15-251

Great Theoretical Ideas in Computer Science

Polynomials, Lagrange, and Error-correction

Q: suppose P(x) has a rational root (a/b) over the rationals. Is $P(ab^{-1}) = 0$ over Z_n ?

(Let's assume both a, b in Z_p)

E.g., suppose
$$P(x) = 6x^2 - x - 1$$

= $(2x - 1)(3x + 1)$.

Roots are 1/2, -1/3.

Roots over Z_{11} are $2^{-1} = 6$, $-3^{-1} = -4 = 7$

Q: P(x) has no root over the rationals. Does it have roots when working over Z_n ?

Consider $P(x) = x^2 + 2x + 2$.

Over the reals, its roots are irrational.

Over Z_5 , this is the same as $x^2 - 3x + 2$, which has roots 1,2 (both in \mathbb{Z}_5)

The Single Most Important **Theorem About Polynomials**

A non-zero degree-d polynomial P(x) has at most d roots.

This fact has many applications...

Theorem:

Given pairs $(a_1, b_1), ..., (a_{d+1}, b_{d+1})$ of values

there is at most one

degree-d polynomial P(x) such that:

 $P(a_k) = b_k$ for all k

when we say "degree-d", we mean degree at most d ອອນ "degree-d", w degree at most d.

we'll always assume $a_i \neq a_k$ for $i \neq k$

Theorem:

Given pairs $(a_1, b_1), ..., (a_{d+1}, b_{d+1})$ of values there is at most one degree-d polynomial P(x)such that: $P(a_k) = b_k$ for all k

> do there exist d+1 pairs for which there are 'no such polynomials??

Revised Theorem:

Given pairs $(a_1, b_1), ..., (a_{d+1}, b_{d+1})$ of values there is <u>exactly one</u>

degree-d polynomial P(x)

such that: $P(a_k) = b_k$ for all k

The algorithm to construct P(x) is called Lagrange Interpolation

Two different representations

 $P(x) = c_d x^d + c_{d-1} x^{d-1} + ... + c_1 x^1 + c_0$ can be represented either by

- a) its d+1 coefficients $c_{d},\,c_{d\text{--}1},\,...,\,c_{2},\,c_{1},\,c_{0}$
- b) Its value at any d+1 points $P(a_1), P(a_2), ..., P(a_d), P(a_{d+1}) \\$ (e.g., P(1), P(2), ..., P(d+1).)

Converting Between The Two Representations

Coefficients to Evaluation:

Evaluate P(x) at d+1 points

Evaluation to Coefficients:

Use Lagrange Interpolation

Now for some Lagrange Interpolation

Given pairs $(a_1, b_1), ..., (a_{d+1}, b_{d+1})$ of values there is <u>exactly one</u> degree-d polynomial P(x) such that: $P(a_k) = b_k$ for all k

Special case

What if the points were like:

 $(a_1, 1)$

 $(a_2, 0)$

 $(a_3, 0)$

•••

 $(a_{d+1}, 0)$

Special case

Suppose we can get degree-d poly $h_1(x)$:

$$h_1(a_1) = 1$$

$$h_1(a_t) = 0$$
 for all $t = 2,...,d+1$

"switch" polynomial #1

Special case

Suppose we can get degree-d poly $h_1(x)$:

$$h_1(a_1) = 1$$

$$h_1(a_t) = 0$$
 for all $t = 2,...,d+1$

Then we can get degree-d poly $H_1(x)$:

$$H_1(a_1) = b_1$$

$$H_1(a_t) = 0$$
 for all $t = 2,...,d+1$

Just set $H_1(x) = b_1 * h_1(x)$

Special case

Suppose we can get degree-d poly $h_1(x)$:

$$h_1(a_1) = 1$$

$$h_1(a_t) = 0$$
 for all $t = 2,...,d+1$

Using same idea, get degree-d poly $H_k(x)$:

$$H_k(a_k) = b_k$$

$$H_k(a_t) = 0$$
 for all $t \neq k$

Finally, $P(x) = \sum_{k} H_{k}(x)$

Hence, all we need to do

Given numbers $a_1, a_2, ..., a_{d+1}$

Build a degree-d "switch" poly $h_1(x)$:

$$h_1(a_1) = 1$$

 $h_1(a_t) = 0$ for all t = 2,...,d+1

construction by example

want a quadratic h with h(3) = 1, h(1)=0, h(6)=0

(say, in Z₁₁[x])

