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15-251
Great Theoretical Ideas 
in Computer Science

Algebraic Structures II:
Rings and Fields
and Polynomials
Lecture 16 (October 14, 2010)

X3 X2+ + X1 +P(X) = 

Few things about group theory

Permutations
A permutation of  a set X is a bijection α : X → X

1 2 3 4 5
4 3 2 1 5α = means α(1)=2, α(2)=3, …, α(5)=5

Notation:

We denote the set of  all permutations of  
X = {1,2,…,n} by Sn

|Sn | = n!

Define the operation “•” on Sn to mean the 
composition of  two permutations

As shorthand, we will write α•β as αβ

Composition

To compute αβ, first apply β and then α:
αβ(i) = α(β(i)) 

1 2 3
1 3 2

1 2 3
2 3 1 =

1 2 3
3 2 1

1 2 3
3 2 1

1 2 3
2 3 1

= 1 2 3
2 1 3

This 
permutation 
“fixes 2”

3. (Inverses) For every a ∈ S there is  
b ∈ S such that:

Groups
A group G is a pair (S,♦), where S is a set 
and ♦ is a binary operation on S such that:

1. ♦ is associative

2. (Identity) There exists an element 
e ∈ S such that:

e ♦ a = a ♦ e = a, for all a ∈ S

a ♦ b = b ♦ a = e

If  ♦ is commutative, then G is called a 
commutative group
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(Sn, •) is a Group
Is • associative on Sn? YES!

Is there an identity? YES: The identity function

Does every element have an inverse? YES!

1 2 3 … n
1 2 3 … n

1 2 3 4 5
5 1 4 2 3

-1
=

1 2 3 4 5
2 4 5 3 1

Is the group commutative? No! (for n > 2)

Cycles
Let i1, i2, …, ir be distinct integers between 1 
and n. Define (i1 i2… ir) to be the permutation 
α that fixes the remaining n-r integers and 
for which:

α(i1)= i2, α(i2)= i3, …, α(ir-1)= ir, α(ir)= i1

(1 2 3 4) = 1 2 3 4
2 3 4 1

(1 5 3 4 2) =
1 2 3 4 5
5 1 4 2 3

Examples

(1 5 2)(2 4 3) =
1 2 3 4 5
5 4 1 3 2

(1 2 3)(4 5) =
1 2 3 4 5
2 3 1 5 4

Two cycles are disjoint if  every x moved by 
one is fixed by the other

(i1 i2… ir) is called a 
cycle or an r-cycle

Express α as the product of  disjoint cycles

1  2  3  4  5  6  7  8  9

6  4  1  2  5  3  8  9  7
α =

= (1 6 3)
Theorem: Every permutation can be uniquely 
factored into the product of  disjoint cycles

(2 4)(5)(7 8 9)

Express β as the product of  disjoint cycles

1  2  3  4  5  6  7  8  9

7  3  2  4  6  1  8  9  5
β =

= (1 7 8 9 5 6)(2 3)(4)
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Now for the new stuff…

We often define more than one operation 
on a set

For example, in Zn we can do both
addition and multiplication modulo n

A ring is a set together with two operations

Rings

Definition:

A ring R is a set together with two binary 
operations + and ×, satisfying the following 
properties:

1. (R,+) is a commutative group

2. × is associative

3. The distributive laws hold in R:

(a + b) × c = (a × c) + (b × c)

c × (a + b) = (c × a) + (c × b)

Minimal requirements 
from “product”

Examples:

Is (Z, +, *) a ring?

Is (Z, +, min) a ring?

Yes.

(Z,+) is commutative group

min is associative

but + does not distribute over min

min(1+3,2) ≠min(1,2) + min(3,2)

(Z,+) is commutative group
* is associative
+ distributes over *

No

Examples:

(Set of  m*n Z-valued matrices, +, *)?

It is commutative group with respect to +

* is associative

+ distributes over *

Yes.

(Set of  polynomials with real coefficients,+,*)?

It is commutative group with respect to +

* is associative

+ distributes over *

Yes.

