add 
two n-bit numbers 
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Time complexity of  
grade school addition 

T(n) is linear: 
T(n) = c1n 

Time complexity of  
grade school multiplication 

T(n) = The amount of 
time grade school 

multiplication uses to 
multiply two n-bit 

numbers 

T(n) is quadratic: 
T(n) = c2n2 

* * * * * * * 
*  

* * * * * * * *  
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n2 

# of bits in the numbers 
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Grade School Addition: Linear time 
Grade School Multiplication: Quadratic time 

No matter how dramatic the difference in 
the constants, the quadratic curve will 
eventually dominate the linear curve 

Our Goal 

We want to define “time” in a 
way that transcends 

implementation details and allows 
us to make assertions about grade 
school addition in a very general 

yet useful way. 

<tangent on asymptotic notation> 

A given algorithm will take different 
amounts of time on the same inputs 
depending on such factors as: 

–   Processor speed 
–   Instruction set 
–   Disk speed 
–   Brand of compiler 

Roadblock ??? 
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On any reasonable computer, adding 3 
bits and writing down the two bit answer 

can be done in constant time 

Pick any particular computer M and define  
c to be the time it takes to perform          

on that computer.  

Total time to add two n-bit numbers 
using grade school addition:  

cn   [i.e., c time for each of n columns] 

On another computer M’, the time 
to perform        may be c’. 

Total time to add two n-bit 
numbers using grade school 

addition:  
c’n    [c’ time for each of n columns] 

The fact that we get a line is invariant 
under changes of implementations. 

Different machines result in different 
slopes, but the time taken grows  
linearly as input size increases.  

# of bits in the numbers 

t 
i
m
e 

Mach
ine

 M
: c

n 

Machine
 M’: c’n 

Thus we arrive at an  
implementation-independent  

insight:  

Grade School Addition is a linear 
time algorithm 

This process of abstracting away details 
and determining the rate of resource 

usage in terms of the problem size n is 
one of the fundamental ideas in 

computer science. 

Time vs Input Size 

For any algorithm, define  
   Input Size = # of bits to specify its inputs. 

Define  
  TIMEn = the worst-case amount 

of   time used by the 
algorithm 

 on inputs of size n 
We often ask:  

 What is the growth rate of 
Timen ? 

X
* * * * * * * *  
* * * * * * * *  

  * * * * * * * * 
  * * * * * * * * 

  * * * * * * * * 
  * * * * * * * * 

  * * * * * * * * 
  * * * * * * * * 

  * * * * * * * * 
  * * * * * * * * 

  * * * * * * * * * * * * * * * * 

n2 

How to multiply 2 n-bit numbers. 
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X
* * * * * * * *  
* * * * * * * *  

  * * * * * * * * 
  * * * * * * * * 

  * * * * * * * * 
  * * * * * * * * 
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  * * * * * * * * 
  * * * * * * * * 

  * * * * * * * * * * * * * * * * 

n2 

How to multiply 2 n-bit numbers. 

The total time is bounded by 
cn2 (abstracting away the 
implementation details). 

# of bits in the numbers 

t 
i
m
e 

Grade School Addition: Linear time 
Grade School Multiplication: Quadratic time 

No matter how dramatic the difference in 
the constants, the quadratic curve will 
eventually dominate the linear curve 

How much time does it take to  
square the number n using  
grade school multiplication? 

Grade School Multiplication: 
Quadratic time 

# of bits in numbers 

t 
i
m
e 

Input size is measured in bits, 
unless we say otherwise. 

c(log n)2 time to square the number n 

Worst Case Time 

Worst Case Time T(n) for algorithm A: 
T(n) = Max[all permissible inputs X of size n] Runtime(A,X) 

Runtime(A,X) =  
 Running time of algorithm A on input X. 

If T(n) is not polynomial, the algorithm 
is not efficient: the run time scales 

too poorly with the input size. 