Let's first get the roots in place:

$$h(x) = (x-1)(x-6)$$

Are we done? No! We wanted h(3) = 1

But h(3) = (3-1)(3-6) = -6

So let's fix that!

$$h(x) = (-6)^{-1} (x-1)(x-6)$$

$$= 9 (x-1)(x-6)$$

9 * (-6) =₁₁ 1 done!

formally, the constructions

k-th "Switch" polynomial

$$g_k(x) = (x-a_1)(x-a_2)...(x-a_{k-1})(x-a_{k+1})...(x-a_{d+1})$$

Degree of $g_k(x)$ is: d

 $g_k(x)$ has d roots: $a_1,...,a_{k-1},a_{k+1},...,a_{d+1}$

$$g_k(a_k) = (a_k - a_1)(a_k - a_2)...(a_k - a_{k-1})(a_k - a_{k+1})...(a_k - a_{d+1})$$

For all $i \neq k$, $g_k(a_i) = 0$

k-th "Switch" polynomial

$$g_k(x) = (x-a_1)(x-a_2)...(x-a_{k-1})(x-a_{k+1})...(x-a_{d+1})$$

$$h_k(x) = \frac{(x-a_1)(x-a_2)...(x-a_{k-1})(x-a_{k+1})...(x-a_{d+1})}{(a_k-a_1)(a_k-a_2)...(a_k-a_{k-1})(a_k-a_{k+1})...(a_k-a_{d+1})}$$

$$h_k(a_k) = 1$$

For all $i \neq k$, $h_k(a_i) = 0$

The Lagrange Polynomial

$$h_k(x) = \frac{(x-a_1)(x-a_2)...(x-a_{k-1})(x-a_{k+1})...(x-a_{d+1})}{(a_k-a_1)(a_k-a_2)...(a_k-a_{k-1})(a_k-a_{k+1})...(a_k-a_{d+1})}$$

$$P(x) = b_1 h_1(x) + b_2 h_2(x) + ... + b_{d+1} h_{d+1}(x)$$

P(x) is the <u>unique</u> polynomial of degree d such that $P(a_1) = b_1$, $P(a_2) = b_2$, ..., $P(a_{d+1}) = b_{d+1}$

Example

Input: (5,1), (6,2), (7,9)

Want quadratic in Z₁₁[x]

Switch polynomials:

 $h_1(x) = (x-6)(x-7)/(5-6)(5-7) = \frac{1}{2}(x-6)(x-7)$

 $h_2(x) = (x-5)(x-7)/(6-5)(6-7) = -(x-5)(x-7)$

 $h_3(x) = (x-5)(x-6)/(7-5)(7-6) = \frac{1}{2}(x-5)(x-6)$

$$P(x) = 1 \times h_1(x) + 2 \times h_2(x) + 9 \times h_3(x)$$

= (3x² - 32x + 86)
= (3x² + x + 9) in Z₁₁[x]

the Chinese Remainder Theorem uses very similar ideas in its proof

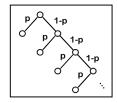
Revised Theorem:

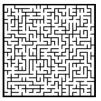
Given pairs $(a_1, b_1), ..., (a_{d+1}, b_{d+1})$ of values there is <u>exactly one</u> degree-d polynomial P(x) such that: $P(a_k) = b_k$ for all k