Ring

Unit Ring
(mult. identity)

Division Ring
(mult. identity, 
mult. inverse)

Commutative
Ring
(mult. is commutative)

Field
(mult. identity, 
mult. inverse,
mult. is commutative)
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Definition: 

A field F is a set together with two binary 
operations + and ×, satisfying the following 
properties:

1. (F,+) is a commutative group

2. (F-{0},×) is a commutative group

3. The distributive law holds in F:

(a + b) × c = (a × c) + (b × c)

Fields
Examples:
Is (Z, +, *) a field?

How about (R, +, *)?

How about (Zn, +n, *n)?

No. (Z,*) not a group

Yes.

Only when n is prime.
(Zn, *n) is a group
only for prime n.

Polynomials, Lagrange, 
and Error-correction

Polynomials in one variable over 
the reals

P(x) = 3 x2 + 7 x – 2

Q(x) = x123 – ½ x25 + 19 x3 – 1

R(y) = 2y + √2

S(z) = z2 – z - 1

T(x) = 0

W(x) = π

Representing a polynomial

A degree-d polynomial is represented by its (d+1)
coefficients:

P(x) = cd x
d + cd-1 x

d-1 + … + c1 x
1 + c0

The d+1 numbers cd, cd-1, …, c0 are coefficients.

E.g.  P(x) = 3x4 – 7x2 + 12x – 19

Coefficients are:

Are we working over the reals?

We could work over any field
(set with addition, multiplication, division defined.)

E.g., we could work with the rationals, or the reals.

Or with (Zp,+,*), the integers mod prime p.

In this lecture, we will work with Zp
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the field (Zp, +p, *p)

(Zp = {0, 1, 2, …, p-1}, +)
is a commutative group

(Zp
* = {1, 2, 3, …, p-1} = Zp \ {0}, *)
is also a commutative group

Addition distributes over multiplication.

Let Zp[x] denote the set of polynomials with 
variable x and coefficients from Zp

(Zp, +p, *p)

is a field

Multiplying Polynomials

(x2+2x-1)(3x3+7x) 

= x2(3x2 + 7x) + 2x(3x2 + 7x) – (3x3 + 7x)

= 3x5 + 6x4 + 4x3 + 14x2 – 7x

(say from Z11[x])

= 3x5 + 6x4 + 4x3 + 3x2 + 4x

Adding, Multiplying Polynomials

Let P(x), Q(x) be two polynomials.

The sum P(x)+Q(x) is also a polynomial.

(i.e., polynomials are “closed under addition”)

Their product P(x)Q(x) is also a polynomial.

(“closed under multiplication”)

P(x)/Q(x) is not necessarily a polynomial.

Zp[x] is a commutative ring 
with identity

Let P(x), Q(x) be two polynomials.

The sum P(x)+Q(x) is also a polynomial.

(i.e., polynomials are “closed under addition”)

Addition is associative

0 (the “zero” polynomial) is the additive identity

-P(x) is the additive inverse of P(x)

Also, addition is commutative

(Zp[x], +) is a commutative group

Zp[x] is a commutative ring 
with identity

Let P(x), Q(x) be two polynomials.

The sum P(x)*Q(x) is also a polynomial.

(i.e., polynomials are “closed under multiplication”)

Multiplication is associative

1 (the “unit” polynomial) is the multiplicative identity

Multiplication is commutative

Finally, addition distributes over multiplication

(Zp[x], +, *) is a commutative ring with identity
(mult. inverses may not exist)

Evaluating a polynomial

Suppose:

P(x) = cd xd + cd-1 xd-1 + … + c1 x1 + c0

E.g.  P(x) = 3x4 – 7x2 + 12x – 19

P(5) = 3×54 – 7×52 + 12×5 – 19

P(-1) = 3×(-1)4 – 7×(-1)2 + 12×(-1) – 19

P(0) = -19
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The roots of a polynomial

Suppose:

P(x) = cd xd + cd-1 xd-1 + … + c1 x1 + c0

Definition: r is a “root” of P(x) if P(r) = 0

E.g., P(x) = 3x + 7 root = -(7/3).

P(x) = x2 – 2x + 1 roots = 1, 1

P(x) = 3x3 -10x2 + 10x – 2 roots = 1/3, 1, 2. 

