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Algebraic Structures Il:

1 5_251 Rings and Fields

and Polynomials
Great Theoretical ldeas
in Computer Science

Lecture 16 (October 14, 2010)

%
Permutations
A permutation of a set X is a bijectiona : X > X
We denote the set of all permutations of
MONE X={1,2,...,n} by S,
Few things about group theory IS, | = n!
/\ n
Notation:
12345
o= [4 321 5] means o(1)=2, a(2)=3, ..., o(5)=5
Composition Groups
Define the operation “¢” on S, to mean the A group G is a pair (S, +), where S is a set
composition of two permutations and ¢ is a binary operation on S such that:
As shorthand, we will write oef} as off 1. ¢ is associative
To compute aof, first apply p and then o: 2. (Identity) There exists an element
aB(i) = olB(i)) e € S such that:

123 123 1 This eesa=aee=a, forallae S
[1 3 2] [2 3 1] = [3@ ’ peit;:::;a;?n 3. (Inverses) For every a € S there is

beSsuchthat: aeb=bea=e
123 123
321 231

123 If ¢ is commutative, then G is called a
213 commutative group
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(S, ®) is a Group

Is e associative on S,? YES!
Is there an identity? YES: The identity function

123...n
123...n
Does every element have an inverse? YES!
-1
12345 _ |12345
51423 24531

Is the group commutative? No! (for n > 2)

Cycles

Letiy, iy, ..., i, be distinct integers between

and n. Define (i, i, ... i;) to be the permutation

a that fixes the remaining n-r integers and
for which:

a(ig)= i, aliz)= s, ...y irg)= i 0fi)= iy

pzsa= 1234 (L383)

12345
(15342)= [51423]

1

53 Yevamplss~ (13210

[12345

R
(152)(243)= 544 32] -;(IEZ%S)

—

nzaneo=[3533¢]

"

Two cycles are disjoint if every x moved by
one is fixed by the other

(i4iy...1.) is called a
cycle or an r-cycle

Express o as the product of disjoint cycles

A 2
¢ O\\O\N(, o\\O\N

123456789
a=|v vyl
641/2\63897

= (1 6 3)(2 4)(5)(7 8 9)

Theorem: Every permutation can be uniquely
factored into the product of disjoint cycles

Express 3 as the product of disjoint cycles

123456789
732461895

=
|

(178956)(23)(4)
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Now for the new stuff...

Rings

We often define more than one operation
on a set

For example, in Z, we can do both
addition and multiplication modulo n

Aring is a set together with two operations

Definition:

Aring R is a set together with two binary
operations + and x, satisfying the following
properties:

1. (R,+) is a commutative group

2 xi iati Minimal requirements
. X |s associative €——— from “product”

3. The distributive laws hold in R:
(atb)xc=(axc)+(bxc)
cx(a+b)=(cxa)+(cxb)

Examples:

Is (Z, +,*) aring?
(Z,+) is commutative group

Yes. * is associative
+ distributes over *

Is (Z, +, min) a ring?
(Z,+) is commutative group
No min is associative
but + does not distribute over min
min(1+3,2) # min(1,2) + min(3,2)

Examples:

(Set of m*n Z-valued matrices, +, *)?
w=WNn_
It is commutative group with respect to +

Yes. * js associative
+ distributes over *

(Set of polynomials with real coefficients,+,*)?

It is commutative group with respect to +
Yes. *is associative
+ distributes over *

Ring
Unit Ring
(mult. identity)

Commutative
Ring

... . (mult. is commutative)
Division Ring

(mult. identity,
mult. inverse)

Field

(mult. identity,

mult. inverse,

mult. is commutative)
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Fields

Definition:

Afield F is a set together with two binary
operations + and x, satisfying the following
properties:

1. (F,+) is a commutative group
2. (F-{0},x) is a commutative group

3. The distributive law holds in F:
(a+b)xc=(axc)+(bxc)

Examples:
Is (Z, +, *) a field?

No. (Z,*) not a group

How about (R, +, ¥)?

Yes.

How about (Z,, +,, *,)?
Only when n is prime.
(Z,, ™) is a group
only for prime n.

