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•  Set of vertices (or nodes) 

•  Set of edges, each a pair of vertices 
•  Write G=(V,E). 

•  A self-loop is an edge that connects to the same 
vertex twice 

•  A multi-edge (parallel edges) is a set of two or 
more edges that have the same two vertices 

•  A graph is simple if it has no multi-edges or self-
loops. 

•  In this course “graph” means simple graph.  Use 
“arbitrary” graph otherwise. 

Graph – informal definitions 
More terms 

•  Cycles 

•  Acyclic 
•  Paths 
•  Connected 

•  The degree of a vertex 
•  Directed: an edge is an ordered pair of vertices  
•  Undirected: edge is unordered pair of vertices 

•  (this lecture is all undirected) 

A tree is a connected 
graph with no cycles 

What’s a tree? Tree 
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Not Tree Not Tree 

Tree How Many n-Node Trees? 
1: 

2: 

3: 

4: 

5: 

Notation 
In this lecture: 

n will denote the number of  nodes in a graph 

e will denote the number of  edges in a graph 

Theorem:  Let G be a graph with n nodes 
and e edges 

The following are equivalent: 

1. G is a tree (connected, acyclic) 

3. G is connected and n = e + 1  

4. G is acyclic and n = e + 1 

5. G is acyclic and if  any two non-adjacent 
nodes are joined by an edge, the 
resulting graph has exactly one cycle 

2. Every two nodes of  G are 
joined by a unique path 
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To prove this, it suffices to show 
 1 ⇒ 2 ⇒ 3 ⇒ 4 ⇒ 5 ⇒ 1 

In the interest of  time, we’ll just show 
 1 ⇔ 2 ⇔ 3 

and leave the rest to the reader 

 1 ⇒ 2  1. G is a tree (connected, acyclic) 

2. Every two nodes of  G are 
joined by a unique path 

Proof: (by contradiction) 

Assume G is a tree that has two nodes 
connected by two different paths: 

Then there exists a cycle! 

 2 ⇒ 1  1. G is a tree (connected, acyclic) 

2. Every two nodes of  G are 
joined by a unique path 

Proof:  We prove the contrapositive ¬2⇒¬1. 

¬2 means either there’s no path between a 
pair, then it’s not connected, thus ¬1.  Or it 
means there are two nodes connected by two 
different paths: 

Then there exists a cycle! 

 2 ⇒ 3  2. Every two nodes of  G are 
joined by a unique path 

Proof: (by induction) 

Assume true for every graph with < n nodes 

3. G is connected and n = e + 1  

Let G have n nodes and let x and y be adjacent 

Let n1,e1 be number of  nodes and edges in G1 

Then n = n1 + n2 = e1 + e2 + 2 = e + 1  

x y 
G1 G2 

 3 ⇒ 2  2. Every two nodes of  G are 
joined by a unique path 

Proof: 

Imagine trying to connect the n nodes of  G with n-1 
edges, by inserting the edges one by one. 

The only way to completely connect the graph is if  on 
every step we connect two components together, 
otherwise we run out of  edges.  Each component has the 
unique paths property. 

3. G is connected and e = n - 1  

x y It’s easy to see that the 
unique path property 
holds in the result. 

Corollary:  Every nontrivial tree has at least 
two endpoints (points of  degree 1) 

Proof  (by contradiction): 

Assume all but one of  the points in the 
tree have degree at least 2 

Then the total number of  edges in the tree 
is at least (2n-1)/2 = n - 1/2 > n - 1 

In any graph, sum of  the degrees = 2e 
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How many labeled trees are 
there with three nodes? 

1 2 3 

1 3 2 

2 1 3 

How many labeled trees are 
there with four nodes? 

a 

b 

c 

d 

How many labeled trees are 
there with five nodes? 

5  
labelings 

5 x     x 4 3 5!/ 2 

125 labeled trees 

labelings labelings 

How many labeled trees are 
there with n nodes? 

