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15-251
Great Theoretical Ideas 
in Computer Science

Polynomials, Lagrange, 
and Error-correction

Q: suppose P(x) has a rational root (a/b) over 
the rationals. Is P(ab-1) = 0 over Zp ?

(Let’s assume both a, b in Zp)

E.g., suppose P(x) = 6x2 – x – 1 
= (2x – 1)(3x + 1). 

Roots are 1/2, -1/3.

Roots over Z11 are 2
-1 = 6, –3-1 = –4 = 7

Q: P(x) has no root over the rationals.

Does it have roots when working over Zp?

Consider P(x) = x2 + 2x + 2.

Over the reals, its roots are irrational.

Over Z5, this is the same as x
2 – 3x + 2, 

which has roots 1,2 (both in Z5)

The Single Most Important 
Theorem About 
Polynomials

A non-zero degree-d 
polynomial P(x) has

at most d roots.

This fact has many applications…

Theorem:

Given pairs (a1, b1), …, (ad+1, bd+1) of  values 

there is at most one

degree-d polynomial P(x) 
such that:

P(ak) = bk for all k

when we say “degree-d”, we mean 
degree at most d.

we’ll always assume ai ≠ ak for i ≠ k
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Theorem: 

Given pairs (a1, b1), …, (ad+1, bd+1) of  values 

there is at most one

degree-d polynomial P(x) 
such that:

P(ak) = bk for all k

do there exist d+1 pairs
for which there are 

no such polynomials??

Revised Theorem:

Given pairs (a1, b1), …, (ad+1, bd+1) of  values 

there is exactly one

degree-d polynomial P(x) 
such that:

P(ak) = bk for all k

The algorithm to construct P(x)
is called Lagrange Interpolation

Two different representations

P(x) = cd x
d + cd-1 x

d-1 + … + c1 x
1 + c0

can be represented either by

a) its d+1 coefficients
cd, cd-1, …, c2, c1, c0

b) Its value at any d+1 points

P(a1), P(a2), …, P(ad), P(ad+1)

(e.g., P(1), P(2), …, P(d+1).)

Converting Between The 
Two Representations

Coefficients to Evaluation:

Evaluation to Coefficients:

Evaluate P(x) at d+1 points

Use Lagrange Interpolation

Now for some Lagrange 
Interpolation

Given pairs (a1, b1), …, (ad+1, bd+1) of  values 

there is exactly one

degree-d polynomial P(x) 
such that:

P(ak) = bk for all k

Special case

What if  the points were like:

(a1, 1)

(a2, 0)

(a3, 0)

…

(ad+1, 0)
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Special case

Suppose we can get degree-d poly h1(x):

h1(a1) = 1

h1(at) = 0 for all t = 2,…,d+1 

“switch” polynomial #1

Special case

Suppose we can get degree-d poly h1(x):

h1(a1) = 1

h1(at) = 0 for all t = 2,…,d+1 

Then we can get degree-d poly H1(x):

H1(a1) = b1
H1(at) = 0 for all t = 2,…,d+1 

Just set H1(x) = b1 * h1(x)

Special case

Suppose we can get degree-d poly h1(x):

h1(a1) = 1

h1(at) = 0 for all t = 2,…,d+1 

Using same idea, get degree-d poly Hk(x):

Hk(ak) = bk
Hk(at) = 0 for all t ≠ k

Finally, P(x) = ∑k Hk(x)

Hence, all we need to do

Given numbers a1, a2, …, ad+1

Build a degree-d “switch” poly h1(x):

h1(a1) = 1

h1(at) = 0 for all t = 2,…,d+1 

construction by example

want a quadratic h with h(3) = 1, h(1)=0, h(6)=0

Let’s first get the roots in place:

h(x) = (x-1)(x-6)

But h(3) = (3-1)(3-6) = -6
So let’s fix that!

h(x) = (-6)-1 (x-1)(x-6)

done!
= 9 (x-1)(x-6) 

(say, in Z11[x])

Are we done? No! We wanted h(3) = 1

9 * (-6) =11 1

formally, the constructions
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k-th “Switch” polynomial

gk(x) = (x-a1)(x-a2)…(x-ak-1)(x-ak+1)…(x-ad+1)

