15-251

Great Theoretical Ideas in Computer Science

n

Algebraic Structures II: Rings and Fields and Polynomials

Lecture 16 (October 14, 2010)

$$P(X) = X^3 + X^2 + X^1 + X^2$$

ተለእን€ Few things about group theory ለ

Permutations

A permutation of a set X is a bijection $\alpha: X \to X$ We denote the set of all permutations of

We denote the set of all permutations $X = \{1,2,...,n\}$ by S_n

$$|S_n| = n!$$

Notation:

$$\alpha = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 2 & 1 & 5 \end{bmatrix}$$
 means $\alpha(1)=2, \alpha(2)=3, ..., \alpha(5)=5$

Composition

Define the operation "•" on S_n to mean the composition of two permutations

As shorthand, we will write $\alpha \bullet \beta$ as $\alpha \beta$

To compute $\alpha\beta$, first apply β and then α : $\alpha\beta(i) = \alpha(\beta(i))$

$$\begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$$
This permutation "fixes 2"
$$\begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{bmatrix}$$

Groups

A group G is a pair (S, \bullet) , where S is a set and \bullet is a binary operation on S such that:

- 1. ♦ is associative
- 2. (Identity) There exists an element $e \in S$ such that:

$$e \diamond a = a \diamond e = a$$
, for all $a \in S$

- 3. (Inverses) For every $a \in S$ there is
- $b \in S$ such that: a + b = b + a = e

If ♦ is commutative, then G is called a commutative group

(S_n, •) is a Group

Is • associative on S_n? YES!

Is there an identity? YES: The identity function

Does every element have an inverse? YES!

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 4 & 2 & 3 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 5 & 3 & 1 \end{bmatrix}$$

Is the group commutative?

No! (for n > 2)

Cycles

Let i_1 , i_2 , ..., i_r be distinct integers between 1 and n. Define $(i_1 \ i_2 \ ... \ i_r)$ to be the permutation α that fixes the remaining n-r integers and for which:

$$\alpha(i_1)=i_2, \alpha(i_2)=i_3, \ldots, \alpha(i_{r-1})=i_r, \alpha(i_r)=i_1$$

$$(5)(1234) = \begin{bmatrix} 1234 \\ 2341 \end{bmatrix} \quad (2345)$$

$$(15342) = \begin{bmatrix} 12345 \\ 51423 \end{bmatrix}$$

Two cycles are disjoint if every x moved by one is fixed by the other

 $(i_1 i_2 ... i_r)$ is called a cycle or an r-cycle

Express $\boldsymbol{\alpha}$ as the product of disjoint cycles

$$\alpha = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 4 & 4 & 1 & 2 & 5 & 3 & 8 & 9 & 7 \end{bmatrix}$$

$$= (1 & 6 & 3)(2 & 4)(5)(7 & 8 & 9)$$

Theorem: Every permutation can be uniquely factored into the product of disjoint cycles

Express β as the product of disjoint cycles

$$\beta = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & 3 & 2 & 4 & 6 & 1 & 8 & 9 & 5 \end{bmatrix}$$

= (178956)(23)(4)

Now for the new stuff...

Rings

We often define more than one operation on a set

For example, in Z_n we can do both addition and multiplication modulo n

A ring is a set together with two operations

Definition:

A ring R is a set together with two binary operations + and ×, satisfying the following properties:

1. (R,+) is a commutative group

2. × is associative

Minimal requirements from "product"

3. The distributive laws hold in R:

$$(a + b) \times c = (a \times c) + (b \times c)$$

 $c \times (a + b) = (c \times a) + (c \times b)$

Examples:

Is (Z, +, *) a ring?

(Z,+) is commutative group

Yes. * is associative

+ distributes over *

Is (Z, +, min) a ring?

(Z,+) is commutative group

No min is associative

but + does not distribute over min

 $min(1+3,2) \neq min(1,2) + min(3,2)$

Examples:

(Set of m*n Z-valued matrices, +, *)?

It is commutative group with respect to +

Yes. * is associative

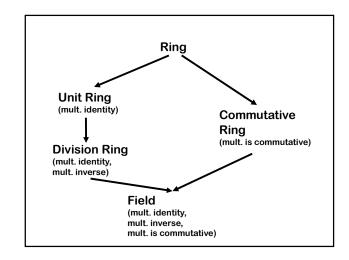
+ distributes over *

(Set of polynomials with real coefficients,+,*)?

It is commutative group with respect to +

Yes. * is associative

+ distributes over *



Fields

Definition:

A field F is a set together with two binary operations + and ×, satisfying the following properties:

- 1. (F,+) is a commutative group
- 2. (F-{0},×) is a commutative group
- 3. The distributive law holds in F: $(a + b) \times c = (a \times c) + (b \times c)$

icius

No. (Z,*) not a group

Yes.