Linear Polynomials

P(x) = ax + b

One root: P(x) = ax + b = 0 ⇒ x = -b/a

E.g., P(x) = 7x – 9 in Z11[x]

root = (- (-9)/7) = 9 * 7^{-1} 

= 9 * 8 = 72

= 6 (mod 11).

Check: P(6) = 7*6 – 9 = 42 – 9 = 33 = 0 (mod 11)

The Single Most Important 
Theorem About 

Low-degree Polynomials

A non-zero degree-d 
polynomial P(x) has
at most d roots.

This fact has many applications…

An application: Theorem

Given pairs (a1, b1), …, (ad+1, bd+1) of  values 
there is at most one

degree-d polynomial P(x) 
such that:

P(ak) = bk for all k

when we say “degree-d”, we mean 
degree at most d.

we’ll always assume ai ≠ ak for i ≠ k

An application: Theorem

Given pairs (a1, b1), …, (ad+1, bd+1) of  values 
there is at most one

degree-d polynomial P(x) 
such that:

P(ak) = bk for all k

Let’s prove the contrapositive

Assume P(x) and Q(x) have degree at most d

Suppose a1, a2, …, ad+1 are d+1 points 

such that P(ak) = Q(ak) for all k = 1,2,…,d+1

Then P(x) = Q(x) for all values of  x

Proof: Define R(x) = P(x) – Q(x)

R(x) has degree (at most) d

R(x) has d+1 roots, so it must be the zero 
polynomial
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Theorem: 

Given pairs (a1, b1), …, (ad+1, bd+1) of  values 
there is at most one

degree-d polynomial P(x) 
such that:

P(ak) = bk for all k

do there exist d+1 pairs
for which there are 

no such polynomials??

Revised Theorem:

Given pairs (a1, b1), …, (ad+1, bd+1) of  values 
there is exactly one

degree-d polynomial P(x) 
such that:

P(ak) = bk for all k

The algorithm to construct P(x)
is called Lagrange Interpolation

Two different representations

P(x) = cd xd + cd-1 xd-1 + … + c1 x1 + c0
can be represented either by

a) its d+1 coefficients
cd, cd-1, …, c2, c1, c0

b) Its value at any d+1 points

P(a1), P(a2), …, P(ad), P(ad+1)

(e.g., P(1), P(2), …, P(d+1).)

Converting Between The 
Two Representations

Coefficients to Evaluation:

Evaluation to Coefficients:

Evaluate P(x) at d+1 points

Use Lagrange Interpolation

Revised Theorem:

Given pairs (a1, b1), …, (ad+1, bd+1) of  values 
there is exactly one

degree-d polynomial P(x) 
such that:

P(ak) = bk for all k

The algorithm to construct P(x)
is called Lagrange Interpolation

An Application:

Error Correcting Codes
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Error Correcting Codes

Messages as sequences of numbers in Z29:

I want to send a sequence of  d+1 numbers

HELLO 8  5  12  12  15

Suppose your mailer may corrupt any k
among all the numbers I send.

How should I send the numbers to you?

In Particular

Suppose I just send over the numbers
8  5  12  12  15

and you get
8  9    0 12  15

How do you correct errors?

How do you even detect errors?

say k=2 errors

A Simpler Case: Erasures

Suppose I just send over the numbers
8  5  12  12  15

and you get
8  *    * 12  15

(Numbers are either correct or changed to *)

What can you do to correct errors?

say k=2 erasures

A Simple Solution

Repetition: repeat each number k+1 times

At least one copy of  each number will reach

8 8 8   5 5 5   12 12 12   12 12 12   15 15 15

For arbitrary corruptions, repeat 2k+1 times
and take majority

8 8 8   5 * *   12 12 12   12 12 12   15 15 15

Very wasteful!

To send d+1 numbers with erasures, we sent 
(d+1)(k+1) numbers

Can we do better?

Note that to send 1 number with k erasures
we need to send k+1 numbers.

maybe for d numbers, 
sending d+k+1 numbers suffices??

Think polynomials…

Encoding messages as polynomials:

8 x4 + 5 x3 + 12 x2 + 12 x + 15  ∈ Z29[x] 

I want to send you a polynomial P(x) of  
degree d.