Degree of  gk(x) is:

gk(x) has d roots:

(ak-a1)(ak-a2)…(ak-ak-1)(ak-ak+1)…(ak-ad+1)gk(ak) =

For all i ≠ k, gk(ai) =

d

a1,…,ak-1,ak+1,…,ad+1

0

(x-a1)(x-a2)…(x-ak-1)(x-ak+1)…(x-ad+1)

(ak-a1)(ak-a2)…(ak-ak-1)(ak-ak+1)…(ak-ad+1)
hk(x) =

hk(ak) =1

For all i ≠ k, hk(ai) = 0

k-th “Switch” polynomial

gk(x) = (x-a1)(x-a2)…(x-ak-1)(x-ak+1)…(x-ad+1)

The Lagrange Polynomial

P(x) = b1 h1(x) + b2 h2(x) + … + bd+1 hd+1(x)

P(x) is the unique polynomial of  degree d such 
that P(a1) = b1, P(a2) = b2, …, P(ad+1) = bd+1

(x-a1)(x-a2)…(x-ak-1)(x-ak+1)…(x-ad+1)

(ak-a1)(ak-a2)…(ak-ak-1)(ak-ak+1)…(ak-ad+1)
hk(x) =

Example
Input: (5,1), (6,2), (7,9)

Switch polynomials:

h1(x) = (x-6)(x-7)/(5-6)(5-7) = ½ (x-6)(x-7)

h2(x) = (x-5)(x-7)/(6-5)(6-7) = - (x-5)(x-7)

h3(x) = (x-5)(x-6)/(7-5)(7-6) = ½ (x-5)(x-6)

P(x) =

= (3x2 - 32x + 86)

1 × h1(x) + 2 × h2(x) + 9 × h3(x)

Want quadratic
in Z11[x]

= (3x2 + x + 9) in Z11[x]

the Chinese Remainder Theorem

uses very similar ideas in
its proof

Revised Theorem:

Given pairs (a1, b1), …, (ad+1, bd+1) of  values 

there is exactly one

degree-d polynomial P(x) 
such that:

P(ak) = bk for all k

The algorithm to construct P(x)
is called Lagrange Interpolation
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Example
Infinite Sample spaces

and Random Walks
Lecture 17 (October 19, 2010)

p 1-p

p

p

p

1-p

1-p

Probability Refresher

What’s a Random Variable?

A Random Variable is a real-valued 
function on a sample space S

E[X+Y] = E[X] + E[Y]

Probability Refresher

What does this mean: E[X | A]?

E[ X ] = E[ X | A ] Pr[ A ] + E[ X | A ] Pr[ A ]

Pr[ A ] = Pr[ A | B ] Pr[ B ] + Pr[ A | B ] Pr[ B ]

Is this true:

Yes!

Similarly:

An easy question

0                      1         1.5         2

But it never actually gets 
to 2. Is that a problem?

Answer: 2What is ∑i=0 (½)
i ?

∞

But it never actually gets 
to 2. Is that a problem?

∞

n
No, by ∑i=0 f(i), 

we really mean limn→∞
∑i=0 f(i).

if  this limit is undefined, 
so is the sum

In this case, the partial 
sum is 2-(½)n, 
which goes to 2.
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A related question

Suppose I flip a coin of  bias p, stopping 
when I first get heads.

What’s the chance that I:

Flip exactly once?
p

Flip exactly two times?
(1-p)p

Flip exactly k times?
(1-p)k-1p

Eventually stop?
1  (assuming p>0)

Pr(flip once) + 
Pr(flip 2 times) + 
Pr(flip 3 times) + 
... 
= 1:

p + (1-p)p + (1-p)2p + (1-p)3p + ... = 1

Or, using q = 1-p,

A A related questionquestion

∑
i = 0

∞

qi =
1

1-q

Geometric Random Variable

Flip bias-p coin until you see heads.

Let r.v. Z = 
number of  flips until heads

What is E[Z]?

Pictorial view

Sample space S = leaves in this tree.  

Pr(x) = product of  edges on path to x. 