This will be the yardstick with which 
we will measure “efficiency”. 
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Multiplication is efficient, what 
about “reverse multiplication”? 

Let’s define FACTORING(N) to be any 
method to produce a non-trivial factor 

of N, or to assert that N is prime. 

Factoring The Number N  
By Trial Division 

Trial division up to √N 
for k = 2 to √N do 

 if k | N  then 
 return “N  has a non-trivial factor k” 

return “N  is prime” 

c √N (logN)2 time if division is c (logN)2 time 

Is this efficient? 

No! The input length n = log N.  
Hence we’re using c 2n/2 n2 time. 

Can we do better? 

We know of methods for FACTORING 
that are sub-exponential (about 2n1/3 

time) but nothing efficient.  

Notation to Discuss Growth Rates 
For any monotonic function f from the 

positive integers to the positive 
integers, we say  

“f = O(n)” or “f is O(n)” 

If some constant times n eventually 
dominates f 

[Formally: there exists a constant c such 
that for all sufficiently large n:  f(n) ≤ cn ] 

# of bits in numbers 

t 
i
m
e 

f = O(n) means that there is a 
line that can be drawn that stays 

above f from some point on 
For any monotonic function f from the 

positive integers to the positive 
integers, we say  

“f = Ω(n)” or “f is Ω(n)” 

If f eventually dominates some constant 
times n 

[Formally: there exists a constant c such that 
for all sufficiently large n:  f(n) ≥ cn ] 

Other Useful Notation: Ω 
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# of bits in numbers 

t 
i
m
e 

f = Ω(n) means that there is a 
line that can be drawn that stays 

below f from some point on 
Yet More Useful Notation: Θ 

For any monotonic function f from the 
positive integers to the positive 

integers, we say  
“f = Θ(n)” or “f is Θ(n)” 

if: f = O(n)   and   f = Ω(n) 

# of bits in numbers 

t 
i
m
e 

f = Θ(n) means that f can be 
sandwiched between two lines 

from some point on. 

Notation to Discuss Growth Rates 
For any two monotonic functions f and g 

from the positive integers to the 
positive integers, we say 
“f = O(g)” or “f is O(g)” 

If some constant times g eventually 
dominates f 

[Formally: there exists a constant c such that 
for all sufficiently large n:  f(n) ≤ c g(n) ] 

# of bits in numbers 

t 
i
m
e 

f = O(g) means that there is some 
constant c such that c g(n) stays 
above f(n) from some point on. 

f g 

1.5g 

For any two monotonic functions f and g 
from the positive integers to the 

positive integers, we say 
“f = Ω(g)” or “f is Ω(g)” 

If f eventually dominates some constant 
times g 

[Formally: there exists a constant c such that 
for all sufficiently large n:  f(n) ≥ c g(n) ] 

Other Useful Notation: Ω 
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Yet More Useful Notation: Θ 
For any two monotonic functions f and g 

from the positive integers to the 
positive integers, we say 
“f = Θ(g)” or “f is Θ(g)” 

If: f = O(g)   and   f = Ω(g) 

</tangent on asymptotic notation> 

Can we even break the quadratic time 
barrier? 

In other words, can we do something very 
different than grade school multiplication? 

Divide And Conquer 
An approach to faster algorithms: 

DIVIDE a problem into smaller subproblems 
CONQUER them recursively 

GLUE the answers together so as to 
obtain the answer to the larger problem 

X =  
Y =  

a b 
c d 

X = a 2n/2 + b 

n/2 bits n/2 bits 

n bits 

X × Y = ac 2n + (ad + bc) 2n/2 + bd  

X 
Y 

Multiplication of 2 n-bit numbers 

 Y = c 2n/2 + d  

Multiplication of 2 n-bit numbers 

X =  
Y =  

a b 
c d 

n/2 bits n/2 bits 

X × Y = ac 2n + (ad + bc) 2n/2 + bd  

MULT(X,Y): 

   
    

