Great Theoretical Ideas In Computer Science

Anupam Gupta €S 15-251 Fall 2010
Danny Sleator
Lecture 22 Nov 4, 2010 Carnegie Mellon University

Grade School Revisited:
How To Multiply Two Numbers

Time complexity of
grade school addition

[k % % % k k k% * % .
time grade school
addition uses to add
two n-bit numbers

:_' H T(n) = amount of

[% % *k k k * k%

*kkkkhkkhkkkkhkk*k

T(n) is linear:
T(n) = ¢;n

Time complexity of
grade school multiplication

T(n) = The amount of
time grade school
multiplication uses to
multiply two n-bit
numbers

T(n) is quadratic:
T(n) = c,n

Grade School Addition: Linear time
6rade School Multiplication: Quadratic time

03 - =+

of bits in the numbers

No matter how dramatic the difference in
the constants, the quadratic curve will
eventually dominate the linear curve

<tangent on asymptotic notation>

Our Goal

We want to define “time” in a
way that transcends
implementation details and allows
us to make assertions about grade
school addition in a very general
yet useful way.

Roadblock ???

A given algorithm will take different
amounts of time on the same inputs
depending on such factors as:

— Processor speed
— Instruction set

— Disk speed

— Brand of compiler

On any reasonable computer, adding 3
bits and writing down the two bit answer
can be done in constant time

Pick any particular computer M and define
¢ to be the time it takes to perform9
on that computer.

Total time to add two n-bit numbers
using grade school addition:

cn [i.e., c time for each of n columns]

On another computer M’, the time
to perform ﬂ may be c'.

Total time to add two n-bit
numbers using grade school
addition:
c'n [c' time for each of n columns]

® 3 -+

of bits in the numbers

The fact that we get a line is invariant
under changes of implementations.
Different machines result in different
slopes, but the time taken grows
linearly as input size increases.

Thus we arrive at an
implementation-independent
insight:

Grade School Addition is a linear
time algorithm

This process of abstracting away details
and determining the rate of resource
usage in terms of the problem size n is
one of the fundamental ideas in
computer science.

Time vs Input Size

For any algorithm, define

Input Size = # of bits to specify its inputs.

Define
TIME, = the worst-case amount
of time used by the
algorithm

on inputs of size n
We often ask:

What is the growth rate of
Time, ?

How to multiply 2 n-bit numbers.

X********
*x %k Kk k Xk k Xk %

* Kk ok Kk ok Kk Kk Kk
* K ok Kk Kk Kk Kk Kk
* Kk ok Kk ok Kk Kk Kk
* % ok Kk k Kk k Kk
n? * % Kk % % % k Xk
* % ok Kk k Kk k Kk
X Kk Kk Kk Kk k Kk Kk
X Kk Kk Kk Kk k Kk Xk

x Kk Kk Kk Kk Kk k k k k k k Xk * %k Xk

How to multiply 2 n-bit numbers.

* * * * Xk X
*

The total time is bounded by
cn? (abstracting away the
implementation details).

n2

x Kk k k Xk k Xk X

* Kk Kk Kk Kk Kk Kk k Xk %k Kk k k *x Xk %

Grade School Addition: Linear time
6rade School Multiplication: Quadratic time

03 -+

\

of bits in the numbers

No matter how dramatic the difference in
the constants, the quadratic curve will
eventually dominate the linear curve

up b
-

@ Unsn)’

’B“’S"‘ 'oib\f\wrmi

How much time does if[té(e to
square the number n using
grade school multiplication?

Grade School Multiplication:
Quadratic time

03 - =+

of bits in numbers

c(log n)?> time to square the number n
Input size is measured in bits,
unless we say otherwise.

Worst Case Time
Worst Case Time T(n) for algorithm A:
T(n) = Max[nll permissible inputs X of size n] Runﬁme(A,X)

Runtime(A,X) =
Running time of algorithm A on input X.