How about
$$(Z_n, +_n, *_n)$$
?

Only when n is prime. $(Z_n, *_n)$ is a group only for prime n.

Polynomials, Lagrange, and Error-correction

Polynomials in one variable over the reals

$$P(x) = 3 x^2 + 7 x - 2$$

$$Q(x) = x^{123} - \frac{1}{2}x^{25} + 19x^3 - 1$$

$$R(y) = 2y + \sqrt{2}$$

$$S(z) = z^2 - z - 1$$

$$T(x) = 0$$

$$W(x) = \pi$$

Representing a polynomial

A degree-d polynomial is represented by its (d+1) coefficients:

$$P(x) = c_d x^d + c_{d-1} x^{d-1} + ... + c_1 x^1 + c_0$$

The d+1 numbers c_d , c_{d-1} , ..., c_0 are <u>coefficients</u>.

E.g.
$$P(x) = 3x^4 - 7x^2 + 12x - 19$$

Coefficients are:
$$3,0,-3,12,-19$$

Are we working over the reals?

We could work over any field (set with addition, multiplication, division defined.)

E.g., we could work with the <u>rationals</u>, or the <u>reals</u>.

Or with $(Z_p,+,*)$, the integers mod prime p.

In this lecture, we will work with Z_p

the field $(Z_p, +_p, *_p)$

$$(Z_p = \{0, 1, 2, ..., p-1\}, +)$$

is a commutative group
 $(Z_p^* = \{1, 2, 3, ..., p-1\} = Z_p \setminus \{0\}, *)$
is also a commutative group

Addition distributes over multiplication.

Let Z_p[x] denote the set of polynomials with variable x and coefficients from Z_p

Multiplying Polynomials

(say from $Z_{11}[x]$)

$$(x^2+2x-1)(3x^3+7x)$$

$$= x^2(3x^2 + 7x) + 2x(3x^2 + 7x) - (3x^3 + 7x)$$

$$= 3x^5 + 6x^4 + 4x^3 + 14x^2 - 7x$$

$$= 3x^{5} + 6x^{4} + 4x^{3} + 14x^{2} - 7x$$

$$= 3x^{5} + 6x^{4} + 4x^{3} + 3x^{2} + 4x$$
reduct

Adding, Multiplying Polynomials

Let P(x), Q(x) be two polynomials.

The sum P(x)+Q(x) is also a polynomial. (i.e., polynomials are "closed under addition")

Their product P(x)Q(x) is also a polynomial. ("closed under multiplication")

P(x)/Q(x) is not necessarily a polynomial.

$Z_p[x]$ is a commutative ring with identity

Let P(x), Q(x) be two polynomials. The sum P(x)+Q(x) is also a polynomial. (i.e., polynomials are "closed under addition")

Addition is associative

0 (the "zero" polynomial) is the additive identity -P(x) is the additive inverse of P(x)

Also, addition is commutative

 $(Z_p[x], +)$ is a commutative group

$Z_p[x]$ is a commutative ring with identity

Let P(x), Q(x) be two polynomials. The sum P(x)*Q(x) is also a polynomial. (i.e., polynomials are "closed under multiplication")

Multiplication is associative

1 (the "unit" polynomial) is the multiplicative identity Multiplication is commutative Finally, addition distributes over multiplication

(Z_p[x], +, *) is a commutative ring with identity (mult. inverses may not exist)

Evaluating a polynomial

$$P(x) = c_d x^d + c_{d-1} x^{d-1} + ... + c_1 x^1 + c_0$$

E.g.
$$P(x) = 3x^4 - 7x^2 + 12x - 19$$

$$P(5) = 3 \times 5^4 - 7 \times 5^2 + 12 \times 5 - 19$$

$$P(-1) = 3 \times (-1)^4 - 7 \times (-1)^2 + 12 \times (-1) - 19$$

$$P(0) = -19$$

The roots of a polynomial

Suppose:

$$P(x) = c_d x^d + c_{d-1} x^{d-1} + ... + c_1 x^1 + c_0$$

Definition: r is a "root" of P(x) if P(r) = 0

E.g., P(x) = 3x + 7

root = -(7/3).

 $P(x) = x^2 - 2x + 1$

roots = 1, 1

 $P(x) = 3x^3 - 10x^2 + 10x - 2$

roots = 1/3, 1, 2.

Linear Polynomials

P(x) = ax + b

One root: P(x) = ax + b = 0 $\Rightarrow x = -b/a$

E.g., P(x) = 7x - 9root = $(-(-9)/7) = 9 * 7^{-1}$ in Z₁₁[x]

= 9 * 8 = 72

= 6 (mod 11).

