
1

Grade School Revisited:
How To Multiply Two Numbers

Great Theoretical Ideas In Computer Science
Anupam Gupta
Danny Sleator

CS 15-251 Fall 2010

Lecture 22 Nov 4, 2010 Carnegie Mellon University

+ T(n) = amount of
time grade school

addition uses to add
two n-bit numbers

* * * * * * * * * *
* * * * * * * * * *

* * * * * * * * * * *

Time complexity of
grade school addition

T(n) is linear:
T(n) = c1n

Time complexity of
grade school multiplication

T(n) = The amount of
time grade school

multiplication uses to
multiply two n-bit

numbers

T(n) is quadratic:
T(n) = c2n2

* * * * * * *
*

* * * * * * * *

 * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * * * * * * * * * * *

n2

of bits in the numbers

t
i
m
e

Grade School Addition: Linear time
Grade School Multiplication: Quadratic time

No matter how dramatic the difference in
the constants, the quadratic curve will
eventually dominate the linear curve

Our Goal

We want to define “time” in a
way that transcends

implementation details and allows
us to make assertions about grade
school addition in a very general

yet useful way.

<tangent on asymptotic notation>

A given algorithm will take different
amounts of time on the same inputs
depending on such factors as:

–  Processor speed
–  Instruction set
–  Disk speed
–  Brand of compiler

Roadblock ???

2

On any reasonable computer, adding 3
bits and writing down the two bit answer

can be done in constant time

Pick any particular computer M and define
c to be the time it takes to perform

on that computer.

Total time to add two n-bit numbers
using grade school addition:

cn [i.e., c time for each of n columns]

On another computer M’, the time
to perform may be c’.

Total time to add two n-bit
numbers using grade school

addition:
c’n [c’ time for each of n columns]

The fact that we get a line is invariant
under changes of implementations.

Different machines result in different
slopes, but the time taken grows
linearly as input size increases.

of bits in the numbers

t
i
m
e

Mach
ine

 M
: c

n

Machine
 M’: c’n

Thus we arrive at an
implementation-independent

insight:

Grade School Addition is a linear
time algorithm

This process of abstracting away details
and determining the rate of resource

usage in terms of the problem size n is
one of the fundamental ideas in

computer science.

Time vs Input Size

For any algorithm, define
 Input Size = # of bits to specify its inputs.

Define
 TIMEn = the worst-case amount

of time used by the
algorithm

 on inputs of size n
We often ask:

 What is the growth rate of
Timen ?

X
* * * * * * * *
* * * * * * * *

 * * * * * * * *
 * * * * * * * *

 * * * * * * * *
 * * * * * * * *

 * * * * * * * *
 * * * * * * * *

 * * * * * * * *
 * * * * * * * *

 * * * * * * * * * * * * * * * *

n2

How to multiply 2 n-bit numbers.

3

X
* * * * * * * *
* * * * * * * *

 * * * * * * * *
 * * * * * * * *

 * * * * * * * *
 * * * * * * * *

 * * * * * * * *
 * * * * * * * *

 * * * * * * * *
 * * * * * * * *

 * * * * * * * * * * * * * * * *

n2

How to multiply 2 n-bit numbers.

The total time is bounded by
cn2 (abstracting away the
implementation details).

of bits in the numbers

t
i
m
e

Grade School Addition: Linear time
Grade School Multiplication: Quadratic time

No matter how dramatic the difference in
the constants, the quadratic curve will
eventually dominate the linear curve

How much time does it take to
square the number n using
grade school multiplication?

Grade School Multiplication:
Quadratic time

of bits in numbers

t
i
m
e

Input size is measured in bits,
unless we say otherwise.

c(log n)2 time to square the number n

Worst Case Time

Worst Case Time T(n) for algorithm A:
T(n) = Max[all permissible inputs X of size n] Runtime(A,X)

Runtime(A,X) =
 Running time of algorithm A on input X.

If T(n) is not polynomial, the algorithm
is not efficient: the run time scales

too poorly with the input size.

This will be the yardstick with which
we will measure “efficiency”.

4

Multiplication is efficient, what
about “reverse multiplication”?

Let’s define FACTORING(N) to be any
method to produce a non-trivial factor

of N, or to assert that N is prime.

Factoring The Number N
By Trial Division

Trial division up to √N
for k = 2 to √N do

 if k | N then
 return “N has a non-trivial factor k”

return “N is prime”

c √N (logN)2 time if division is c (logN)2 time

Is this efficient?

