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Recap

Cayley’s Formula

The number of labeled trees
on n nodes is n"2
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A graph is planar if
it can be drawn in the
plane without
crossing edges

Kuratowski’s Theorem
A graph G is planar if and only if
K; 3 and K; are not minors of G.

The 5-color theorem and the 4-color theorem

Euler’s Formula

If G is a connected planar graph
with n vertices, e edges and f
faces,then n-e+f=2
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Spanning Trees

A spanning tree of a graph G is a tree that
touches every node of G and uses only
edges from G

Every connected graph has a spanning tree
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Counting Spanning Trees

How can we count the number of
spanning trees in a graph?

Brute force: try all( e1) subsets of n-1 edges.
n-

There’s a faster way.

Counting Spanning Trees Efficiently

Form the Laplacian of the graph. This is an
nxn matrix L, where:

Degree(i) if i=j
L= -1 if (i,j) € E

0 otherwise

310141
12100
L= 012 10
-1 01 3 41
100 1 2

Counting Spanning Trees Efficiently

Matrix-Tree Theorem: The number of
spanning trees of a graph is the determinant
of the Laplacian with one row and column
removed.

Proof:

Beyond the scope of this course

14 2100
L= 12 10
-4 0-1 341
4 00 1 2
21 00
1 2 10 =11 (do on doc cam)
0 1 3 41
0 0 1 2

Number of spanning trees =11 (do on doc cam)

If G is the complete graph on n nodes what
happens? We have this (n-1)x(n-1) det:

n1 -1 .41 Subtract 15t

1 n-1 1 column from n-1 -n...-n
- slee. = every other -
column 1 n . 0
4 .. n4 4 0. n
Add every one
of the rows to 1 0 ...

the first

[« =]

-1 n

——> = nn-2 Cayley’s
: : s | T n Formula!

-1 0...n
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This is a beautiful example from

Spectral Graph Theory

Which involves using linear algebra to
study and compute things on graphs

Finding Minimum Spanning Trees

Say that each edge in a graph has a cost.
A very natural question to ask is:

What is the cheapest subset of
edges that connect the nodes?

i.e: what is the minimum spanning tree of
the graph?

Finding Optimal Trees

Problem: Find a minimum spanning tree, that
is, a tree that has a node for every node in the
graph, such that the sum of the edge weights
is minimum

Minimum Spanning Trees

Kruskal’s Algorithm

v

n” A simple

¥ algorithm for
s finding a

f}‘- minimum

spanning tree

Finding an MST: Kruskal’s Algorithm

Create a forest where each node is a
separate tree

Make a sorted list of edges S
While S is non-empty:
Remove an edge from S with minimal weight

If it connects two different trees, add
the edge. Otherwise discard it.




Applying the Algorithm
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Proving the Algorithm Works

The algorithm outputs a spanning tree T.

Suppose that it’s not minimal. (For simplicity,
assume all edge weights in graph are distinct)

Let M be a minimum spanning tree.

Let e be the first edge chosen by the algorithm
thatis notin M.

If we add e to M, it creates a cycle. Since this
cycle isn’t fully contained in T, it has an edge f
notinT.

N = M+e-f is another spanning tree.

Proving the Algorithm Works
N = M+e-f is another spanning tree.
Claim: e <f, and therefore N <M
Suppose not: e >f

Then f would have been visited before e by the
algorithm, but not added, because adding it
would have formed a cycle.

But all of these cycle edges are also edges of
M, since e was the first edge notin M. This
contradicts the assumption M is a tree.

Greed is Good (In this case...)

The greedy algorithm, by adding the least
costly edges in each stage, succeeds in
finding an MST

But — in math and life — if pushed too far, the
greedy approach can lead to bad results.

TSP: Traveling Salesman Problem

Given a number of cities and the costs of
traveling from any city to any other city,
what is the cheapest round-trip route that
visits each city at least once and then
returns to the starting city?

TSP from Trees

We can use an MST to derive a TSP tour that is
no more expensive than twice the optimal tour.

Idea: walk “around” the MST and take
shortcuts if a node has already been visited.

