15-251

Great Theoretical Ideas in Computer Science

n

Algebraic Structures: Group Theory

Lecture 15 (October 12, 2010)

Number Theory

Naturals Integers Z_n closed under + closed under + closed under +_n a+b=b+a a+b=b+a $a+_n b=b+_n a$ (a+b)+c=a+(b+c) (a+b)+c=a+(b+c) $(a+_nb)+_nc=a+_n(b+_nc)$ a+0=0+a=A a+0=A a+0=A a+0=0 a+0=0 a+0=0

Number Theory

Matrices Z_n Integers closed under + closed under + closed under +n $a +_{n} b = b +_{n} a$ A+B=B+Aa+b=b+a $(A+B)+C = A+(B+C) (a+b)+c = a+(b+c) (a+_nb)+_nc = a+_n(b+_nc)$ A+0 =4/10/ A a+0 = 0+a $a +_{n} 0 = 0 +_{n} a$ A+(-A)=0a+(-a) = 0 $a +_{n} (-a) = 0$ closed under * closed under * closed under *n (a+b)*c = a*c+b*cditto ditto ditto A<u>5</u>75A 1/a may not exist ditto 2.6 56 E

Number Theory

 $\begin{array}{ccc} \text{Invertible Matrices} & \text{Rationals} & Z_n \text{ (n prime)} \\ \text{U[o]} & \\ \text{closed under + closed under +}_n & \\ \end{array}$ A+B=B+Aa+b = b+a $a +_{n} b = b +_{n} a$ $(A+B)+C = A+(B+C) (a+b)+c = a+(b+c) (a+_nb)+_nc = a+_n(b+_nc)$ $a +_{n} 0 = 0 +_{n} a$ A+0 = 0+Aa+0 = 0+aA+(-A)=0a+(-a) = 0 $a +_{n} (-a) = 0$ closed under * closed under * closed under *n (a+b)*c = a*c+b*cditto ditto ditto 1/a exists if $a \neq 0$ ditto

Abstraction: Abstract away the inessential features of a problem

Today we are going to study the abstract properties of binary operations

Rotating a Square in Space

Imagine we can pick up the square, rotate it in any way we want, and then put it back on the white frame

Symmetries of the Square

 Y_{SQ} = { R_0 , R_{90} , R_{180} , R_{270} , $F_{|}$, F_{-} , $F_{/}$, $F_{|}$ }

Composition

Define the operation "•" to mean "first do one symmetry, and then do the next"

For example,

R₉₀ • R₁₈₀ means "first rotate 90° clockwise and then 180°"

 $= R_{270}$

F_| • R₉₀ means "first flip horizontally

and then rotate 90°"

= F/

Question: if $a,b \in Y_{SQ}$, does $a \bullet b \in Y_{SQ}$? Yes!

	R_0	R ₉₀	R ₁₈₀	R ₂₇₀	F	F_	F _/	F _\
R_0	R_0	R ₉₀	R ₁₈₀	R ₂₇₀	F	F_	F _/	F _\
R_{90}	R ₉₀	R ₁₈₀	R ₂₇₀	R_0	F _\	F/	F	F_
R ₁₈₀	R ₁₈₀	R ₂₇₀	R_0	R ₉₀	F	F_	F	F/
R ₂₇₀	R ₂₇₀	R_0	R ₉₀	R ₁₈₀	F>	F	F	F_
F	F	F`	F	F	R_0	R ₁₈₀	R ₉₀	R ₂₇₀
F_	F_	F _\	F	F/	R ₁₈₀	R_0	R ₂₇₀	R ₉₀
F _/	F/	F_	F _\	F	R ₂₇₀	R ₉₀	R_0	R ₁₈₀
F、	F _\	F	F _/	F_	R ₉₀	R ₂₇₀	R ₁₈₀	R_0