Check: $P(6) = 7*6 - 9 = 42 - 9 = 33 = 0 \pmod{11}$

The Single Most Important
Theorem About
Low-degree Polynomials

A <u>non-zero</u> degree-d polynomial P(x) has at most d roots.

This fact has many applications...

An application: Theorem

Given pairs $(a_1, b_1), ..., (a_{d+1}, b_{d+1})$ of values

there is <u>at most one</u> degree-d polynomial P(x)

such that:

 $P(a_k) = b_k$ for all k

when we say "degree-d", we mean () Hegree at most d.

we'll always assume $a_i \neq a_k$ for $i \neq k$

An application: Theorem

Given pairs $(a_1, b_1), ..., (a_{d+1}, b_{d+1})$ of values there is <u>at most one</u> degree-d polynomial P(x) such that: $P(a_k) = b_k$ for all k

Let's prove the contrapositive

Assume P(x) and Q(x) have degree at most d Suppose $a_1, a_2, ..., a_{d+1}$ are d+1 points such that P(a_k) = Q(a_k) for all k = 1,2,...,d+1

Then P(x) = Q(x) for all values of x

Proof: Define R(x) = P(x) - Q(x)

R(x) has degree (at most) d

R(x) has d+1 roots, so it must be the zero polynomial

Theorem:

Given pairs $(a_1, b_1), ..., (a_{d+1}, b_{d+1})$ of values there is at most one degree-d polynomial P(x) such that: $P(a_k) = b_k \text{ for all } k$

do there exist d+1 pairs for which there are no such polynomials??

Revised Theorem:

Given pairs $(a_1, b_1), ..., (a_{d+1}, b_{d+1})$ of values there is <u>exactly one</u> degree-d polynomial P(x) such that: $P(a_k) = b_k$ for all k

The algorithm to construct P(x) is called Lagrange Interpolation

Two different representations

 $P(x) = c_d x^d + c_{d-1} x^{d-1} + ... + c_1 x^1 + c_0$ can be represented either by

- a) its d+1 coefficients $c_d, c_{d-1}, ..., c_2, c_1, c_0$
- b) Its value at any d+1 points $P(a_1), P(a_2), ..., P(a_d), P(a_{d+1}) \\ \text{(e.g., P(1), P(2), ..., P(d+1).)}$

Converting Between The Two Representations

Coefficients to Evaluation:

Evaluate P(x) at d+1 points

Evaluation to Coefficients:

Use Lagrange Interpolation

Revised Theorem:

Given pairs $(a_1, b_1), ..., (a_{d+1}, b_{d+1})$ of values there is <u>exactly one</u> degree-d polynomial P(x) such that: $P(a_k) = b_k$ for all k

The algorithm to construct P(x) is called Lagrange Interpolation

An Application:

Error Correcting Codes

Error Correcting Codes

Messages as sequences of numbers in Z₂₉:

HELLO

8 5 12 12 15

I want to send a sequence of d+1 numbers

Suppose your mailer may corrupt any k among all the numbers I send.

How should I send the numbers to you?

In Particular

Suppose I just send over the numbers

8 5 12 12 15

say k=2 errors

and you get

8 9 0 12 15

How do you correct errors?

How do you even detect errors?

A Simpler Case: Erasures

Suppose I just send over the numbers

8 5 12 12 15

say k=2 erasures

and you get

8 * * 12 15

(Numbers are either correct or changed to *)

What can you do to correct errors?

A Simple Solution

Repetition: repeat each number k+1 times

888 555 121212 121212 151515

At least one copy of each number will reach 8 8 8 5 * * 12 12 12 12 12 12 15 15 15

For arbitrary corruptions, repeat 2k+1 times and take majority

Very wasteful!

To send d+1 numbers with erasures, we sent (d+1)(k+1) numbers

Can we do better?

Note that to send 1 number with k erasures we need to send k+1 numbers.

maybe for d numbers, sending d+k+1 numbers suffices??

Think polynomials...

Encoding messages as polynomials:

HELLO

8 5 12 12 15

 $8\;x^4+5\;x^3+12\;x^2+12\;x+15\;\in Z_{29}[x]$

I want to send you a polynomial P(x) of degree d.

Send it in the value representation!

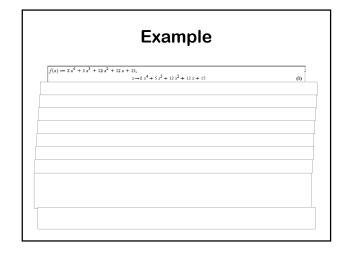
Want to send a polynomial of degree-d subject to at most k erasures.