We assume that all pairs of nodes are
connected, and edge weights satisfy the
triangle inequality d(x,y) < d(x,z) + d(z,y)
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Tours from Trees

Shortcuts only decrease the cost, so
Cost(Greedy Tour) < 2 Cost(MST)
< 2 Cost(Optimal Tour)

This is a 2-competitive algorithm

Bipartite Graph

A graph is bipartite if the nodes can be
partitioned into two sets V, and V, such that
all edges go only between V, and V, (no
edges go from V, to V, or from V, to V)

Dancing Partners

A group of 100 boys and girls attend a
dance. Every boy knows 5 girls, and every
girl knows 5 boys. Can they be matched
into dance partners so that each pair
knows each other?
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Perfect Matchings

A matching is a set of edges, no two of which
share a vertex. The matching is perfect if it
includes every vertex.

Regular Bipartite Matching Theorem: If
every node in a bipartite graph has the same
degree d > 1, then the graph has a perfect
matching.

Note: if degrees are the same then |A| =|B|,
where A is the set of nodes “on the left” and B
is the set of nodes “on the right”

A Matter of Degree

Claim: If degrees are the same then |A| = |B|
Proof:
If there are m boys, there are md edges

If there are n girls, there are nd edges

The Regular Bipartite Matching Theorem
follows from a stronger theorem, which we
now come to. (Remind me to return to the
proof of the RBMT later.)




The Marriage Theorem

Theorem: A bipartite graph has a perfect
matching if and only if |A| =|B| = n and for
all k € [1,n]: for any subset of k nodes of A
there are at least k nodes of B that are
connected to at least one of them.
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The Marriage Theorem

For any subset of (say)
k nodes of A there are
at least k nodes of B
that are connected to at
least one of them

o gl

The condition fails for
this graph

PR

The Feeling is Mutual

The condition of the theorem still holds if we swap the
roles of A and B: If we pick any k nodes in B, they are
connected to at least k nodes in A

A B

Proof by K>
Contradiction: k

n-k<

Proof of Marriage Theorem

Call a bipartite graph “matchable” if it has
the same number of nodes on left and right,
and any k nodes on the left are connected to
at least k on the right

Strategy: Break up the graph into two
matchable parts, and recursively partition each
of these into two matchable parts, etc., until
each part has only two nodes

Proof of Marriage Theorem

Select two nodes a € A and b € B connected by
an edge

Idea: Take G, =(a,b) and G, = everything else

If G, is matchable, we’re done. So let’s
assume that G, is not matchable.

If G, is not matchable then there is a set of k
nodes in G, that has only k-1 neighbors.

Proof of Marriage Theorem

The only way this
could fail is if one of
the missing nodes is b

Add this in to form
G,, and take G, to be
everything else.

This is a matchable
partition!*

(*Done in lecture on the document cam.)
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Example

¥ Suppose that a standard
y deck of cards is dealt into
. 13 piles of 4 cards each

. Then itis possible to select
a card from each pile so
that the 13 chosen cards
contain exactly one card of
each rank

Proof: Form a bipartite graph as follows: Start with
52 cards on the left and the same 52 cards on the
right, connected by 52 edges.

Now group the cards on the left into 13 sets
according to the given piles. Group the cards on
the right into 13 groups according to rank. Let the
edges be inherited from the original ones.

This bipartite graph is matchable -- k groups on the
left have to connect to 4k cards on the right, thus
they connect to at least k groups on the right.

And thus has a perfect matching.

Generalized Marriage:
Hall’s Theorem

LetS={S,, S,, ...S,} be a set of finite subsets
that satisfies: For any subset T of {1,2,...,n} let
U = the union of S,for tin T, we have: |U| > |T|.
I.E. any k subsets contain at least k elements

Then we can choose an element x; from each
S, so that {x,, x,, ...} are all distinct

The proof of Hall’s Theorem is slightly
more complicated (but not much) than our
proof of the Marriage Theorem.

You can find the proof on Wikipedia, or on
pages 218 and 219 of Mathematical
Thinking by D’Angelo and West.

Minimum Spanning Tree
- Definition
Counting spanning trees
- Matrix-Tree Theorem
Kruskal’s Algorithm
- Definition
- Proof of Correctness
Traveling Salesman Problem
- Definition

Here’s What
You Need to - Using MST to get an
Know... approximate solution

The Marriage Theorem