If |X| = |Y| = 1 then return XY 
else  break X into a;b and Y into c;d 

return MULT(a,c) 2n + (MULT(a,d) 
  + MULT(b,c)) 2n/2 + MULT(b,d) 

Same thing for numbers in decimal 

X =  
Y =  

a b 
c d 

X = a 10n/2 + b     Y = c 10n/2 + d  

n/2 digits n/2 digits 

n digits 

X × Y = ac 10n + (ad + bc) 10n/2 + bd  
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Multiplying (Divide & Conquer style) 

X =  
Y =  

X × Y = ac 10n + (ad + bc) 10n/2 + bd  

a b 
c d 

1234*2139 

12345678 * 21394276 

12*21   12*39   34*21   34*39 

1*2  1*1  2*2  2*1 
2 1 4 2 

Hence: 12*21 =   2*102 + (1 + 4)101 +  2 = 252 

1234*4276 5678*2139 5678*4276 

Multiplying (Divide & Conquer style) 

X =  
Y =  

X × Y = ac 10n + (ad + bc) 10n/2 + bd  

a b 
c d 

1234*2139  1234*4276  5678*2139  5678*4276 

12345678 * 21394276 

12*21   12*39   34*21   34*39 252 468 714 1326 
*104   +  *102  +  *102   +   *1 = 2639526 

Multiplying (Divide & Conquer style) 

X =  
Y =  

X × Y = ac 10n + (ad + bc) 10n/2 + bd  

a b 
c d 

1234*2139  1234*4276  5678*2139  5678*4276 

12345678 * 21394276 

2639526 5276584 12145242 24279128 
*108     +      *104       +        *104       +      *1 

= 264126842539128 

Multiplying (Divide & Conquer style) 

X =  
Y =  

X × Y = ac 10n + (ad + bc) 10n/2 + bd  

a b 
c d 

12345678 * 21394276 

= 264126842539128 

Divide, Conquer, and Glue 

MULT(X,Y) 

if |X| = |Y| = 1  
then return XY, 

else… 

Divide, Conquer, and Glue 

MULT(X,Y): 
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X=a;b   Y=c;d  

Divide, Conquer, and Glue 

MULT(X,Y): 

Mult(a,c) 
Mult(a,d) Mult(b,c) 

Mult(b,d) 

X=a;b   Y=c;d  

Divide, Conquer, and Glue 

MULT(X,Y): 

Mult(a,c) 

Mult(a,d) Mult(b,c) 
Mult(b,d) 

X=a;b   Y=c;d  

Divide, Conquer, and Glue 

MULT(X,Y): 

ac 
Mult(a,d) Mult(b,c) 

Mult(b,d) 

X=a;b   Y=c;d  

Divide, Conquer, and Glue 

MULT(X,Y): 

ac 

Mult(a,d) 

Mult(b,c) 
Mult(b,d) 

X=a;b   Y=c;d  

Divide, Conquer, and Glue 

MULT(X,Y): 

ac 
ad Mult(b,c) 

Mult(b,d) 

X=a;b   Y=c;d  

Divide, Conquer, and Glue 

MULT(X,Y): 

ac 
ad 

Mult(b,c) 

Mult(b,d) 
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X=a;b   Y=c;d  

Divide, Conquer, and Glue 

MULT(X,Y): 

ac 
ad bc 

Mult(b,d) 

X=a;b   Y=c;d  

Divide, Conquer, and Glue 

MULT(X,Y): 

ac 
ad bc 

Mult(b,d) 

X=a;b   Y=c;d  

Divide, Conquer, and Glue 

MULT(X,Y): 

ac 
ad bc bd 

XY = ac2n  
+(ad+bc)2n/2  

+ bd 

Time required by MULT 

T(n) = time taken by MULT on two n-
bit numbers 

What is T(n)? What is its growth rate?  

Big Question: Is it Θ(n2)? 