Polynomials, Lagrange,
and Error-correction

Polynomials in one variable over
the reals

P(x)=3x2+7x-2
Q(x)=x128-1%x25+19x3-1
R(y) =2y ++2
S(z)=2%2-2z-1

T(x)=0

W(x)=n

Representing a polynomial

A degree-d polynomial is represented by its (d+1)
coefficients:
P(x)=cygxd+cyq xd1+ ... +cyx! +¢q

The d+1 numbers ¢y, ¢4 4, ..., Cg are coefficients.

E.g. P(x) =3x*-7x2+12x-19

Coefficients are: 3 D & n_\ T
( / !

Are we working over the reals?

We could work over any field
(set with addition, multiplication, division defined.)

E.g., we could work with the rationals, or the reals.

Or with (Z,,,+,%), the integers mod prime p.

In this lecture, we will work with zZ,
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the field (Z,, +,, *,)

(Zp= {0) 15 25 seey p'1}5 +)
is a commutative group .
(2, ={1,2,3, ..., p-1}=2,\ {0}, *) (Zps *p )
is also a commutative group
is a field

Addition distributes over multiplication.

Let Z,[x] denote the set of polynomials with
variable x and coefficients from Z,

Multiplying Polynomials
(say from Z,,[x])
(x2+2x-1)(3x3+7x)

= x2(3x2 + 7x) + 2x(3x2 + 7x) — (3x3 + 7x)

= 3x5 4 3 2 _
3x° + 6x* + 4x3 + 14x 7XA o
M’*\\

= 3x5 + 6x* + 4x3 + 3x2 + 4x

Adding, Multiplying Polynomials

Let P(x), Q(x) be two polynomials.

The sum P(x)+Q(x) is also a polynomial.
(i.e., polynomials are “closed under addition”)

Their product P(x)Q(x) is also a polynomial.
(“closed under multiplication”)

P(x)/Q(x) is not necessarily a polynomial.

Z,[x] is a commutative ring
with identity

Let P(x), Q(x) be two polynomials.
The sum P(x)+Q(x) is also a polynomial.
(i.e., polynomials are “closed under addition”)

Addition is associative

0 (the “zero” polynomial) is the additive identity
-P(x) is the additive inverse of P(x)

Also, addition is commutative

(Z,[x], *) is a commutative group

Z,[x] is a commutative ring
with identity

Let P(x), Q(x) be two polynomials.
The sum P(x)*Q(x) is also a polynomial.
(i.e., polynomials are “closed under multiplication”)

Multiplication is associative

1 (the “unit” polynomial) is the multiplicative identity
Multiplication is commutative

Finally, addition distributes over multiplication

(Z,[x], +, *) is a commutative ring with identity
(mult. inverses may not exist)

Evaluating a polynomial

Suppose:
P(x)=cygxd+cCyq x4+ ... +c,x! +¢

E.g. P(x) =3x*-7x2+12x-19
P(5) =3x5%— 7x52+12x5-19
P(-1) =3x(-1)4— 7x(-1)2 + 12%(-1) - 19

P(0) =-19




The roots of a polynomial

Suppose:
P(X)=cygxd+cy x4+ . +c x! +¢

Definition: r is a “root” of P(x) if P(r) =0

E.g.,P(x)=3x+7 root =-(7/3).
P(x)=x2-2x+1 roots=1,1
P(x) =3x3-10x2+ 10x - 2 roots =1/3,1, 2.
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Linear Polynomials

P(x)=ax+b
Oneroot: P(x)=ax+b=0 = x=-bla

E.g.,P(x)=7x-9 inZ,4[x]
root = (- (-9)/7) =9 * 7A{-1}

=9*8=72

=6 (mod 11).

Check: P(6) =76 -9=42-9=33=0 (mod 11)

The Single Most Important
Theorem About
Low-degree Polynomials

A non-zero @degree-d
polynomial P(x) has
at most d roots.

This fact has many applications...

