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A machine so simple that 
you can understand it in 

less than one minute 

Wishful thinking… 

Deterministic Finite Automata 
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The machine accepts a string if the 
process ends in a double circle 
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The machine accepts a string if 
the process ends in a double circle 

states 

start state (q0) 
accept states 

(F) 

transitions 

Anatomy of a Deterministic 
Finite Automaton 

The alphabet of a finite automaton is the 
set where the symbols come from, for 

example {0,1} 

The language of a finite automaton is the 
set of strings that it accepts 

The singular of automata is automaton. 

L(M) = All strings of 0s and 1s 

The Language L(M) of Machine M 
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q0 

The language of a finite automaton is the 
set of strings that it accepts 
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L(M) = { w | w has an even number of 1s} 

q0 

0 

q1 
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The Language L(M) of Machine M 

An alphabet Σ is a finite set (e.g., Σ = {0,1}) 

A string over Σ is a finite-length sequence of 
elements of Σ 

For x a string, |x| is the length of x 

The unique string of length 0 will be denoted 
by ε and will be called the empty or null 

string 

Notation 

A language over Σ is a set of strings over Σ  

Q is the finite set of states 

Σ is the alphabet 
δ : Q × Σ → Q  is the transition function 

q0 ∈ Q is the start state 

F ⊆ Q is the set of accept states 

A finite automaton is M = (Q, Σ, δ, q0, F)  

L(M) = the language of machine M 
 = set of all strings machine M accepts 

Q  = {q0, q1, q2, q3} 

Σ = {0,1} 

δ : Q × Σ → Q transition function 

q0 ∈ Q is start state 

F  = {q1, q2} ⊆ Q accept states 

M = (Q, Σ, δ, q0, F)  
where 

δ 0 1 
q0 q0 q1 

q1 q2 q2 

q2 q3 q2 

q3 q0 q2 

q2  
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q3 

M 

The finite-state automata are 
deterministic, if for each pair Q × Σ of 
state and input value there is a unique 

next state given by the transition 
function. 

There is another type machine in which 
there may be several possible next 

states. Such machines called 
nondeterministic. 

Build an automaton that 
accepts all and only those 
strings that contain 001 

{0} 
 0 

1 

{00} 
 0 

1 

{001} 
1 

0  0,1 

EXAMPLE 
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Build an automaton that 
accepts all binary numbers 
that are divisible by 3, 

i.e, L = 0, 11, 110, 1001, 
1100, 1111, 10010, 10101… 
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A language is regular if it is 
recognized by a deterministic finite 

automaton 

L = { w | w contains 001} is regular 

L = { w | w has an even number of 0s} is regular 

A language over Σ is a set of strings over Σ  

Determine the language 
recognized by 

 0 

1 0,1 

L(M)={1n | n = 0, 1, 2, …} 

Determine the language 
recognized by 

L(M)={1, 01} 

  0  0,1 

0,1 

 1 

 1 

  0 

Determine the language 
recognized by 

L(M)={0n, 0n10x | n=0,1,2…,  
and x is any string} 

 1 
 0,1 

0,1 

 1 

  0  0 

DFA Membership problem 
Determine whether some 

word belongs to the language. 

Theorem: The DFA Membership 
Problem is solvable in linear time. 

Let M = (Q, Σ, δ, q0, F) and w = w1...wm. 
Algorithm for DFA M: 

 p := q0; 
 for i := 1 to m do p := δ(p,wi); 
 if p∈F then return Yes else return No. 
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Equivalence of two DFAs 

Given a few equivalent machines, we 
are naturally interested in the 

smallest one with the least number of 
states. 

Definition: Two DFAs M1 and M2 over the 
same alphabet are equivalent if they 

accept the same language: L(M1) = L(M2). 

Union Theorem 
Given two languages, L1 and L2, define 

the union of L1 and L2 as  
L1 ∪ L2 = { w | w ∈ L1 or w ∈ L2 }  

Theorem: The union of two regular 
languages is also a regular language. 

