] Great Theoretical Ideas In Computer Science

Anupam Gupta €S 15-251 Fall 2010
Danny Sleator
Lecture 20 Oct 28, 2010 Carnegie Mellon University

Finite Automata

Deterministic Finite Automata

«“rr machine so simple that
you can understand it in
less than one minute

Wishful thinking...

The machine accepts a string if the
process ends in a double circle

start state (qo)

accept states
0111 =—p

'\o y
transitions — /

(\

The machine accepts a string if
the process ends in a double circle

states

Anatomy of a Deterministic
Finite Automaton

The singular of automata is automaton.

The alphabet of a finite automaton is the
set where the symbols come from, for
example {0,1}

The language of a finite automaton is the
set of strings that it accepts

The Language L(M) of Machine M
m 0,1

~©

L(M) = All strings of Os and 1s

The language of a finite automaton is the
set of strings that it accepts

The Language L(M) of Machine M

mo 1 mo

1
1

L(M) ={ w | w has an even number of 1s}

Notation

An alphabet X is a finite set (e.g., = = {0,1})

A string over X is a finite-length sequence of
elements of X

For x a string, |x| is the length of x

The unique string of length O will be denoted
by € and will be called the empty or null
string

A language over X is a set of strings over X

A finite automaton is M = (Q, Z, 8, qo, F)
Q is the finite set of states
3 is the alphabet
3 : Q@ x X — Q is the transition function
Qo € Q is the start state
F C Q is the set of accept states

L(M) = the language of machine M
= set of all strings machine M accepts

M= (Q! Z, 6! Yo F) Q= {qO! 945 A2 q3}
where

z={0,1}
qo € Q is start state

F ={q,, q,} C Q accept states

4 : Q x £ — Q transition function

The finite-state automata are
deterministic, if for each pair Q x X of
state and input value there is a unique

next state given by the transition
function.

There is another type machine in which
there may be several possible next
states. Such machines called
nondeterministic.

d 0 1
% 9 a4
94 9, 9,
9 93 92
93 % 92
EXAMPLE

Build an automaton that
accepts all and only those
strings that contain 001

Build an automaton that
accepts all binary numbers
that are divisible by 3,
i,e, L=0, 11, 110, 1001,
1100, 1111, 10010, 10101..

0 1
NG ENGERS
| - o
1 0

A language over X is a set of strings over X

A language is regular if it is
recognized by a deterministic finite
automaton

L = { w | w contains 001} is regular

L = { w | w has an even number of Os} is regular

Determine the language
recognized by

1 0,1
M

LMm)={inn=0,1, 2, .}

Determine the language
recognized by

L(M)={1, 01}

recognized by

O

0,1

@ Determine the language

L(M)={0", O"10x | n=0,1,2...,
and x is any string}

DFA Membership problem

Determine whether some
word belongs to the language.

Theorem: The DFA Membership
Problem is solvable in linear time.

Let M=(Q, %, 8,qy, F)and w = wy...w
Algorithm for DFA M:
P = Qo:
for i :=1tomdop := 3(p,w):
if pEF then return Yes else return No.

m-

Equivalence of two DFAs

Definition: Two DFAs M, and M, over the
same alphabet are equivalent if they

accept the same language: L(M,) = L(M,).

Given a few equivalent machines, we
are naturally interested in the
smallest one with the least number of
states.

Union Theorem

Given two languages, L, and L,, define
the union of L; and L, as

LLUL, ={w|lweliorwel,}

Theorem: The union of two regular
languages is also a regular language.

Theorem: The union of two regular
languages is also a regular language

Proof (Sketch): Let
M= (Q, Z, &, qi,, F,) be finite automaton for L,
and
M; = (Q,, 2, 85, G5, F,) be finite automaton for L,

We want to construct a finite automaton
M=(Q,Z, 39, qq, F) that recognizes L = L; U L,

Idea: Run both M; and M, at the same time

Q = pairs of states, one from M; and one from M,
{1 9) 1 9 €EQand ¢ EQ; }
Qi xQ

90 = (96.9%)
8 ((91.92).0) = (84(91,9), 8,(q,.0))
F= (FxQz) U (QxF,)

Easy to see that this simulates both machines
and accepts the union. QED

Theorem: The union of two regular languages
is also a regular language

Automaton for Union

The Regular Operations
Unionn AUB={w|wEAorweB}
Intersectionn ANB={w|wEAandweE B}
Negation: —A={w |we& A}

Reverse: AR={0,..0,| 0,..0, €A}

Concatenation: A-B={vw |vEAandwEB}

Star: A* = {w;..w, | k20and eachw, € A}

Reverse

Reverse: AR={0,..0,| 0,..0, €A}

How to construct a DFA for the reversal of a
language?

The direction in which we read a string should
be irrelevant. If we flip transitions around we
might not get a DFA.