An application: Theorem

Given pairs (a,, b,), ..., (2444, bgsq) Of values
there is at most one
degree-d polynomial P(x)
such that:
, X)  P(a,) = by for all k

S A
when we say “degree-d”, we mean
Uo | ree at most d.

we’ll always assume a; = a, for i = k

An application: Theorem

Given pairs (a, by), ..., (@44, bgsq) Of values
there is at most one
degree-d polynomial P(x)
such that:
P(a,) = b, for all k

Let’s prove the contrapositive

Assume P(x) and Q(x) have degree at most d
Suppose a,, ay, ..., a4, are d+1 points

such that P(a,) = Q(a,) for all k =1,2,...,d+1
Then P(x) = Q(x) for all values of x

Proof: Define R(x) = P(x) — Q(x)

R(x) has degree (at most) d

R(x) has d+1 roots, so it must be the zero
polynomial 0O
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Theorem:

Given pairs (a,, b,), ..., (a44¢, bgsq) Of values
there is at most one
degree-d polynomial P(x)
such that:
P(a,) = b, for all k

do there exist d+1 pairs
for which there are
no such polynomials??

Revised Theorem:

Given pairs (a,, b,), ..., (2444, bgsq) Of values
there is exactly one
degree-d polynomial P(x)
such that:
P(ay) = b, for all k

The algorithm to construct P(x)
is called Lagrange Interpolation

Two different representations

P(x)=cyxd+cy 4 x+1+...+c,x! +c,
can be represented either by

a) its d+1 coefficients
Cgs Cg-1s -+-» Cp, Cq, Co

b) Its value at any d+1 points
P(ay), P(ay), ..., P(ay), P(ag.1)
(e.g., P(1), P(2), ..., P(d+1).)

Converting Between The
Two Representations

Coefficients to Evaluation:

Evaluate P(x) at d+1 points

Evaluation to Coefficients:

Use Lagrange Interpolation

Revised Theorem:

Given pairs (a, by), ..., (@44, bgsq) Of values
there is exactly one
degree-d polynomial P(x)
such that:
P(a,) = b, for all k

The algorithm to construct P(x)
is called Lagrange Interpolation

An Application:

Error Correcting Codes
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Error Correcting Codes

Messages as sequences of numbers in Z,4:

HELLO 851212 15

| want to send a sequence of d+1 numbers

Suppose your mailer may corrupt any k
among all the numbers | send.

How should | send the numbers to you?

In Particular

Suppose | just send over the numbers

851212 15 say k=2 errors
and you get
89 0 12 15

How do you correct errors?

How do you even detect errors?

A Simpler Case: Erasures

Suppose | just send over the numbers

851212 15 say k=2 erasures
and you get
8* * 12 15

(Numbers are either correct or changed to *)

What can you do to correct errors?

A Simple Solution

Repetition: repeat each number k+1 times

888 555 121212 121212 151515

At least one copy of each number will reach
888 5** 121212 121212 151515

For arbitrary corruptions, repeat 2k+1 times
and take majority

Very wasteful!

To send d+1 numbers with erasures, we sent
(d+1)(k+1) numbers

Can we do better?

Note that to send 1 number with k erasures
we need to send k+1 numbers.

maybe for d numbers,
sending d+k+1 numbers suffices??

Think polynomials...
Encoding messages as polynomials:
HELLO 8 51212 15
8x4+5x3+12x2+12x+15 € Z,4[x]

| want to send you a polynomial P(x) of
degree d.
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Send it in the value representation!

Want to send a polynomial of degree-d
subject to at most k erasures.

Evaluate P(x) at d+1+k points

Send P(0), P(1), P(2), ..., P(d+k)

At least d+1 of these values will reach
Say P(0), *, P(2), %, ..., *, P(d+k)

Can recover P(x) from these d+1 values

Example

’fm:sx‘ +58 + 128 + 125+ 15,
x—=38

—gxt+ 50+ 128+ 122415

0]

Example

)= 85" + 50 + 120 + 12x+ 15, ]
=85+ 50 + 1224 12x+ 15 [y

/(0) mod 29
@

/(1) mod 29

/(2) mod 29
@

/(3) mod 29
©

/(4) mod 29
©

/(5) mod 29
/(6) mod 29
19 ®
CurveRitting| Polynomialinterpolation)( ([0, 15, [1, 231 [4, 13, [5, 26]. [, 19]), x, form = Lagrange );
1 23 13 13
- (k=)= TR — ) (x5 k=6 + ST xEx=D) =5 (x=6) - Tx(x @

g = eval(expand(%) mod 29)

sxt+ s+ 22+ 12x+15 a0

Much better!!!