Evaluate P(x) at d+1+k points

Send P(0), P(1), P(2), ..., P(d+k)

At least d+1 of these values will reach Say P(0), *, P(2), *, ..., *, P(d+k)

Can recover P(x) from these d+1 values



Example $f(x) := 8x^4 + 5x^3 + 12x^2 + 12x + 15;$ $x \to 8x^4 + 5x^3 + 12x^2 + 12x + 15$ f(1) mod 29

f(3) mod 29 f(4) mnd 29 f(5) mod 29 CurvePilling[PolynomialInterpolation]([[0,15], [1,25], [4,13], [5,26], [6,19]], x,form = Lagranger), $\frac{1}{6}(x-1)(x-4)(x-5)(x-6) - \frac{20}{60}x(x-4)(x-5)(x-6) + \frac{13}{12}x(x-1)(x-5)(x-6) - \frac{13}{10}x(x-9)$ $-1)(x-4)(x-6)+\frac{19}{60}x(x-1)(x-4)(x-5)$ $8x^4 + 5x^3 + 12x^2 + 12x + 15$ (10)

Much better!!!

Naïve Repetition: To send d+1 numbers with k erasures, we sent (d+1)(k+1) numbers

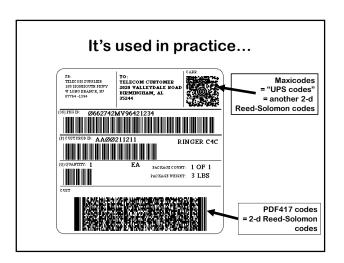
Polynomial Coding: To send d+1 numbers with k erasures, we sent (d+k+1) numbers

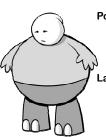
What about corruptions?

Want to send a polynomial of degree-d subject to at most k corruptions.

> Similar ideas suffice, see the supplementary material

This technique (encoding using polynomials) is called Reed-Solomon coding...





Polynomials

Fundamental Theorem of polys: Degree-d poly has at most d roots. Two deg-d polys agree on \leq d points.

Lagrange Interpolation:

Given d+1 pairs (ak, bk), can find unique poly P with $P(a_k) = b_k$ for all these k.

Gives us value represent'n for polys.

Here's What Error Correction You Need to Know...

Erasure codes

Detection and correction

Supplementary Material

What about corruptions?

Want to send a polynomial of degree-d subject to at most k corruptions.

Suppose we try the same idea

Evaluate P(x) at d+1+k points

Send P(0), P(1), P(2), ..., P(d+k)

At least d+1 of these values will be unchanged

Example

 $P(x) = 2x^2 + 1$, and k = 1.

So I sent P(0)=1, P(1)=3, P(2)=9, P(3)=19

Corrupted email says (1, 4, 9, 19)

Choosing (1, 4, 9) will give us $Q(x) = x^2 + 2x + 1$

But we can at least detect errors!

Evaluate P(x) at d+1+k points

Send P(0), P(1), P(2), ..., P(d+k)

At least d+1 of these values will be correct Say P(0), P'(1), P(2), P(3), P'(4), ..., P(d+k)

Using these d+1 correct values will give P(x)

Using any of the incorrect values will give something else

Quick way of detecting errors

Interpolate first d+1 points to get Q(x)

Check that all other received values are consistent with this polynomial Q(x)

If all values consistent, no errors!

In that case, we know Q(x) = P(x)

else there were errors...

Number of numbers?

Naïve Repetition:
To send d+1 numbers with error detection,
sent (d+1)(k+1) numbers

Polynomial Coding:
To send d+1 numbers with error detection,
sent (d+k+1) numbers

How about error correction?

requires more work

To send d+1 numbers in such a way that we can correct up to k errors, need to send d+1+2k numbers.

Similar encoding scheme

Evaluate degree-d P(x) at d+1+2k points

Send P(0), P(1), P(2), ..., P(d+2k)

At least d+1+k of these values will be correct

Say P(0), P(1), P(2), P(3), P(4), ..., P(d+2k)

How do we know which are correct? how do we do this fast? Theorem: A unique degree-d polynomial R(x) can agree with the received data on at least d+1+k points

Clearly, the original polynomial P(x) agrees with data on d+1+k points (since at most k errors, total d+1+2k points)

And if two different degree-d polynomials did so, they would have to agree with each other on d+1 points, and hence be the same.

So any such R(x) = P(x)

Theorem: A unique degree-d polynomial R(x) can agree with the received data on at least d+1+k points

Brute-force Algorithm:

Interpolate each subset of (d+1) points

Check if the resulting polynomial agrees with received data on d+1+k pts

Takes too much time...

A fast algorithm to decode was given by Berlekamp and Welch which solves a system of linear equations

Recent research has given very fast encoding and decoding algorithms

BTW, this coding scheme is called Reed-Solomon encoding