If T(n) is not polynomial, the algorithm
is not efficient: the run time scales
too poorly with the input size.

This will be the yardstick with which
we will measure “efficiency”.

Multiplication is efficient, what
about “reverse multiplication”?

Let's define FACTORING(N) to be any
method to produce a non-trivial factor
of N, or to assert that N is prime.

Factoring The Number N
By Trial Division

Trial division up to VN

for k = 2 to VN do

if k| N then
return "N has a non-trivial factor k"

return "N is prime”
c VN (logN)? time if division is c (logN)? time
Is this efficient?

No! The input length n = log N.
Hence we're using ¢ 2"2 n? time.

Y,
Can we do better? 7_"}

We know of methods for FACZORING
that are sub-exponential (about 2n1/3
time) but nothing efficient.

Notation to Discuss Growth Rates

For any monotonic function f from the
positive integers to the positive
integers, we say

“f = O(n)” or “f is O(n)"

If some constant times n eventually
dominates f

[Formally: there exists a constant ¢ such
that for all sufficiently large n: f(n) < cn]

f = O(n) means that there is a
line that can be drawn that stays
above f from some point on

® 3 - —+

of bits in numbers

Other Useful Notation: 2

For any monotonic function f from the
positive integers to the positive
integers, we say

“f = Q(n)" or “f is Q(n)"

If f eventually dominates some constant
times n

[Formally: there exists a constant ¢ such that
for all sufficiently large n: f(n) 2 ¢n]

f = Q(n) means that there is a
line that can be drawn that stays
below f from some point on

® 3 - -+

of bits in numbers

Yet More Useful Notation: ©

For any monotonic function f from the
positive integers to the positive
integers, we say

“f = O(n)" or “f is O(n)"
if: f=0() and f = Q(n)

f = ©(n) means that f can be
sandwiched between two lines
from some point on.

O3 - =+

of bits in numbers

Notation to Discuss Growth Rates

For any two monotonic functions f and g
from the positive integers to the
positive integers, we say

*f = O(g)" or “f is O(g)"

If some constant times g eventually
dominates f

[Formally: there exists a constant ¢ such that
for all sufficiently large n: f(n) < ¢ g(n)]

f = O(g) means that there is some
constant ¢ such that c g(n) stays
above f(n) from some point on.

1.59

® 3 - =+
—h
[(<]

of bits in numbers

Other Useful Notation: 2

For any two monotonic functions f and g
from the positive integers to the
positive integers, we say

“f = ﬂ(g)" or uf iS ﬂ(g)"
If f eventually dominates some constant
times g

[Formally: there exists a constant ¢ such that
for all sufficiently large n: f(n) 2 c g(n)]

Yet More Useful Notation: ©
For any two monotonic functions f and g

from the positive integers to the
positive integers, we say

“f = ©(g)" or “f is ©(g)"
If: f = 0O(g) and f = Q(g)

</tangent on asymptotic notation>

In other words, can we do something very

Can we even break the quadratic time
barrier?

different than grade school multiplication?

Divide And Conquer

An approach to faster algorithms:
DIVIDE a problem into smaller subproblems
CONQUER them recursively

GLUE the answers together so as to
obtain the answer to the larger problem

Multiplication of 2 n-bit numbers

n bits
X= | X |
V= | y |
n/2 bits n/2 bits

X=za2¥2+b Y=c2v2+d
X xY =ac 2"+ (ad + bc) 22 + bd

Multiplication of 2 n-bit numbers

x= I
. c | 4 |

n/2 bits n/2 bits

X xY =ac 2"+ (ad + bc) 22 + bd

MULT(X,Y):
If |X| = |Y| = 1 then return XY
else break X into a;b and Y into c:d

return MULT(a,c) 2" + (MULT(a,d)
+ MULT(b,c)) 22 + MULT(b,d)