No! The input length n = log N.
Hence we’re using c 2n/2 n2 time.

Can we do better?

We know of methods for FACTORING
that are sub-exponential (about 2n1/3

time) but nothing efficient.

Notation to Discuss Growth Rates
For any monotonic function f from the

positive integers to the positive
integers, we say

“f = O(n)” or “f is O(n)”

If some constant times n eventually
dominates f

[Formally: there exists a constant c such
that for all sufficiently large n: f(n) ≤ cn]

of bits in numbers

t
i
m
e

f = O(n) means that there is a
line that can be drawn that stays

above f from some point on
For any monotonic function f from the

positive integers to the positive
integers, we say

“f = Ω(n)” or “f is Ω(n)”

If f eventually dominates some constant
times n

[Formally: there exists a constant c such that
for all sufficiently large n: f(n) ≥ cn]

Other Useful Notation: Ω

5

of bits in numbers

t
i
m
e

f = Ω(n) means that there is a
line that can be drawn that stays

below f from some point on
Yet More Useful Notation: Θ

For any monotonic function f from the
positive integers to the positive

integers, we say
“f = Θ(n)” or “f is Θ(n)”

if: f = O(n) and f = Ω(n)

of bits in numbers

t
i
m
e

f = Θ(n) means that f can be
sandwiched between two lines

from some point on.

Notation to Discuss Growth Rates
For any two monotonic functions f and g

from the positive integers to the
positive integers, we say
“f = O(g)” or “f is O(g)”

If some constant times g eventually
dominates f

[Formally: there exists a constant c such that
for all sufficiently large n: f(n) ≤ c g(n)]

of bits in numbers

t
i
m
e

f = O(g) means that there is some
constant c such that c g(n) stays
above f(n) from some point on.

f g

1.5g

For any two monotonic functions f and g
from the positive integers to the

positive integers, we say
“f = Ω(g)” or “f is Ω(g)”

If f eventually dominates some constant
times g

[Formally: there exists a constant c such that
for all sufficiently large n: f(n) ≥ c g(n)]

Other Useful Notation: Ω

6

Yet More Useful Notation: Θ
For any two monotonic functions f and g

from the positive integers to the
positive integers, we say
“f = Θ(g)” or “f is Θ(g)”

If: f = O(g) and f = Ω(g)

</tangent on asymptotic notation>

Can we even break the quadratic time
barrier?

In other words, can we do something very
different than grade school multiplication?

Divide And Conquer
An approach to faster algorithms:

DIVIDE a problem into smaller subproblems
CONQUER them recursively

GLUE the answers together so as to
obtain the answer to the larger problem

X =
Y =

a b
c d

X = a 2n/2 + b

n/2 bits n/2 bits

n bits

X × Y = ac 2n + (ad + bc) 2n/2 + bd

X
Y

Multiplication of 2 n-bit numbers

 Y = c 2n/2 + d

Multiplication of 2 n-bit numbers

X =
Y =

a b
c d

n/2 bits n/2 bits

X × Y = ac 2n + (ad + bc) 2n/2 + bd

MULT(X,Y):

If |X| = |Y| = 1 then return XY
else break X into a;b and Y into c;d

return MULT(a,c) 2n + (MULT(a,d)
 + MULT(b,c)) 2n/2 + MULT(b,d)

Same thing for numbers in decimal

X =
Y =

a b
c d

X = a 10n/2 + b Y = c 10n/2 + d

n/2 digits n/2 digits

n digits

X × Y = ac 10n + (ad + bc) 10n/2 + bd

7

Multiplying (Divide & Conquer style)

X =
Y =

X × Y = ac 10n + (ad + bc) 10n/2 + bd

a b
c d

1234*2139

12345678 * 21394276

12*21 12*39 34*21 34*39

1*2 1*1 2*2 2*1
2 1 4 2

Hence: 12*21 = 2*102 + (1 + 4)101 + 2 = 252

1234*4276 5678*2139 5678*4276

Multiplying (Divide & Conquer style)

X =
Y =

X × Y = ac 10n + (ad + bc) 10n/2 + bd

a b
c d

1234*2139 1234*4276 5678*2139 5678*4276

12345678 * 21394276

12*21 12*39 34*21 34*39 252 468 714 1326
*104 + *102 + *102 + *1 = 2639526

Multiplying (Divide & Conquer style)

X =
Y =

X × Y = ac 10n + (ad + bc) 10n/2 + bd

a b
c d

1234*2139 1234*4276 5678*2139 5678*4276

12345678 * 21394276

2639526 5276584 12145242 24279128
*108 + *104 + *104 + *1

= 264126842539128

Multiplying (Divide & Conquer style)