The Kleene closure: A*

Star: A* = {w;..w, | k20and eachw, € A}

From the definition of the concatenation,
we define A", n =0, 1, 2, ... recursively
A% = {g}

Aml= An A

A* is a set consisting of concatenations
of any number of strings from A.

U ax

= 1¢keoo

A"

The Kleene closure: A*
What is A* of A={0,1}?

All binary strings

What is A* of A={11}?

All binary strings of an even
number of 1s

Regular Languages Are
Closed Under The Regular
Operations

We have seen the proof for Union. You will
prove some of these on your homework.

Theorem: Any finite language is regular
Claim 1: Let w be a s‘rrin? over an alphabet. Then
{w} is a regular language.

Proof: Construct the automaton that accepts {w}.

Claim 2: A language consisting of n strings is regular

Proof: By induction on the number of strings. If
{a} then LU{a} is regular

Pattern Matching

Input: Text T of length ¥, string S of length n
Problem: Does string S appear inside text T?
Naive method:

Cost: Roughly nt comparisons

Automata Solution

Build a machine M that accepts any string
with S as a consecutive substring

Feed the text to M

Cost: T comparisons + time to build M

As luck would have it, the Knuth, Morris,
Pratt algorithm builds M quickly

Real-life Uses of DFAs

Regular Expressions
Coke Machines
Thermostats (fridge)
Elevators
Train Track Switches

Lexical Analyzers for Parsers

Are all languages
regular?

Consider the language L = { a"b" | n > 0}

i.e., a bunch of a's followed by an
equal number of b's

No finite automaton accepts this language

Can you prove this?

N

a"b" is not regular.
No machine has
enough states to
keep track of the
% number of a's it
might encounter

_/

That is a fairly weak
argument

example...

\

Consider the following ﬁ

M accepts only the strings with an
equal number of ab's and ba's!

L = strings where the # of occurrences
of the pattern ab is equal to the number
of occurrences of the pattern ba

Can't be regular. No machine has
enough states to keep track of the
number of occurrences of ab

— "

L = strings where the # of occurrences
of the pattern ab is equal to the number
of occurrences of the pattern ba

enough states\to/keep track of the
number of gécurrences of ab

Let me show you a
professional strength
proof that a"b" is not

regular...

&

How to prove a language is not regular...

Assume it is regular, hence is accepted by
a DFA M with n states.

Show that there are two strings s; and s,
which both reach some state in M (usually by
pigeonhole principle)

Then show there is some string t such that
string s;t is in the language, but s,t is not.
However, M accepts either both or neither.

Theorem: L= {a"b" | n > 0 } is not regular
Proof (by contradiction):

Assume that L is regular, M=(Q,{a,b},5,q,,F)
Consider 8(qo, a’) fori = 1,2,3, ..

There are infinitely many i's but a finite
number of states.

8(qo. a")=q and 8(qy, a™) =q, and n = m
Since M accepts a"b" 3(q, b")=qs
8(do. a™")=8(8(qo. a™,b")=8(q, b")= g

It follows that M accepts a™", and n = m

The finite-state automata are
deterministic, if for each pair of state
and input value there is a unique next
state given by the transition function.

There is another type machine in which
there may be several possible next
states. Such machines called
nondeterministic.

Nondeterministic finite
automaton (NFA)

A NFA is defined using the same notations
M=(Q, 29, qF)
as DFA except the transition function &
assigns a set of states to each pair Q x Z
of state and input.

A string is accepted iff there exists some set
of choices that leads to an accepting state

Note, every DFA is automatically also a NFA.

Nondeterministic finite
automaton

Allows transitions from q, on the same
symbol to many states

NFA for {O | k is a multiple of 2 or 3}

What does it mean that for a NFA to
recognhize a string x = X;X,...X,?

Since each input symbol x; (for j>1) takes
the previous state to a seir of states, we
shall use a union of these states.

What does it mean that for a NFA to
recognize a string?

Here we are going formally define this.

For a state q and string w, 8°(q, w) is the set of
states that the NFA can reach when it reads the
string w starting at the state q.

Thus for NFA= (Q, Z, 8, qq, F), the function
M QxZT*->2Q

is defined by~ 8(q, Y Xi) = U yes(qy) 3(P.X)

Find the language recognized by this
NFA

L={0", 001,01 |n=0,1,2.}

Find the language recognized by this
NFA

L =17(01, 1, 10) (00)*

Theorem: The languages accepted by an NFA
are regular.

In other words:
For any NFA there is an equivalent DFA.

This theorem may prove useful on the
homework. You should prove it if you want to
use it.

NFA vs. DFA

NFA
Richer notation to represent a language.
Sometimes exponentially smaller.

DFA
Implementable in low level hardware.
Very fast to simulate.

DFAs

Regular Languages
Regular operators
a"b" is not regular

N
>

oot NFAs
\ N, NFAs accept regular
o languages

S‘rud Bee