16 labeled trees with 4 nodes 

3 labeled trees with 3 nodes 

125 labeled trees with 5 nodes 

nn-2 labeled trees with n nodes 

The number of  labeled trees 
on n nodes is nn-2 

Cayley’s Formula The proof  will use the correspondence principle. 

Let T be the set of  labeled n-node trees. 

Let S be {1,2,…,n}n-2 (that is, all sequences of  n-2 
numbers, each in the range [1..n]) 

We’ll exhibit a bijection between S and T. 
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How to make a sequence from a tree? 

Example: 5 

2 
1 

3 

6 
7 

4 
8 

Loop through i from 1 to n-2 

Let L be the degree-1 node with 
the lowest label 

Define the ith element of  the sequence 
as the label of  the node adjacent to L 

Delete the node L from the tree 

1 3 3 4 4 4 

5 

2 
1 

3 

6 
7 

4 
8 

1 3 3 4 4 4 

What can you say about the set of  numbers 
that occur in this sequence?  Which nodes 
are they in the tree? 

Lemma:  The node labels occurring in a 
sequence  are precisely those with degree 
at least 2. 

Proof: Every time a label is output, that 
node’s degree decreases by 1.  At the end 
there are two nodes of  degree 1.  
Therefore all the degree ≥ 2 must have 
been output.☐ 

Therefore, we can, by looking at the the 
sequence, identify the nodes of  initial 
degree 1. Among those, the one deleted 
first is the lowest.  This leads to the 
following….. 

How to reconstruct the unique tree from 
a sequence S: 

Loop until S is empty 

Let i = smallest # in I but not in S 
Let s = first label in sequence S 

 Add edge {i, s} to the tree 
 Delete i from I 
 Delete s from S 

Let I = {1, 2, 3, …, n}  

Add edge {a,b}, where I = {a,b} 

5 

2 
1 

3 

6 
7 

4 
8 

1 3 3 4 4 4 

For any sequence this algorithm always 
generates a labeled tree that inverts the 
encoding algorithm.   

The invariant that is preserved as the  
algorithm runs is that the set of  available 
labels (l) always contains all the labels  
remaining in the sequence. 

Spanning Trees 
A spanning tree of  a graph G is a tree that 
touches every node of  G and uses only 
edges from G 

Every connected graph has a spanning tree 
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A graph is planar if  it 
can be drawn in the 

plane without crossing 
edges 

Examples of  Planar Graphs 

= 

http://www.planarity.net 

Faces 
A planar graph splits the 
plane into disjoint faces 

4 faces 

Euler’s Formula 

If  G is a connected planar graph 
with n vertices, e edges and f  

faces, then  n – e + f  = 2 

Proof  of  Euler’s Formula 

The proof  is by induction. 

For connected arbitrary planar graphs n-e+f=2  

Let’s build up the graph by adding edges one at 
a time, always preserving the Euler formula. 

Start with a single edge and 2 vertices. n=2, 
f=1, e=1.  Check. 

Add the edges in an order so that what we’ve 
added so far is connected. 
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There are two cases to consider. 

(1)  The edge connects two vertices already there. 
(2)  The edge connects the current graph to a new vertex 

In case (1) we add a new edge (e++) and we split 
one face in half  (f++).  So n-e+f  is preserved. 

In case (2) we add a new vertex (n++) and a new 
edge (e++). So again n-e+f  is preserved. 

Corollary 1:  Let G be a simple connected planar 
graph with n > 2 vertices. Then G has a vertex of  
degree at most 5. 

Proof: Because of  simplicity and n>2 every face has 
at least three edges around it.  Thus 3f  ≤ 2e (draw 
picture on doc cam). 

Let di be the degree of  node i.  ∑di = 2e. (draw 
picture on doc cam). 

