
1

Finite Automata

Great Theoretical Ideas In Computer Science
Anupam Gupta
Danny Sleator

CS 15-251 Fall 2010

Lecture 20 Oct 28, 2010 Carnegie Mellon University

A machine so simple that
you can understand it in

less than one minute

Wishful thinking…

Deterministic Finite Automata

0
0,1

0 0

1

1

1

0111 111

11

1

The machine accepts a string if the
process ends in a double circle

0
0,1

0 0

1

1

1

0111 111

11

1

The machine accepts a string if
the process ends in a double circle

states

start state (q0)
accept states

(F)

transitions

Anatomy of a Deterministic
Finite Automaton

The alphabet of a finite automaton is the
set where the symbols come from, for

example {0,1}

The language of a finite automaton is the
set of strings that it accepts

The singular of automata is automaton.

L(M) = All strings of 0s and 1s

The Language L(M) of Machine M

0,1

q0

The language of a finite automaton is the
set of strings that it accepts

2

0 0

1

L(M) = { w | w has an even number of 1s}

q0

0

q1

1

1

The Language L(M) of Machine M

An alphabet Σ is a finite set (e.g., Σ = {0,1})

A string over Σ is a finite-length sequence of
elements of Σ

For x a string, |x| is the length of x

The unique string of length 0 will be denoted
by ε and will be called the empty or null

string

Notation

A language over Σ is a set of strings over Σ

Q is the finite set of states

Σ is the alphabet
δ : Q × Σ → Q is the transition function

q0 ∈ Q is the start state

F ⊆ Q is the set of accept states

A finite automaton is M = (Q, Σ, δ, q0, F)

L(M) = the language of machine M
 = set of all strings machine M accepts

Q = {q0, q1, q2, q3}

Σ = {0,1}

δ : Q × Σ → Q transition function

q0 ∈ Q is start state

F = {q1, q2} ⊆ Q accept states

M = (Q, Σ, δ, q0, F)
where

δ 0 1
q0 q0 q1

q1 q2 q2

q2 q3 q2

q3 q0 q2

q2

0
0,1

0 0

1

1

1

q0

q1

q3

M

The finite-state automata are
deterministic, if for each pair Q × Σ of
state and input value there is a unique

next state given by the transition
function.

There is another type machine in which
there may be several possible next

states. Such machines called
nondeterministic.

Build an automaton that
accepts all and only those
strings that contain 001

{0}
 0

1

{00}
 0

1

{001}
1

0 0,1

EXAMPLE

3

Build an automaton that
accepts all binary numbers
that are divisible by 3,

i.e, L = 0, 11, 110, 1001,
1100, 1111, 10010, 10101…

 1

0

 0

1

1

 0

A language is regular if it is
recognized by a deterministic finite

automaton

L = { w | w contains 001} is regular

L = { w | w has an even number of 0s} is regular

A language over Σ is a set of strings over Σ

Determine the language
recognized by

 0

1 0,1

L(M)={1n | n = 0, 1, 2, …}

Determine the language
recognized by

L(M)={1, 01}

 0 0,1

0,1

 1

 1

 0

Determine the language
recognized by

L(M)={0n, 0n10x | n=0,1,2…,
and x is any string}

 1
 0,1

0,1

 1

 0 0

DFA Membership problem
Determine whether some

word belongs to the language.

Theorem: The DFA Membership
Problem is solvable in linear time.

Let M = (Q, Σ, δ, q0, F) and w = w1...wm.
Algorithm for DFA M:

 p := q0;
 for i := 1 to m do p := δ(p,wi);
 if p∈F then return Yes else return No.

4

Equivalence of two DFAs

Given a few equivalent machines, we
are naturally interested in the

smallest one with the least number of
states.

Definition: Two DFAs M1 and M2 over the
same alphabet are equivalent if they

accept the same language: L(M1) = L(M2).

Union Theorem
Given two languages, L1 and L2, define

the union of L1 and L2 as
L1 ∪ L2 = { w | w ∈ L1 or w ∈ L2 }

Theorem: The union of two regular
languages is also a regular language.

Theorem: The union of two regular
languages is also a regular language

Proof (Sketch): Let
M1 = (Q1, Σ, δ1, q0, F1) be finite automaton for L1

 and
M2 = (Q2, Σ, δ2, q0, F2) be finite automaton for L2

We want to construct a finite automaton
M = (Q, Σ, δ, q0, F) that recognizes L = L1 ∪ L2

1

2

Idea: Run both M1 and M2 at the same time

Q = pairs of states, one from M1 and one from M2
= { (q1, q2) | q1 ∈ Q1 and q2 ∈ Q2 }

 = Q1 × Q2

 δ ((q1,q2),σ) = (δ1(q1,σ), δ2(q2,σ))

 q0 = (q0,q0) 1 2

 F = (F1×Q2) ∪ (Q1×F2)

Easy to see that this simulates both machines
and accepts the union. QED

Theorem: The union of two regular languages
is also a regular language

0 0

q0

0

q1

1

1

0 1

p0

1

p1

0

0

Automaton for Union

0

p0 q0

1

1

0 0 0
1

1

p0 q1

p1 q0 p1 q1

0 0

5

The Regular Operations
Union: A ∪ B = { w | w ∈ A or w ∈ B }

Intersection: A ∩ B = { w | w ∈ A and w ∈ B }

Negation: ¬A = { w | w ∉ A }

Reverse: AR = { σ1 …σk | σk …σ1 ∈ A }

Concatenation: A ⋅ B = { vw | v ∈ A and w ∈ B }

Star: A* = { w1 …wk | k ≥ 0 and each wi ∈ A }

Reverse

How to construct a DFA for the reversal of a
language?