The algorithm to construct P(x) is called Lagrange Interpolation

Example $f(x) = x^4 + 5x^3 + 12x^2 + 12x + 15, \qquad (1)$ $f(0) \bmod 29 \qquad 15 \qquad (2)$ $f(1) \bmod 29 \qquad 23 \qquad (3)$ $f(2) \bmod 29 \qquad 23 \qquad (4)$ $f(3) \bmod 29 \qquad 14 \qquad (5)$ $f(4) \bmod 29 \qquad 13 \qquad (9)$ $f(3) \bmod 29 \qquad 14 \qquad (5)$ $f(4) \bmod 29 \qquad 15 \qquad (9)$ $f(3) \bmod 29 \qquad 16 \qquad (9)$ $f(3) \bmod 29 \qquad 17 \qquad (9)$ $f(4) \bmod 29 \qquad 18 \qquad (9)$ $f(5) \bmod 29 \qquad 19 \qquad (9)$ Curve Fitting [Polynomial inherpolation] ([[0, 15], [1, 23], [4, 13], [5, 26], [6, 19]], x, form = Lagrange). $\frac{1}{8}(x - 1)(x - 4)(x - 5)(x - 6) - \frac{23}{60}x(x - 4)(x - 5)(x - 6) + \frac{13}{24}x(x - 1)(x - 5)(x - 6) - \frac{13}{10}x(x \qquad (9)$ $-1)(x - 4)(x - 6) + \frac{19}{60}x(x - 1)(x - 4)(x - 5)$ $g = eval(asparad(56) \bmod 29)$ $3x^4 + 5x^3 + 12x^2 + 12x + 15 \qquad (III)$

Lecture 17 (October 19, 2010)





Probability Refresher

What's a Random Variable?

A Random Variable is a real-valued function on a sample space S

E[X+Y] = E[X] + E[Y]

Probability Refresher

What does this mean: E[X | A]?

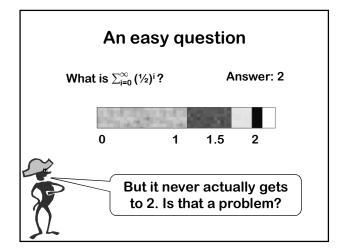
Is this true:

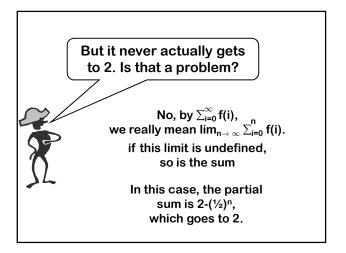
 $Pr[A] = Pr[A|B] Pr[B] + Pr[A|\overline{B}] Pr[\overline{B}]$

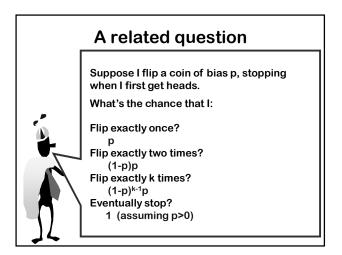
Yes!

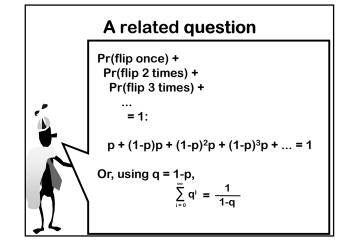
Similarly:

 $E[X] = E[X|A]Pr[A] + E[X|\overline{A}]Pr[\overline{A}]$

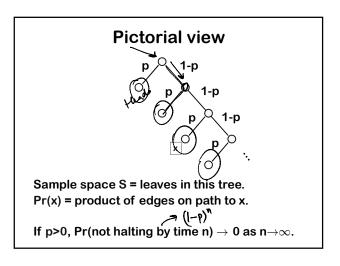


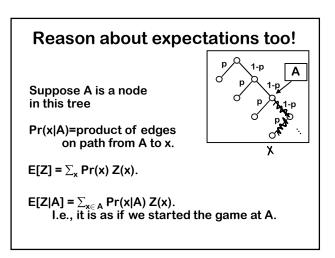


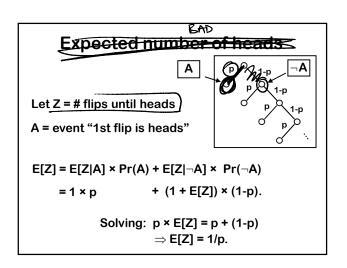




Geometric Random Variable Flip bias-p coin until you see heads. Let r.v. Z = number of flips until heads What is E[Z]?







Geom(p) random variable

Z = Number of flips with bias-p coin until you see a heads

E[Z] = 1/p

For unbiased coin (p = $\frac{1}{2}$), expected value = 2 flips

Infinite Probability spaces

Notice we are using infinite probability spaces here, but we really only defined things for <u>finite</u> spaces so far.

Infinite probability spaces can sometimes be weird.

Luckily, in CS we will almost always be looking at spaces that can be viewed as choice trees where

Pr(haven't halted by time t) \rightarrow 0 as $t\rightarrow\infty$.