Same thing for numbers in decimal

n digits

x= T
v

n/2 digits n/2 digits

X =a102 + b Y=clOv2 +d

X xY =ac 10" + (ad + bc) 1072 + bd

Multiplying (Divide & Conquer style)
[1234b678|* [2139427¢
1234*2139 1234*4276 5678*2139 5678*4276
12%21 12*39 34*21 34*39
1*2 1*1 2*2 2*1
2 1 4 2
Hence: 12%21 = 2*102 + (1 + 4)10! + 2 = 252

Multiplying (Divide & Conquer style)
12345678 * 21394276
12342139 1234*4276 5678*2139 5678*4276

L c] _d |

252 468 || 714 | 1326
WJT’TALT*W*k 2639526

L c | _d |

Multiplying (Divide & Conquer style)
12345678 * 21394276

| 2639526 | 5276584 | 12145242 | 24279128 |
*108 + *104 + *104 +

= 264126842539128

Multiplying (Divide & Conquer style)
12345678 * 21394276

= 264126842539128

Divide, Conquer, and Glue

MULT(X.Y)

Divide, Conquer, and Glue

MULT(X,Y): if IX| = 1Yl =1
then return XY,
else...

Divide, Conquer, and Glue

MULT(X,Y):

Divide, Conquer, and Glue

MULT(X,Y):

Divide, Conquer, and Glue

MULT(X,Y):

Divide, Conquer, and Glue

MULT(X,Y):

Divide, Conquer, and Glue

MULT(X,Y):

Divide, Conquer, and Glue

MULT(X,Y):

Divide, Conquer, and Glue

MULT(X,Y):

Divide, Conquer, and Glue

MULT(X,Y):

Divide, Conquer, and Glue

XY = ac2"
+(ad+bc)22
+ bd

MULT(X,Y):

Time required by MULT

T(n) = time taken by MULT on two n-
bit numbers

What is T(n)? What is its growth rate?

Big Question: Is it ©(n?)?
T(n) = 4 T(n/2) + O(n)

conquering divide and
time

glue

Recurrence Relation

T =1
T(n) = 4 T(n/2) + O(n)

Simplified Recurrence Relation

T(1) =1
T(n) =4 T(n/2) + n

/

conquering divide and
time glue

1 n/2 + n2 o+ ni2 + ni2
2
i Level i is the sum of 4' copies of n/2i

A+ 11+ 1+ 141+ H 141 H 11 H 1 1 H 1 H 1 141+

in = n

2n = n/2 ni2 + ni2 + n2
4n =

2in = Level i is the sum of 4i copies of n/2i
(n)n = R L L E P E e e P P e P e P P P P P P PR PSP PR P

n(1+2+4+8+ . . .

+n) = n(2n-1) = 2n2-n

Divide and Conquer MULT: O(n?) time
Grade School Multiplication: ©(n2) time

Bummerl!

MULT calls itself 4 times. Can you see a
way to reduce the number of calls?

10

Gauss' Complex Puzzle
Remember how to multiply two
complex numbers a + bi and ¢ + di?
(a+bi)(c+di) = [ac - bd] + [ad + bc] i
Input: a,b,c,d
Output: ac-bd, ad+bc
If multiplying two real numbers costs $1
and adding them costs a penny, what is

the cheapest way to obtain the output
from the input?

Can you do better than $4.03?

Gauss' $3.05 Method

Input: a,b,c,d
Output: ac-bd, ad+bc

X; X, = ac + ad + bc + bd

e aa
X
H

The Gauss optimization
saves one multiplication out
of four.

It requires 25% less work.

Karatsuba, Anatolii Alexeevich
(1937-2008)

In 1962 Karatsuba had
formulated the first mult.
algorithm to break the n?
barrier!