X =
Y =

X × Y = ac 10n + (ad + bc) 10n/2 + bd

a b
c d

12345678 * 21394276

= 264126842539128

Divide, Conquer, and Glue

MULT(X,Y)

if |X| = |Y| = 1
then return XY,

else…

Divide, Conquer, and Glue

MULT(X,Y):

8

X=a;b Y=c;d

Divide, Conquer, and Glue

MULT(X,Y):

Mult(a,c)
Mult(a,d) Mult(b,c)

Mult(b,d)

X=a;b Y=c;d

Divide, Conquer, and Glue

MULT(X,Y):

Mult(a,c)

Mult(a,d) Mult(b,c)
Mult(b,d)

X=a;b Y=c;d

Divide, Conquer, and Glue

MULT(X,Y):

ac
Mult(a,d) Mult(b,c)

Mult(b,d)

X=a;b Y=c;d

Divide, Conquer, and Glue

MULT(X,Y):

ac

Mult(a,d)

Mult(b,c)
Mult(b,d)

X=a;b Y=c;d

Divide, Conquer, and Glue

MULT(X,Y):

ac
ad Mult(b,c)

Mult(b,d)

X=a;b Y=c;d

Divide, Conquer, and Glue

MULT(X,Y):

ac
ad

Mult(b,c)

Mult(b,d)

9

X=a;b Y=c;d

Divide, Conquer, and Glue

MULT(X,Y):

ac
ad bc

Mult(b,d)

X=a;b Y=c;d

Divide, Conquer, and Glue

MULT(X,Y):

ac
ad bc

Mult(b,d)

X=a;b Y=c;d

Divide, Conquer, and Glue

MULT(X,Y):

ac
ad bc bd

XY = ac2n
+(ad+bc)2n/2

+ bd

Time required by MULT

T(n) = time taken by MULT on two n-
bit numbers

What is T(n)? What is its growth rate?

Big Question: Is it Θ(n2)?

T(n) = 4 T(n/2) + O(n)

conquering
time divide and

glue

Recurrence Relation

T(1) = 1

T(n) = 4 T(n/2) + O(n)

Simplified Recurrence Relation

T(1) = 1

T(n) = 4 T(n/2) + n

conquering
time

divide and
glue

10

n =
T(n)

T(n/2) T(n/2) T(n/2) T(n/2)

n =
T(n)

T(n/2) T(n/2) T(n/2)

n/2

T
(n/4)

T
(n/4)

T
(n/4)

T
(n/4)

n =
T(n)

T(n/2) T(n/2)

n/2

T
(n/4)

T
(n/4)

T
(n/4)

T
(n/4)

n/2

T
(n/4)

T
(n/4)

T
(n/4)

T
(n/4)

n

 n/2 + n/2 + n/2 + n/2

.

1+1

0

1

2

i Level i is the sum of 4i copies of n/2i

n

 n/2 + n/2 + n/2 + n/2

Level i is the sum of 4i copies of n/2i

.

1+1

2n =

4n =

2in =

(n)n =

1n =

n(1+2+4+8+ . . . +n) = n(2n-1) = 2n2-n

Divide and Conquer MULT: Θ(n2) time
Grade School Multiplication: Θ(n2) time

Bummer!

MULT calls itself 4 times. Can you see a
way to reduce the number of calls?

11

Gauss’ Complex Puzzle

Can you do better than $4.03?

Remember how to multiply two
complex numbers a + bi and c + di?
(a+bi)(c+di) = [ac – bd] + [ad + bc] i

Input: a,b,c,d
Output: ac-bd, ad+bc

If multiplying two real numbers costs $1
and adding them costs a penny, what is
the cheapest way to obtain the output

from the input?

Gauss’ $3.05 Method

Input: a,b,c,d
Output: ac-bd, ad+bc

X1 = a + b
X2 = c + d
X3 = X1 X2 = ac + ad + bc + bd
X4 = ac
X5 = bd
X6 = X4 – X5 = ac - bd
X7 = X3 – X4 – X5 = bc + ad

¢

$
$
$

¢

¢
¢¢

The Gauss optimization
saves one multiplication out

of four.
It requires 25% less work.

Karatsuba, Anatolii Alexeevich
(1937-2008)

In 1962 Karatsuba had
formulated the first mult.
algorithm to break the n2
barrier!