T(n) = 4 T(n/2) + O(n)   

conquering 
time  divide and 

glue 

Recurrence Relation 

T(1) = 1 

T(n) = 4 T(n/2) + O(n) 

Simplified Recurrence Relation 

T(1) = 1 

T(n) = 4 T(n/2) + n 

conquering 
time  

divide and 
glue 
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n = 
T(n) 

T(n/2) T(n/2) T(n/2) T(n/2) 

n = 
T(n) 

T(n/2) T(n/2) T(n/2) 

n/2 

T 
(n/4) 

T 
(n/4) 

T 
(n/4) 

T 
(n/4) 

n = 
T(n) 

T(n/2) T(n/2) 

n/2 

T 
(n/4) 

T 
(n/4) 

T 
(n/4) 

T 
(n/4) 

n/2 

T 
(n/4) 

T 
(n/4) 

T 
(n/4) 

T 
(n/4) 

n 

               n/2         +        n/2        +         n/2          +         n/2 

. . . . . . . . . . . . . . . . . . . . . . . . . .  

1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1 

0 

1 

2 

i Level i is the sum of 4i copies of n/2i 

n 

               n/2         +        n/2        +         n/2          +         n/2 

Level i is the sum of  4i copies of  n/2i 

. . . . . . . . . . . . . . . . . . . . . . . . . .  

1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1 

2n = 

4n = 

2in = 

(n)n = 

1n = 

n(1+2+4+8+ . . . +n) = n(2n-1) = 2n2-n 

Divide and Conquer MULT: Θ(n2) time  
Grade School Multiplication: Θ(n2) time 

Bummer! 

MULT calls itself 4 times. Can you see a 
way to reduce the number of calls? 
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Gauss’ Complex Puzzle 

Can you do better than $4.03? 

Remember how to multiply two 
complex numbers a + bi and c + di? 
(a+bi)(c+di) = [ac – bd] + [ad + bc] i 

Input: a,b,c,d        
Output: ac-bd, ad+bc 

If multiplying two real numbers costs $1 
and adding them costs a penny, what is 
the cheapest way to obtain the output  

from the input? 

Gauss’ $3.05 Method 

Input:  a,b,c,d        
Output:  ac-bd, ad+bc 

X1 = a + b 
X2 = c + d 
X3 = X1 X2  = ac + ad + bc + bd 
X4 = ac 
X5 = bd 
X6 = X4 – X5  = ac - bd 
X7 = X3 – X4 – X5  = bc + ad 

¢ 

$ 
$ 
$ 

¢ 

¢ 
¢¢ 

The Gauss optimization 
saves one multiplication out 

of four.  
It requires 25% less work. 

Karatsuba, Anatolii Alexeevich  
(1937-2008)   

In 1962 Karatsuba had 
formulated the first mult. 
algorithm to break the n2 
barrier!  

Gaussified MULT 
(Karatsuba 1962) 

T(n) = 3 T(n/2) + n 

MULT(X,Y): 

   
     

    

If |X| = |Y| = 1 then return XY 
else  break X into a;b and Y into c;d 

e : = MULT(a,c) 
f  := MULT(b,d)  

e 2n + (MULT(a+b,c+d) – e –  f) 2n/2 + f 
return  

n = 
T(n) 

T(n/2) T(n/2) T(n/2) 
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n = 
T(n) 

T(n/2) T(n/2) 

n/2 

T 
(n/4) 

T 
(n/4) 

T 
(n/4) 

n = 
T(n) 

T(n/2) 

n/2 

T 
(n/4) 

T 
(n/4) 

T 
(n/4) 

n/2 

T 
(n/4) 

T 
(n/4) 

T 
(n/4) 

n = 
T(n) 

n/2 

T 
(n/4) 

T 
(n/4) 

T 
(n/4) 

n/2 

T 
(n/4) 

T 
(n/4) 

T 
(n/4) 

n/2 

T 
(n/4) 

T 
(n/4) 

T 
(n/4) 

n 

n/2         +        n/2        +         n/2 

. . . . . . . . . . . . . . . . . . . . . . . . . .  