A definition for infinite spaces

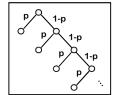
Let sample space S be leaves of a choice tree.

Let $S_n = \{ leaves at depth \le n \}.$

For event A, let $A_n = A \cap S_n$.

If $\lim_{n\to\infty} Pr(S_n)=1$, can define:

 $Pr(A)=\lim_{n\to\infty}Pr(A_n).$

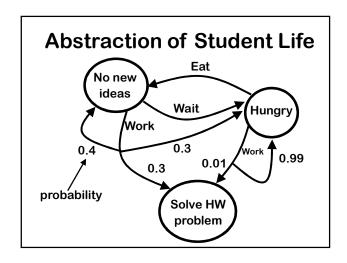


Setting that doesn't fit our model

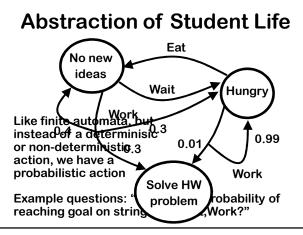
Event: "Flip coin until #heads > 2 × #tails."

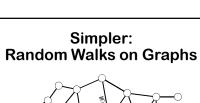
There's a reasonable chance this will <u>never</u> stop...

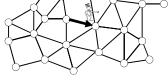
Random Walks: or, how to walk home drunk



Abstraction of Student Life Eat No new ideas Wait Hungry Like finite automata, but instead of a deterministic 3 or non-deterministic 3 0.99 0.01 action, we have a probabilistic action Work Solve HW Example questions: ' robability of problem reaching goal on string







At any node, go to one of the neighbors of the node with equal probability

Simpler: **Random Walks on Graphs**

At any node, go to one of the neighbors of the node with equal probability

Simpler: Random Walks on Graphs

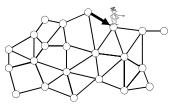


At any node, go to one of the neighbors of the node with equal probability

Simpler: Random Walks on Graphs

At any node, go to one of the neighbors of the node with equal probability

Simpler: **Random Walks on Graphs**

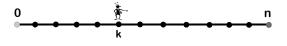


At any node, go to one of the neighbors of the node with equal probability

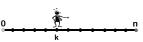
Random Walk on a Line

You go into a casino with \$k, and at each time step, you bet \$1 on a fair game

You leave when you are broke or have \$n



Random Walk on a Line



Question 1: what is your expected amount of money at time t?

Let X_t be a R.V. for the amount of \$\$\$ at time t Let δ_i be RV for <u>change</u> in money at time i

$$E[\delta_i] = 0$$
 (it's a fair game)

But
$$X_t = k + \delta_1 + \delta_2 + ... + \delta_t$$
,

So,
$$E[X_t] = k$$

Random Walk on a Line

Question 2: what is the probability that you leave with \$n?

$$E[X_t] = k$$

+
$$E[X_t | X_t = n] \times Pr(X_t = n)$$

+ $E[X_t | neither] \times Pr(neither)$

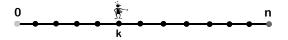
$$k = n \times Pr(X_t = n)$$

+ (something,) × Pr(neither)

As $t \to \infty$, Pr(neither) $\to 0$, also something, < nHence $Pr(X_t = n) \rightarrow k/n$

Another way to see it

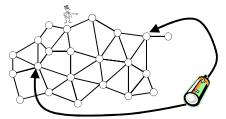
Question 2: what is the probability that you leave with \$n?



= probability that I hit green before I hit red

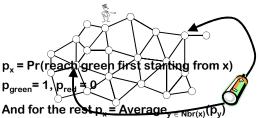
Random Walks and **Electrical Networks**

What is chance I reach green before red?



Same as voltage if edges are resistors and we put 1-volt battery between green and red

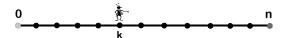
Random Walks and **Electrical Networks**



Same as equations for voltage if edges all have same resistance!

Another way to see it

Question 2: what is the probability that you leave with \$n?



= probability that I hit green before I hit red

voltage(k) = k/n

= Pr[hitting n before 0 starting at k] !!!

Getting Back Home

Lost in a city, you want to get back to your hotel How should you do this?

Depth First Search!

Requires a good memory and a piece of chalk

Getting Back Home

How about walking randomly?

Will this work?

Is Pr[reach home] = 1?