Gaussified MULT
(Karatsuba 1962)

MULT(X,Y):
If |X]| = |Y] = 1 then return XY
else break X into a;b and Y into c:d
e : = MULT(a,c)
f := MULT(b,d)
return
e 2" + (MULT(a+b,c+d) - e - f)2v2 + f

HMOERRIGAER]

(n/2 (n/2 (n/2

11

‘ﬁm (n/2 (n/2

n/4)Y (n/4)y/(n/4

(o] n

1 N2 + nl2 4+ n2

2

i Level i is the sum of 3i copies of n/2i
Iogz(n) EES T P e PR PR e PO T T O P PR TR P PO TR P e e P P P e e

in =
3/2n
9/4n

(3/2)n

3/2)09mn =

n/2 + n/2 + n/2

Level i is the sum of 3i copies of n/2i

1+1+ 141+ 1+ 1+ +H 11 H 11 H 1 H 1 H T H 1 H 141+

n(1+3/2+(3/2)%+ . . .

+ (3/2)l°92 M= 3n!-58- - 2n

Dramatic Improvement for
Large n

T(n) = 3n0923 - 2n

= @(nlogz 3)
- e(n1.58...)

A huge savings over O(n?) when n gets large.

12

3-Way Multiplication

The key idea of the algorithm is to divide a
large integer into 3 parts (rather than 2) of
size approximately n/3 and then multiply
those parts.

154517766 = 154 * 106 + 517 * 10% + 766

3-Way Multiplication

Let
X
Y

X, 102 + x; 10P + x,
y2 10% +y; 10° + yq

Then
X*Y=10% x,y,+10% (x5, +X,Y,)+
102 (x,Yo*X1Y1+XoY2)* 10P (X;Yo+XoY1)*XoYo

T(n) = 9 T(n/3) + O(n)

T(n) = ©(?)

3-Way Multiplication
Consider the equation in general form p > 3
T(n) = p T(n/3) + O(n)
Its solution is given by
T(n) = O(n"957)

Thus, this is faster if p = 5 or less

T(n) = O(n '99,5)=0(n 1-46-)

Is it possible to reduce the
number of multiplications to 5?

Here is the system of new variables:

(%o Yo) =Z,
12 (x;¥o+XoY1) =8 Z,-Z,-8 Z3+Z,
24 (XaYo+X1Y1+XoY2) =-30 Zg+16 Z,-Z,+16 Z5-Z,
12 (xzy1+X1Y2) =-2 Z+Z,+2 Z3-Z,4
24 (x,Y,) =6 Zy-4 Z+Z,-4 Z;+Z,

5 Multiplications Suffice

Here are the values of Z, which make this work:

Zy= Xg Yo

Z; = (Xo+X1+X%2) (Yo+Y1*Y2)

Z, = (%9+2 x;+4 x;) (Yo+2 y1+4 ¥2)
Z; = (Xo=%1+X3) (Yo-Y1*Y2)

Z, = (%0-2 x;+4 x;) (¥0-2 y1+4 ¥>)

We leave checking this to the reader. Note
that multiplying and dividing by small constants
(eg:2,4,12,24) are O(n) time and absorbed by
the constant term in the recurrence.

13

Further Generalizations

It is possible to develop a faster algorithm
by increasing the number of splits.

A 4-way splitting:

T(n) = 7 T(n/4) + O(n)

T(n) = O(n 1403

Further Generalizations

In similar fashion, the k-way split requires 2k-1
multiplications. (We do not show that here. See
http://en.wikipedia.org/wiki/Toom-Cook_multiplication)

A k-way splitting:
T(n) = (2k-1) T(n/k) + O(n)
T(n) = O(n 'og, (2k-1))

nl58 pl46 140 pl.36 133

Note, we will never get a linear performance

Multiplication Algorithms

Grade School 0(n?)
Karatsuba O(n?58-)
3-way split O(n?46-)
K-way split O(n logy (@k-1))

Fast Fourier Transform O(n logn loglogn)

n log(n) loglog(n)

+ Asymptotic notation

+ Divide and Conquer

+ Karatsuba Multiplication
+ Solving Recurrences

S’ru Bee

14