Naive Repetition:

To send d+1 numbers with k erasures, we sent
(d+1)(k+1) numbers

Polynomial Coding:
To send d+1 numbers with k erasures, we sent

(d+k+1) numbers

What about corruptions?

Want to send a polynomial of degree-d
subject to at most k corruptions.

Similar ideas suffice,
see the supplementary material

This technique (encoding using polynomials)
is called Reed-Solomon coding...

It’s used in practice...

I T
s RINGER C4C

T AABE211211
(Q)QUANTITY: |

AL KAGE £ OUNT:

Ea 10F 1
Hll“”l |||H|H||‘ romerma 3 LBS
Gusr
1., il PRy
K ;

B
2524

Maxicodes
r—, = “UPS codes”
=another 2-d

Reed-Solomon codes

PDF417 codes
=2-d Reed-Solomon
codes
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Yy Polynomials
(.- 7 Fundamental Theorem of polys:
,,,)\;',/)B\ Degree-d poly has at most d roots.
& \Z’\‘\h Two deg-d polys agree on < d points.
"‘M Lagrange Interpolation:
= = Given d+1 pairs (a, b,), can find
W‘\ unique poly P with P(a,) = b,
; i : 1 for all these k.

Qi {5"]() i Gives us value represent’n for polys.

Here’s What Error Correction

You Need to  Erasure codes
Know... Detection and correction

10/15/2010

Supplementary Material

What about corruptions?

Want to send a polynomial of degree-d
subject to at most k corruptions.

Suppose we try the same idea

Evaluate P(x) at d+1+k points
Send P(0), P(1), P(2), ..., P(d+k)

At least d+1 of these values will be unchanged

Example

P(x)=2x2+1,and k=1.
So I sent P(0)=1, P(1)=3, P(2)=9, P(3)=19
Corrupted email says (1, 4,9, 19)

Choosing (1, 4, 9) will give us Q(x) = x2+ 2x + 1

But we can at least detect errors!
Evaluate P(x) at d+1+k points
Send P(0), P(1), P(2), ..., P(d+k)
At least d+1 of these values will be correct
Say P(0), P’(1) , P(2), P(3), P’(4), ..., P(d+k)
Using these d+1 correct values will give P(x)

Using any of the incorrect values will
give something else

Quick way of detecting errors

Interpolate first d+1 points to get Q(x)

Check that all other received values are
consistent with this polynomial Q(x)

If all values consistent, no errors!
In that case, we know Q(x) = P(x)

else there were errors...

10



Number of numbers?

Naive Repetition:
To send d+1 numbers with error detection,
sent (d+1)(k+1) numbers

Polynomial Coding:
To send d+1 numbers with error detection,
sent (d+k+1) numbers
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How about error correction?

requires more work

To send d+1 numbers in such a way
that we can correct up to k errors,
need to send d+1+2k numbers.

Similar encoding scheme

Evaluate degree-d P(x) at d+1+2k points
Send P(0), P(1), P(2), ..., P(d+2k)

At least d+1+k of these values will be correct
Say P(0), P(1) , P(2), P(3), P(4), ..., P(d+2k)

How do we know which are correct?

how do we do this fast?

Theorem: A unique degree-d polynomial R(x)
can agree with the received data on
at least d+1+k points

Clearly, the original polynomial P(x)
agrees with data on d+1+k points
(since at most k errors, total d+1+2k points)

And if two different degree-d polynomials did so,
they would have to agree with each other on
d+1 points, and hence be the same.

So any such R(x) = P(x)

Theorem: A unique degree-d polynomial R(x)
can agree with the received data on
at least d+1+k points

Brute-force Algorithm:
Interpolate each subset of (d+1) points

Check if the resulting polynomial agrees
with received data on d+1+k pts

Takes too much time...

A fast algorithm to decode was given
by Berlekamp and Welch
which solves a system of linear equations

Recent research has given very fast
encoding and decoding algorithms

BTW, this coding scheme is called
Reed-Solomon encoding

11