If  p>0, Pr(not halting by time n) → 0 as n→∞.

p 1-p

p

p

p

1-p

1-p

x

p 1-p

p

p

p

1-p

1-p

Reason about expectations too!

E[Z] = ∑x Pr(x) Z(x).

E[Z|A] = ∑x∈ A Pr(x|A) Z(x).  
I.e., it is as if  we started the game at A.

Suppose A is a node
in this tree

Pr(x|A)=product of  edges 
on path from A to x.

A

Expected number of heads

p 1-p

p

p

p

1-p

1-p

E[Z] = E[Z|A] × Pr(A) + E[Z|¬A] × Pr(¬A)

Let Z = # flips until heads

A = event “1st flip is heads”

Solving:  p × E[Z] = p + (1-p)

⇒ E[Z] = 1/p.

= 1 × p

A A¬

+  (1 + E[Z]) × (1-p).
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Geom(p) random variable

Z = Number of  flips with bias-p coin 
until you see a heads

E[Z] = 1/p

For unbiased coin (p = ½), 
expected value = 2 flips

Infinite Probability spaces

Notice we are using infinite probability spaces 
here, but we really only defined things for finite
spaces so far.

Infinite probability spaces can 
sometimes be weird. 

Luckily, in CS we will almost always be 
looking at spaces that can be viewed as 
choice trees where 
Pr(haven’t halted by time t) → 0 as t→∞.

A definition for infinite spaces

Let sample space S be 
leaves of  a choice tree.

p 1-p

p

p

p

1-p

1-p

Let Sn = {leaves at depth ≤ n}.

For event A, let An = A∩ Sn.

If  limn→∞Pr(Sn)=1, can define:

Pr(A)=limn→∞Pr(An).

Setting that doesn’t fit our model

Event: “Flip coin until #heads > 2 × #tails.”

There’s a reasonable chance 
this will never stop... 

Random Walks:

or, how to walk 
home drunk

No new

ideas

Solve HW

problem

Eat

Wait

Work

Work

0.3

0.30.4
0.990.01

probability

Hungry

Abstraction of  Student Life
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Abstraction of  Student Life

Like finite automata, but 
instead of  a determinisic 
or non-deterministic 
action, we have a 
probabilistic action

Example questions: “What is the probability of  
reaching goal on string Work,Eat,Work?”

No new

ideas

Solve HW

problem

Eat

Wait

Work

Work

0.3

0.30.4
0.990.01

Hungry

-

Simpler:
Random Walks on Graphs

At any node, go to one of  the neighbors of  
the node with equal probability

-

Simpler:
Random Walks on Graphs

At any node, go to one of  the neighbors of  
the node with equal probability

-

Simpler:
Random Walks on Graphs

At any node, go to one of  the neighbors of  
the node with equal probability

-

Simpler:
Random Walks on Graphs

At any node, go to one of  the neighbors of  
the node with equal probability

-

Simpler:
Random Walks on Graphs

At any node, go to one of  the neighbors of  
the node with equal probability
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0 n

k

Random Walk on a Line
You go into a casino with $k, and at each time 
step, you bet $1 on a fair game

You leave when you are broke or have $n

0 n

k

Random Walk on a Line

Question 1: what is your expected 
amount of  money at time t?

Let Xt be a R.V. for the amount of  $$$ at time t

But Xt = k + δ1 + δ2 + ... + δt,

So, E[Xt] = k

E[δi] = 0 (it’s a fair game)

Let δi be RV for change in money at time i

Random Walk on a Line
Question 2: what is the probability that you 
leave with $n?

E[Xt] = k

E[Xt] = E[Xt| Xt = 0] × Pr(Xt = 0) 

+ E[Xt | Xt = n] × Pr(Xt = n) 

+ E[ Xt | neither] × Pr(neither)

As t →∞, Pr(neither) → 0, also somethingt < n

Hence Pr(Xt = n) → k/n

k = n × Pr(Xt = n) 

+ (somethingt) × Pr(neither)

Question 2: what is the probability that you 
leave with $n?

0 n

k

= probability that I hit green before I hit red

Another way to see it

-

What is chance I reach green before red?