Euler: n-e+f=2   
    ⇒ 6e = 6n+6f-12 ≤ 6n+4e-12    ⇒   2e≤6n-12 
    ⇒ ∑di ≤ 6n-12    ⇒   ∑di / n ≤ 6-12/n 
    ⇒ Average Degree < 6  
    ⇒ there exists a vertex of  degree at most 5  

Corollary 2:  Let G be a simple connected planar 
graph with n > 2 vertices. G has at most 3n – 6 edges 

Proof: We already showed that under these 
conditions 2e≤6n-12.  Thus e≤3n-6.  QED.   

Note: This theorem is important because it shows 
that in a simple planar graph e = O(n). 

Graph Minors 
A graph M is a minor in a graph G if  you can 
obtain M by deleting vertices and edges in G 
and then merging pairs of  edges incident on 
degree two vertices. 

is a minor in 

Kuratowski’s Theorem 

A graph G is planar if  and only if  K3,3 and K5 
are not minors of  G. A coloring of  a graph is an assignment of  a 

color to each vertex such that no neighboring 
vertices have the same color 

Graph Coloring 
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Graph Coloring 
Arises surprisingly often in CS 

Register allocation: assign temporary 
variables to registers for scheduling 
instructions.  Variables that  interfere, or 
are simultaneously active, cannot  be 
assigned to the same register 

Theorem: Every planar graph can be 5-colored 

Proof  (by induction): 

Assume every planar graph with less than n vertices 
can be 5-colored.  A base case of  n<6 is trivial. 
Assume G has n vertices 
Since G is planar, it has some node v with degree at 
most 5. 
If  deg(v)<5, Remove v and color by with 5 colors.  Now 
color v with a color not used among its neighbors. 

(A slight technicality here is that we have to keep 
the graph connected in order to apply the Euler 
formula.  If  removal of  v disconnects the graph, 
then you can add sufficient edges among the 
neighbors of  v to retain connectivity. ) 

What if  v has degree 5? 

We know that all pairs of  the neighbors of  v cannot 
be edges (they’d form K5) 

So there is a pair (v,w) which are not neighbors. 

We now identify these two vertices as one, and 
apply the 5-coloring method to the resulting 
smaller connected planar graph.    

Now notice that  we can apply this coloring to G, 
and among the neighbor of  v, only 4 colors are 
used.  Thus we can color v with the 5th color. 

A computer-assisted proof  of  the 4-color 
theorem was discovered in 1976 by Appel 
and Haken of  the University of  Illinois. 

Implementing Graphs 

Adjacency Matrix 
Suppose we have a graph G with n 
vertices. The adjacency matrix is the 
n x n matrix A=[aij] with: 

aij  = 1  if  (i,j) is an edge 

aij  = 0  if  (i,j) is not an edge 

Good for dense graphs! 
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Example 

A = 

0 1 1 1 
1 0 1 1 
1 1 0 1 
1 1 1 0 

Counting Paths 
The number of  paths of  length k from 
node i to node j is the entry in position 
(i,j) in the matrix Ak 

A2 = 

0 1 1 1 
1 0 1 1 
1 1 0 1 
1 1 1 0 

0 1 1 1 
1 0 1 1 
1 1 0 1 
1 1 1 0 

3 2 2 2 
2 3 2 2 
2 2 3 2 
2 2 2 3 

= 

Adjacency List 
Suppose we have a graph G with n 
vertices. The adjacency list is the list 
that contains all the nodes that each 
node is adjacent to 

Good for sparse graphs! 

Example 
1 

2 

3 

4 

1: 2,3 
2: 1,3,4 
3: 1,2,4 
4: 2,3 

Here’s What 
You Need to 

Know… 

Trees 
•   Counting Trees 
•   Different Characterizations 

Planar Graphs 
•   Definition 
•   Euler’s Theorem 
•   Planar Graphs 

•  Kuratowski’s thm. 
•  5 and 4 coloring  

Adjacency Matrix and List 
•   Definition 
•   Useful for counting  