HELLO 8  5  12  12  15
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Send it in the value representation!

Want to send a polynomial of  degree-d
subject to at most k erasures.

Evaluate P(x) at d+1+k points

Send P(0), P(1), P(2), …, P(d+k)

At least d+1 of  these values will reach

Say P(0), * , P(2), *, …, *, P(d+k)

Can recover P(x) from these d+1 values

Example

Example
Much better!!!

Naïve Repetition:
To send d+1 numbers with k erasures, we sent 

(d+1)(k+1) numbers

Polynomial Coding:
To send d+1 numbers with k erasures, we sent 

(d+k+1) numbers

What about corruptions?

Want to send a polynomial of  degree-d
subject to at most k corruptions.

Similar ideas suffice, 
see the supplementary material

This technique (encoding using polynomials)
is called Reed-Solomon coding… PDF417 codes

= 2-d Reed-Solomon
codes

Maxicodes
= “UPS codes”
= another 2-d 

Reed-Solomon codes

It’s used in practice…
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Polynomials
Fundamental Theorem of  polys:
Degree-d poly has at most d roots.

Two deg-d polys agree on ≤ d points.

Lagrange Interpolation:
Given d+1 pairs (ak, bk), can find 

unique poly P with P(ak) = bk
for all these k.

Gives us value represent’n for polys.

Error Correction
Erasure codes
Detection and correction

Here’s What 
You Need to 
Know…

Supplementary Material

What about corruptions?

Want to send a polynomial of  degree-d
subject to at most k corruptions.

Suppose we try the same idea

Evaluate P(x) at d+1+k points

Send P(0), P(1), P(2), …, P(d+k)

At least d+1 of  these values will be unchanged

P(x) = 2x2 + 1, and k = 1.

So I sent P(0)=1, P(1)=3, P(2)=9, P(3)=19

Corrupted email says (1, 4, 9, 19)

Choosing (1, 4, 9) will give us Q(x) = 

Example

x2 + 2x + 1

But we can at least detect errors!

Evaluate P(x) at d+1+k points

Send P(0), P(1), P(2), …, P(d+k)

At least d+1 of  these values will be correct

Say P(0), P’(1) , P(2), P(3), P’(4), …, P(d+k)

Using these d+1 correct values will give P(x)

Using any of  the incorrect values will 
give something else

Quick way of  detecting errors

Interpolate first d+1 points to get Q(x)

Check that all other received values are 
consistent with this polynomial Q(x)

If  all values consistent, no errors!

In that case, we know Q(x) = P(x)

else there were errors…
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Number of  numbers?

Naïve Repetition:
To send d+1 numbers with error detection, 

sent (d+1)(k+1) numbers

Polynomial Coding:
To send d+1 numbers with error detection, 

sent  (d+k+1) numbers

How about error correction?

To send d+1 numbers in such a way
that we can correct up to k errors, 
need to send d+1+2k numbers.

requires more work

Similar encoding scheme

Evaluate degree-d P(x) at d+1+2k points

Send P(0), P(1), P(2), …, P(d+2k)

At least d+1+k of  these values will be correct

Say P(0), P(1) , P(2), P(3), P(4), …, P(d+2k)

How do we know which are correct?

how do we do this fast?

Theorem: A unique degree-d polynomial R(x) 
can agree with the received data on

at least d+1+k points

And if  two different degree-d polynomials did so, 
they would have to agree with each other on 

d+1 points, and hence be the same.

Clearly, the original polynomial P(x)
agrees with data on d+1+k points 

(since at most k errors, total d+1+2k points)

So any such R(x) = P(x)

Theorem: A unique degree-d polynomial R(x) 
can agree with the received data on

at least d+1+k points

Brute-force Algorithm:

Interpolate each subset of  (d+1) points

Check if  the resulting polynomial agrees 
with received data on d+1+k pts

Takes too much time…

BTW, this coding scheme is called 
Reed-Solomon encoding

A fast algorithm to decode was given
by Berlekamp and Welch

which solves a system of  linear equations

Recent research has given very fast
encoding and decoding algorithms