Theorem: The union of two regular 
languages is also a regular language 

Proof (Sketch): Let  
M1 = (Q1, Σ, δ1, q0, F1)  be finite automaton for L1 

 and  
M2 = (Q2, Σ, δ2, q0, F2) be finite automaton for L2 

We want to construct a finite automaton  
M = (Q, Σ, δ, q0, F) that recognizes L = L1 ∪ L2  

1 

2 

Idea: Run both M1 and M2 at the same time 

Q = pairs of states, one from M1 and one from M2 
= { (q1, q2) | q1 ∈ Q1 and q2 ∈ Q2 } 

    = Q1 × Q2 

 δ ((q1,q2),σ) = (δ1(q1,σ), δ2(q2,σ)) 

 q0 = (q0,q0)  1   2 

 F = (F1×Q2) ∪ (Q1×F2)    

Easy to see that this simulates both machines 
and accepts the union.  QED  

Theorem: The union of two regular languages 
is also a regular language 
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Automaton for Union 

0 

p0 q0 

1 

1 

0 0 0 
1 

1 

p0 q1 

p1 q0 p1 q1 

0 0 
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The Regular Operations 
Union: A ∪ B = { w | w ∈ A or w ∈ B }  

Intersection: A ∩ B = { w | w ∈ A and w ∈ B }  

Negation: ¬A = { w | w ∉ A }  

Reverse: AR = { σ1 …σk | σk …σ1 ∈ A } 

Concatenation: A ⋅ B = { vw | v ∈ A and w ∈ B } 

Star: A* = { w1 …wk | k ≥ 0 and each wi ∈ A } 

Reverse 

How to construct a DFA for the reversal of a  
language? 

The direction in which we read a string should  
be irrelevant. If we flip transitions around we  

might not get a DFA. 

Reverse: AR = { σ1 …σk | σk …σ1 ∈ A } 

The Kleene closure: A* 

From the definition of the concatenation,  
we define An, n =0, 1, 2, … recursively 

A0 = {ε} 
An+1 = An A 

Star: A* = { w1 …wk | k ≥ 0 and each wi ∈ A } 

A* is a set consisting of concatenations  
of any number of strings from A. 

A* = ∪ Ak 
1≤k<∞ 

The Kleene closure: A* 
What is A* of A={0,1}? 

All binary strings 

What is A* of A={11}? 

All binary strings of an even  
number of 1s 

Regular Languages Are 
Closed Under The Regular 

Operations 

We have seen the proof for Union. You will 
prove some of these on your homework. 

Theorem: Any finite language is regular 

Claim 1: Let w be a string over an alphabet. Then 
{w} is a regular language.  

Proof: Construct the automaton that accepts {w}. 

Claim 2: A language consisting of n strings is regular  

Proof: By induction on the number of strings. If 
{a} then L∪{a} is regular 
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Input: Text T of length t, string S of length n 

Pattern Matching 

Problem: Does string S appear inside text T? 

a1, a2, a3, a4, a5, …, at 

Naïve method:  

Cost: Roughly nt comparisons 

Automata Solution 
Build a machine M that accepts any string 

with S as a consecutive substring 

Feed the text to M 

Cost: 

As luck would have it, the Knuth, Morris, 
Pratt algorithm builds M quickly 

t comparisons + time to build M 

Regular Expressions 

Coke Machines 

Thermostats (fridge) 

Elevators 

Train Track Switches 

Lexical Analyzers for Parsers 

Real-life Uses of DFAs 
Are all languages 

regular? 

i.e., a bunch of a’s followed by an 
equal number of b’s 

Consider the language L = { anbn | n > 0 } 

No finite automaton accepts this language 

Can you prove this? 

anbn is not regular.  
No machine has 
enough states to 
keep track of the 
number of a’s it 
might encounter 
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That is a fairly weak 
argument  