The direction in which we read a string should
be irrelevant. If we flip transitions around we

might not get a DFA.

Reverse: AR = { σ1 …σk | σk …σ1 ∈ A }

The Kleene closure: A*

From the definition of the concatenation,
we define An, n =0, 1, 2, … recursively

A0 = {ε}
An+1 = An A

Star: A* = { w1 …wk | k ≥ 0 and each wi ∈ A }

A* is a set consisting of concatenations
of any number of strings from A.

A* = ∪ Ak
1≤k<∞

The Kleene closure: A*
What is A* of A={0,1}?

All binary strings

What is A* of A={11}?

All binary strings of an even
number of 1s

Regular Languages Are
Closed Under The Regular

Operations

We have seen the proof for Union. You will
prove some of these on your homework.

Theorem: Any finite language is regular

Claim 1: Let w be a string over an alphabet. Then
{w} is a regular language.

Proof: Construct the automaton that accepts {w}.

Claim 2: A language consisting of n strings is regular

Proof: By induction on the number of strings. If
{a} then L∪{a} is regular

6

Input: Text T of length t, string S of length n

Pattern Matching

Problem: Does string S appear inside text T?

a1, a2, a3, a4, a5, …, at

Naïve method:

Cost: Roughly nt comparisons

Automata Solution
Build a machine M that accepts any string

with S as a consecutive substring

Feed the text to M

Cost:

As luck would have it, the Knuth, Morris,
Pratt algorithm builds M quickly

t comparisons + time to build M

Regular Expressions

Coke Machines

Thermostats (fridge)

Elevators

Train Track Switches

Lexical Analyzers for Parsers

Real-life Uses of DFAs
Are all languages

regular?

i.e., a bunch of a’s followed by an
equal number of b’s

Consider the language L = { anbn | n > 0 }

No finite automaton accepts this language

Can you prove this?

anbn is not regular.
No machine has
enough states to
keep track of the
number of a’s it
might encounter

7

That is a fairly weak
argument

Consider the following
example…

L = strings where the # of occurrences
of the pattern ab is equal to the number

of occurrences of the pattern ba

Can’t be regular. No machine has
enough states to keep track of the

number of occurrences of ab

M accepts only the strings with an
equal number of ab’s and ba’s!

b
b a

b

a

a

a
ba

b L = strings where the # of occurrences
of the pattern ab is equal to the number

of occurrences of the pattern ba

Can’t be regular. No machine has
enough states to keep track of the

number of occurrences of ab

Let me show you a
professional strength
proof that anbn is not

regular…

How to prove a language is not regular…

Assume it is regular, hence is accepted by
a DFA M with n states.

Show that there are two strings s1 and s2
which both reach some state in M (usually by

pigeonhole principle)

Then show there is some string t such that
string s1t is in the language, but s2t is not.
However, M accepts either both or neither.

8

Theorem: L= {anbn | n > 0 } is not regular
Proof (by contradiction):

Assume that L is regular, M=(Q,{a,b},δ,q0,F)

Consider δ(q0, ai) for i = 1,2,3, …

There are infinitely many i’s but a finite
number of states.

δ(q0, an)=q and δ(q0, am) =q, and n ≠ m

Since M accepts anbn δ(q, bn)=qf

δ(q0, ambn)=δ(δ(q0, am),bn)=δ(q, bn)= qf

It follows that M accepts ambn, and n ≠ m

The finite-state automata are
deterministic, if for each pair of state
and input value there is a unique next
state given by the transition function.

There is another type machine in which
there may be several possible next

states. Such machines called
nondeterministic.

A NFA is defined using the same notations
M = (Q, Σ, δ, q0, F)

as DFA except the transition function δ
assigns a set of states to each pair Q × Σ

of state and input.

Nondeterministic finite
automaton (NFA)

A string is accepted iff there exists some set
of choices that leads to an accepting state

Note, every DFA is automatically also a NFA.

Nondeterministic finite
automaton

 a

 a

 qk
 a

Allows transitions from qk on the same
symbol to many states

NFA for {0k | k is a multiple of 2 or 3}

 0

 0

 0

 0

 0

 0

 0

What does it mean that for a NFA to
recognize a string x = x1x2…xk?

 1

 0

 0

 0
 0

 0,1
 1

 1

 s1

 s2

 s3

 s4

 s0

Since each input symbol xj (for j>1) takes
the previous state to a set of states, we
shall use a union of these states.

9

What does it mean that for a NFA to
recognize a string?

 Here we are going formally define this.

 For a state q and string w, δ*(q, w) is the set of
states that the NFA can reach when it reads the
string w starting at the state q.

 Thus for NFA= (Q, Σ, δ, q0, F), the function
δ*: Q x Σ* -> 2Q

is defined by δ*(q, y xk) = ∪p∈δ*(q,y) δ(p,xk)

Find the language recognized by this
NFA

 1

 0

 0

 0 0

 0,1
 1

 1

 s1

 s2

 s3

 s4

 s0

L = {0n, 0n01, 0n11 | n = 0, 1, 2…}

Find the language recognized by this
NFA

 1

 0

 1

1 0

 1

 s0

L = 1* (01, 1, 10) (00)*

 0

Theorem: The languages accepted by an NFA
are regular.

In other words:
For any NFA there is an equivalent DFA.

This theorem may prove useful on the
homework. You should prove it if you want to
use it.

NFA vs. DFA

NFA
Richer notation to represent a language.
Sometimes exponentially smaller.

DFA
Implementable in low level hardware.
Very fast to simulate.

Study Bee

DFAs
Regular Languages
Regular operators
anbn is not regular
NFAs
NFAs accept regular

languages