Gaussified MULT
(Karatsuba 1962)

T(n) = 3 T(n/2) + n

MULT(X,Y):

If |X| = |Y| = 1 then return XY
else break X into a;b and Y into c;d

e : = MULT(a,c)
f := MULT(b,d)

e 2n + (MULT(a+b,c+d) – e – f) 2n/2 + f
return

n =
T(n)

T(n/2) T(n/2) T(n/2)

12

n =
T(n)

T(n/2) T(n/2)

n/2

T
(n/4)

T
(n/4)

T
(n/4)

n =
T(n)

T(n/2)

n/2

T
(n/4)

T
(n/4)

T
(n/4)

n/2

T
(n/4)

T
(n/4)

T
(n/4)

n =
T(n)

n/2

T
(n/4)

T
(n/4)

T
(n/4)

n/2

T
(n/4)

T
(n/4)

T
(n/4)

n/2

T
(n/4)

T
(n/4)

T
(n/4)

n

n/2 + n/2 + n/2

.

1+1

0

1

2

i

log2(n)

Level i is the sum of 3i copies of n/2i

n

n/2 + n/2 + n/2

Level i is the sum of 3i copies of n/2i

.

1+1

3/2n =

9/4n =

(3/2)in =

(3/2)log nn =

1n =

n(1+3/2+(3/2)2+ . . . + (3/2)log2 n)= 3n1.58… – 2n

Dramatic Improvement for
Large n

T(n) = 3nlog2 3 – 2n
 = Θ(nlog2 3)
 = Θ(n1.58…)

A huge savings over Θ(n2) when n gets large.

13

n 1.584

n2

The key idea of the algorithm is to divide a
large integer into 3 parts (rather than 2) of

size approximately n/3 and then multiply
those parts.

3-Way Multiplication

154517766 = 154 ∗ 106 + 517 ∗ 103 + 766

Let
X = x2 102p + x1 10p + x0
Y = y2 102p + y1 10p + y0

3-Way Multiplication

Then
X*Y=104p x2y2+103p (x2y1+x1y2)+

102p (x2y0+x1y1+x0y2)+10p (x1y0+x0y1)+x0y0

T(n) = 9 T(n/3) + Θ(n)

T(n) = Θ(n2)

Consider the equation in general form p > 3

3-Way Multiplication

T(n) = p T(n/3) + O(n)

Its solution is given by

T(n) = O(nlog
3
p)

Thus, this is faster if p = 5 or less

T(n) = O(n log35)=O(n 1.46…)

Here is the system of new variables:

 (x0 y0) =Z0
12 (x1y0+x0y1) =8 Z1-Z2-8 Z3+Z4
24 (x2y0+x1y1+x0y2) =-30 Z0+16 Z1-Z2+16 Z3-Z4
12 (x2y1+x1y2) =-2 Z1+Z2+2 Z3-Z4
24 (x2y2) =6 Z0-4 Z1+Z2-4 Z3+Z4

Is it possible to reduce the
number of multiplications to 5? Here are the values of Zk which make this work:

 Z0 = x0 y0
 Z1 = (x0+x1+x2) (y0+y1+y2)
 Z2 = (x0+2 x1+4 x2) (y0+2 y1+4 y2)
 Z3 = (x0-x1+x2) (y0-y1+y2)
 Z4 = (x0-2 x1+4 x2) (y0-2 y1+4 y2)

5 Multiplications Suffice

We leave checking this to the reader. Note
that multiplying and dividing by small constants
(eg:2,4,12,24) are O(n) time and absorbed by
the constant term in the recurrence.

14

It is possible to develop a faster algorithm
by increasing the number of splits.

Further Generalizations

A 4-way splitting:

T(n) = 7 T(n/4) + O(n)

T(n) = O(n 1.403…)

In similar fashion, the k-way split requires 2k-1
multiplications. (We do not show that here. See
http://en.wikipedia.org/wiki/Toom-Cook_multiplication)

Further Generalizations

A k-way splitting:

T(n) = (2k-1) T(n/k) + O(n)

T(n) = O(n logk (2k-1))

n1.58, n1.46, n1.40, n1.36, n1.33, …

Note, we will never get a linear performance

Multiplication Algorithms

Grade School O(n2)

Karatsuba O(n1.58…)

3-way split O(n1.46…)

K-way split O(n logk (2k-1))

Fast Fourier Transform O(n logn loglogn)

n2 n 1.584

n log(n) loglog(n)

n 1.584

Study Bee

•  Asymptotic notation
•  Divide and Conquer
•  Karatsuba Multiplication
•  Solving Recurrences