How many symmetries for n-sided body? 2n

$$R_0, R_1, R_2, ..., R_{n-1}$$

 $F_0, F_1, F_2, ..., F_{n-1}$

$$R_i R_j = R_{i+j}$$
 $R_i F_j = F_{j+i}$
 $F_i R_i = F_{i+j}$ $F_i F_j = F_{j+j}$

$$\mathbf{F}_{\mathbf{j}} \ \mathbf{R}_{\mathbf{i}} = \mathbf{F}_{\mathbf{j+i}} \qquad \quad \mathbf{F}_{\mathbf{i}} \ \mathbf{F}_{\mathbf{j}} = \mathbf{R}_{\mathbf{j-i}}$$

Some Formalism

If S is a set, $S \times S$ is:

the set of all (ordered) pairs of elements of S

$$S \times S = \{ (a,b) \mid a \in S \text{ and } b \in S \}$$

If S has n elements, how many elements does $S \times S$ have? n^2

Formally, • is a function from $Y_{SQ} \times Y_{SQ}$ to Y_{SQ}

$$\bullet: Y_{SQ} \times Y_{SQ} \to Y_{SQ}$$

As shorthand, we write •(a,b) as "a • b"

Binary Operations

"•" is called a binary operation on Y_{so}

Definition: A binary operation on a set S is a function $\bullet : S \times S \rightarrow S$

Example:

The function $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ defined by

$$f(x,y) = xy + y$$
 $g(x,y) = \sqrt{x} + y$

is a binary operation on ${\mathbb N}$

implicitly contains "closure"

Associativity

A binary operation ♦ on a set S is associative if:

for all
$$a,b,c \in S$$
, $(a + b) + c = a + (b + c)$

Examples:

Is f: $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$ defined by f(x,y) = xy + yassociative?

(ab + b)c + c = a(bc + c) + (bc + c)? NO!

Is the operation • on the set of symmetries of the square associative? YES!

Commutativity

A binary operation • on a set S is commutative if

For all $a,b \in S$, a + b = b + a

Is the operation • on the set of symmetries of the square commutative? NO!

$$R_{90} \bullet F_{|} \neq F_{|} \bullet R_{90}$$

Identities

R₀ is like a null motion

Is this true: $\forall a \in Y_{SQ}$, $a \cdot R_0 = R_0 \cdot a = a$? YES!

R₀ is called the identity of • on Y_{SO}

In general, for any binary operation ♦ on a set S, an element $e \in S$ such that for all $a \in S$.

e • a = a • e = a

is called an identity of ♦ on S

Inverses

Definition: The inverse of an element $a \in Y_{SQ}$ is an element b such that:

$$a \cdot b = b \cdot a = R_0$$

Examples:

R₉₀ inverse: R₂₇₀

R₁₈₀ inverse: R₁₈₀

F_I inverse: F_I

Every element in Y_{SQ} has a unique inverse

_	R_0	R ₉₀	R ₁₈₀	R ₂₇₀	F	F_	F _/	F _\
R_0	R_0	R ₉₀	R ₁₈₀	R ₂₇₀	F	F_	F _/	F _\
R_{90}	R ₉₀	R ₁₈₀	R ₂₇₀	R_0	F	F>	F ⁻	F_
R ₁₈₀	R ₁₈₀	R ₂₇₀	R_0	R ₉₀	F	F	F	F>
		R_0						
		F>						
		F _\						
		F_						
F、	F、	F	F _/	F_	R ₉₀	R ₂₇₀	R ₁₈₀	R_0

Groups

A group G is a pair (S, ♦), where S is a set and ♦ is a binary operation on S such that:

1. ♦ is associative

2. (Identity) There exists an element $e \in S$ such that:

e + a = a + e = a, for all $a \in S$

3. (Inverses) For every $a \in S$ there is $b \in S$ such that: $a \cdot b = b \cdot a = e$

Commutative or "Abelian" Groups

If G = (S,♦) and ♦ is commutative, then G is called a commutative group

remember,
"commutative" means
a ♦ b = b ♦ a for all a, b in S

To check "group-ness"

Given (S, ♦)

- Check "closure" for (S, ♦)
 (i.e, for any a, b in S, check a ♦ b also in S).
- 2. Check that associativity holds.
- 3. Check there is a identity
- 4. Check every element has an inverse

Some examples...