Consider the following 
example… 

L = strings where the # of occurrences 
of the pattern ab is equal to the number 

of occurrences of the pattern ba 

Can’t be regular.  No machine has 
enough states to keep track of the 

number of occurrences of ab 

M accepts only the strings with an 
equal number of ab’s and ba’s! 

b
b a

b

a

a

a
ba

b L = strings where the # of occurrences 
of the pattern ab is equal to the number 

of occurrences of the pattern ba 

Can’t be regular.  No machine has 
enough states to keep track of the 

number of occurrences of ab 

Let me show you a 
professional strength 
proof that anbn is not 

regular… 

How to prove a language is not regular… 

Assume it is regular, hence is accepted by 
a DFA M with n states. 

Show that there are two strings s1 and s2 
which both reach some state in M (usually by 

pigeonhole principle) 

Then show there is some string t such that  
string s1t is in the language, but s2t is not.  
However, M accepts either both or neither. 
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Theorem:  L= {anbn | n > 0 } is not regular 
Proof (by contradiction): 

Assume that L is regular, M=(Q,{a,b},δ,q0,F)  

Consider δ(q0, ai) for i = 1,2,3, … 

There are infinitely many i’s but a finite 
number of states. 

δ(q0, an)=q and δ(q0, am) =q, and n ≠ m 

Since M accepts anbn δ(q, bn)=qf  

δ(q0, ambn)=δ( δ(q0, am),bn)=δ(q, bn)= qf  

It follows that M accepts ambn, and n ≠ m  

The finite-state automata are 
deterministic, if for each pair of state 
and input value there is a unique next 
state given by the transition function. 

There is another type machine in which 
there may be several possible next 

states. Such machines called 
nondeterministic. 

A NFA is defined using the same notations 
M = (Q, Σ, δ, q0, F) 

as DFA except the transition function δ 
assigns a set of states to each pair Q × Σ  

of state and input. 

Nondeterministic finite 
automaton (NFA) 

A string is accepted iff there exists some set 
of choices that leads to an accepting state 

Note, every DFA is automatically also a NFA. 

Nondeterministic finite 
automaton 

 a 

  a 

 qk 
 a 

Allows transitions from qk on the same 
symbol to many states 

NFA for {0k | k is a multiple of 2 or 3} 

 0 

 0 

 0 

 0 

 0 

 0 

 0 

What does it mean that for a NFA to 
recognize a string x = x1x2…xk? 

 1 

  0 

 0 

 0 
 0 

 0,1 
 1 

 1 

 s1 

 s2 

 s3 

 s4 

 s0 

Since each input symbol xj (for j>1) takes 
the previous state to a set of states, we 
shall use a union of these states. 
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What does it mean that for a NFA to 
recognize a string? 

 Here we are going formally define this. 

 For a state q and string w, δ*(q, w)  is the set of 
states that the NFA can reach when it reads the 
string w starting at the state q.  

 Thus for NFA= (Q, Σ, δ, q0, F), the function 
δ*: Q x Σ* -> 2Q 

is defined by  δ*(q, y xk) = ∪p∈δ*(q,y) δ(p,xk)  

Find the language recognized by this 
NFA 

 1 

  0 

 0 

 0  0 

 0,1 
 1 

 1 

 s1 

 s2 

 s3 

 s4 

 s0 

L = {0n, 0n01, 0n11 | n = 0, 1, 2…} 

Find the language recognized by this 
NFA 

 1 

  0 

 1 

1  0 

 1 

 s0 

L = 1* (01, 1, 10) (00)* 

 0 

Theorem:  The languages accepted by an NFA 
are regular. 

In other words: 
For any NFA there is an equivalent DFA. 

This theorem may prove useful on the 
homework.  You should prove it if you want to 
use it. 

NFA vs. DFA 

NFA 
Richer notation to represent a language. 
Sometimes exponentially smaller. 

DFA 
Implementable in low level hardware. 
Very fast to simulate. 

Study Bee 

DFAs 
Regular Languages 
Regular operators 
anbn is not regular 
NFAs 
NFAs accept regular 

languages    