When will I get home?

What is E[time to reach home]?

We Will Eventually Get Home

Look at the first n steps

There is a non-zero chance p₁ that we get home

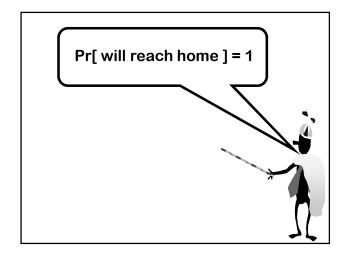
In fact, $p_1 \ge (1/n)^n$

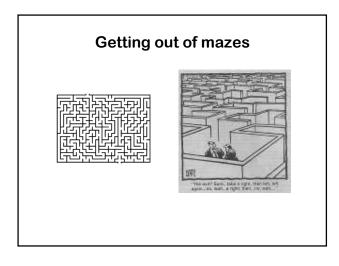
Suppose we don't reach home in first n steps

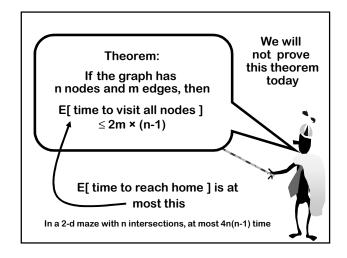
Then, wherever we are, there is a chance $p_2 \ge (1/n)^n$ that we hit home in the next n steps from there

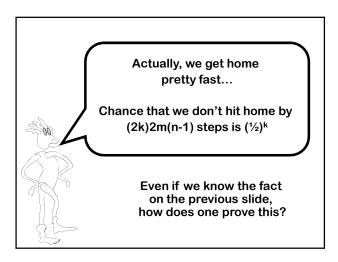
Probability of failing to reach home by time kn

=
$$(1 - p_1)(1 - p_2) \dots (1 - p_k) \rightarrow 0$$
 as $k \rightarrow \infty$









A Simple Calculation

True or False:

If the average income of people is \$100 then more than 50% of the people can be earning more than \$200 each

False! else the average would be higher!!!

Markov's Inequality

If X is a non-negative r.v. with mean E[X], then

 $Pr[X > 2 E[X]] \le \frac{1}{2}$

 $Pr[X > k E[X]] \leq 1/k$

Markov's Inequality

Non-neg random variable X has expectation μ = E[X]

 $\mu = E[X] = E[X \mid X > 2\mu] Pr[X > 2\mu] + E[X \mid X \le 2\mu] Pr[X \le 2\mu]$

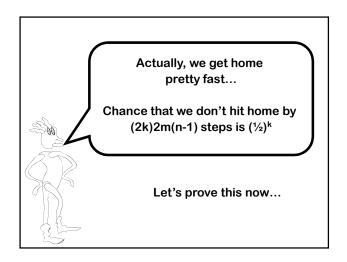
 \geq E[X | X > 2 μ] Pr[X > 2 μ] (since X is non-neg)

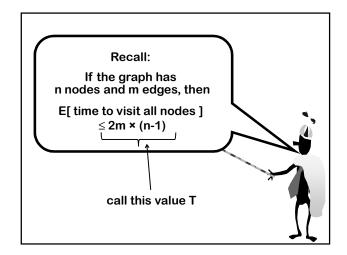
Also, E[X | X > 2μ] > 2μ

 $\Rightarrow \mu \ge 2\mu \times Pr[X > 2\mu]$

 $\Rightarrow 1/\!\!\!\!/_2 \geq \text{Pr[X > 2}\mu]$

 $Pr[X > k \times expectation] \le 1/k$





An Averaging Argument

Suppose I start at u

E[time to hit all vertices | start at u] $\leq T$

Hence, by Markov's Inequality: Pr[time to hit all vertices > 2T | start at u] $\leq \frac{1}{2}$

So Let's Walk Some Mo!

Pr [time to hit all vertices > 2T | start at u] $\leq \frac{1}{2}$

Suppose at time 2T, I'm at some node with more nodes still to visit

Pr [haven't hit all vertices in 2T \underline{more} time | start at v] $\leq \frac{1}{2}$

Chance that you failed both times $\leq \frac{1}{4} = (\frac{1}{2})^2$

Hence,

Pr[havent hit everyone in time k × 2T] $\leq (\frac{1}{2})^k$