1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1 

0 

1 

2 

i 

log2(n) 

Level i is the sum of 3i copies of n/2i 

n 

n/2         +        n/2        +         n/2 

Level i is the sum of  3i copies of  n/2i 

. . . . . . . . . . . . . . . . . . . . . . . . . .  

1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1 

3/2n = 

9/4n = 

(3/2)in = 

(3/2)log nn = 

1n = 

n(1+3/2+(3/2)2+ . . . + (3/2)log2 n)= 3n1.58… – 2n 

Dramatic Improvement for 
Large n 

T(n)  = 3nlog2 3 – 2n   
 = Θ(nlog2 3)   
 = Θ(n1.58…) 

A huge savings over Θ(n2) when n gets large.  
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n 1.584 

n2 

The key idea of the algorithm is to divide a 
large integer into 3 parts (rather than 2) of 

size approximately n/3 and then multiply 
those parts. 

3-Way Multiplication 

154517766 = 154 ∗ 106 + 517 ∗ 103 + 766 

Let 
X = x2 102p + x1 10p + x0 
Y = y2 102p + y1 10p + y0 

3-Way Multiplication 

Then 
X*Y=104p x2y2+103p (x2y1+x1y2)+ 

102p (x2y0+x1y1+x0y2)+10p (x1y0+x0y1)+x0y0 

T(n) = 9 T(n/3) + Θ(n) 

T(n) = Θ(n2)  

Consider the equation in general form p > 3 

3-Way Multiplication 

T(n) = p T(n/3) + O(n) 

Its solution is given by 

T(n) = O(nlog
3
p) 

Thus, this is faster if p = 5 or less  

T(n) = O(n log35)=O(n 1.46…) 

Here is the system of new variables:  

    (x0 y0)                 =Z0 
12 (x1y0+x0y1)       =8 Z1-Z2-8 Z3+Z4 
24 (x2y0+x1y1+x0y2) =-30 Z0+16 Z1-Z2+16 Z3-Z4 
12 (x2y1+x1y2)       =-2 Z1+Z2+2 Z3-Z4 
24 (x2y2)                   =6 Z0-4 Z1+Z2-4 Z3+Z4 

Is it possible to reduce the 
number of multiplications to 5? Here are the values of Zk which make this work: 

 Z0 = x0 y0 
 Z1 = (x0+x1+x2) (y0+y1+y2) 
 Z2 = (x0+2 x1+4 x2) (y0+2 y1+4 y2) 
 Z3 = (x0-x1+x2) (y0-y1+y2) 
 Z4 = (x0-2 x1+4 x2) (y0-2 y1+4 y2) 

5 Multiplications Suffice 

We leave checking this to the reader.  Note 
that multiplying and dividing by small constants 
(eg:2,4,12,24) are O(n) time and absorbed by 
the constant term in the recurrence.   
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It is possible to develop a faster algorithm 
by increasing the number of splits. 

Further Generalizations 

A 4-way splitting: 

T(n) = 7 T(n/4) + O(n)   

T(n) = O(n 1.403…) 

In similar fashion, the k-way split requires 2k-1 
multiplications.  (We do not show that here.  See 
http://en.wikipedia.org/wiki/Toom-Cook_multiplication) 

Further Generalizations 

A k-way splitting: 

T(n) = (2k-1) T(n/k) + O(n)   

T(n) = O(n logk (2k-1) ) 

n1.58, n1.46, n1.40, n1.36, n1.33, … 

Note, we will never get a linear performance 

Multiplication Algorithms 

Grade School O(n2) 

Karatsuba O(n1.58…) 

3-way split O(n1.46…) 

K-way split O(n logk (2k-1) ) 

Fast Fourier Transform O(n logn loglogn) 

n2 n 1.584 

n log(n) loglog(n) 

n 1.584 

Study Bee 

•  Asymptotic notation 
•  Divide and Conquer  
•  Karatsuba Multiplication  
•  Solving Recurrences 