Random Walks and 
Electrical Networks

Same as voltage if  edges are resistors and 
we put 1-volt battery between green and red

-

Random Walks and 
Electrical Networks

Same as equations for voltage if  edges all 
have same resistance!

px = Pr(reach green first starting from x)

pgreen= 1, pred = 0

And for the rest px = Averagey ∈ Nbr(x)(py)
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Another way to see it
Question 2: what is the probability that you 
leave with $n?

0 n

k

= probability that I hit green before I hit red

voltage(k) = k/n 
= Pr[ hitting n before 0 starting at k] !!!

Getting Back Home

-

Lost in a city, you want to get back to your hotel

How should you do this?

Requires a good memory and a piece of  chalk

Depth First Search!

Getting Back Home

-

How about walking randomly?

Will this work?

When will I get home?

Is Pr[ reach home ] = 1?

What is 
E[ time to reach home ]?

Pr[ will reach home ] = 1
We Will Eventually Get Home

Look at the first n steps

There is a non-zero chance p1 that we get home

In fact, p1 ≥ (1/n)
n

Suppose we don’t reach home in first n steps

Then, wherever we are, there is a chance p2
≥ (1/n)n that we hit home in the next n steps 
from there

Probability of  failing to reach home by time kn

= (1 – p1)(1 – p2) … (1 – pk)→ 0 as k → ∞
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Getting out of mazes

E[ time to reach home ] is at 

most this

Theorem:

If  the graph has 
n nodes and m edges, then

E[ time to visit all nodes ] 
≤ 2m × (n-1)

We will 
not  prove 
this theorem

today

In a 2-d maze with n intersections, at most 4n(n-1) time

Actually, we get home 

pretty fast…

Chance that we don’t hit home by 

(2k)2m(n-1) steps is (½)k

Even if  we know the fact 
on the previous slide, 

how does one prove this?

A Simple Calculation

If  the average income of  people is $100 then 

more than 50% of  the people can be
earning more than $200 each

False! else the average would be higher!!!

True or False:

Andrei A. Markov

Markov’s Inequality

If  X is a non-negative r.v. with mean E[X], then 

Pr[ X > 2 E[X] ]   ≤  ½

Pr[ X > k E[X] ]   ≤  1/k

(since X is non-neg)

Markov’s Inequality
Non-neg random variable X has expectation 
µ = E[X]

µ = E[X] = E[X | X > 2µ ] Pr[X > 2µ]

+ E[X | X ≤ 2µ ] Pr[X ≤ 2µ]

≥ E[X | X > 2µ ] Pr[X > 2µ]

Also, E[X | X > 2µ] > 2µ

⇒ µ ≥ 2µ × Pr[X > 2µ]

Pr[ X > k × expectation ] ≤ 1/k

⇒½ ≥ Pr[X > 2µ]
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Actually, we get home 

pretty fast…

Chance that we don’t hit home by 

(2k)2m(n-1) steps is (½)k

Let’s prove this now…

Recall: 

If  the graph has 
n nodes and m edges, then

E[ time to visit all nodes ] 
≤ 2m × (n-1)

call this value T

An Averaging Argument

Suppose I start at u

E[ time to hit all vertices | start at u ] ≤ T

Hence, by Markov’s Inequality:

Pr[ time to hit all vertices > 2T | start at u ]  ≤ ½

So Let’s Walk Some Mo!

Pr [ time to hit all vertices > 2T | start at u ] ≤ ½

Suppose at time 2T, I’m at some node with 
more nodes still to visit

Pr [ haven’t hit all vertices in 2T more time     

| start at v ] ≤ ½

Chance that you failed both times ≤ ¼ = (½)2

Hence,

Pr[ havent hit everyone in time k × 2T ] ≤ (½)k

Hence, if we know that

Expected Cover Time

C(G) < 2m(n-1)

then

Pr[ home by time 4k m(n-1) ] 
≥ 1 – (½)k

Here’s What 
You Need to 
Know…

Conditional expectation

Flipping coins with bias p

Expected number of  flips 
before a heads

Random Walk on a Line

Cover Time of  a Graph

Markov’s Inequality