Examples

Is $(\mathbb{N},+)$ a group?

Is N closed under +? YES!

Is + associative on N? YES!

Is there an identity? YES: 0

Does every element have an inverse? NO!

 $(\mathbb{N},+)$ is **NOT** a group

Examples

Is (Z,+) a group?

Is Z closed under +? YES!

Is + associative on Z? YES!

Is there an identity? YES: 0

Does every element have an inverse? YES!

(Z,+) is a group

Examples

Is (Odds,+) a group?

Is Odds closed under +? NO!

Is + associative on Odds? YES!

Is there an identity? NO!

Does every element have an inverse? YES!

(Odds,+) is NOT a group

Examples

Is (Y_{SQ}, •) a group?

Is Y_{SO} closed under •? YES!

Is • associative on Y_{SQ}? YES!

Is there an identity? YES: R₀

Does every element have an inverse? YES!

(Y_{SQ}, •) is a group

the "dihedral" group D₄

Examples

Is $(Z_n, +_n)$ a group?

(Z_n is the set of integers modulo n)

Is Z_n closed under $+_n$? YES!

Is $+_n$ associative on Z_n ? YES!

Is there an identity? YES: 0

Does every element have an inverse? YES!

 $(Z_n, +_n)$ is a group

Examples

Is $(Z_n, *_n)$ a group?

 $(Z_n is the set of integers modulo n)$

Is $*_n$ associative on Z_n ? YES!

Is there an identity? YES: 1

Does every element have an inverse? NO!

 $(Z_n, *_n)$ is NOT a group

Examples

Is (Z_n*, *_n) a group?

(Z_n* is the set of integers modulo n that are relatively prime to n)

Is *, associative on Z,*? YES!

Is there an identity? YES: 1

Does every element have an inverse? YES!

 $(Z_n^*, *_n)$ is a group

 $\mathbb{Z}^{(Z,*)}$ No inverses...

(Q, *)

Zero has no inverse...

the rationals

(Q\{0}, *) Yes

Groups

A group G is a pair (S, •), where S is a set and • is a binary operation on S such that:

1. ♦ is associative

2. (Identity) There exists an element $e \in S$ such that:

e + a = a + e = a, for all $a \in S$

3. (Inverses) For every $a \in S$ there is $b \in S$ such that: $a \cdot b = b \cdot a = e$

Some properties of groups...

Identity Is Unique

Theorem: A group has at most one identity element

Proof:

Suppose e and f are both identities of G=(S, •)

Then f = e + f = e

⇒ exactly one identity

We denote this identity by "e"

Inverses Are Unique

Theorem: Every element in a group has a unique inverse

Proof:

Suppose b and c are both inverses of a

Then
$$b = b + e = b + (a + c) = (b + a) + c = c$$

Г

Cancellation

Theorem: If a + b = a + c, then b = c

Orders and generators

Order of a group

A group G=(S, ♦) is finite if S is a finite set

Define |G| = |S| to be the order of the group (i.e. the number of elements in the group)

What is the group with the least number of elements? $G = (\{e\}, *)$ where e * e = e

How many groups of order 2 are there?

	е	а	b	
е	e	a	b	
а	0-	6	e	
b	b	e	a	

Generators

A set $T\subseteq S$ is said to generate the group $G=(S, \blacklozenge)$ if every element of S can be expressed as a finite "sum" of elements in T

Question: Does $\{R_{90}\}$ generate Y_{S0} ? NO!

Question: Does $\{F_1, R_{90}\}$ generate Y_{SQ} ? YES!

An element $g \in S$ is called a generator of $G\text{=}(S, \blacklozenge)$ if the set $\{g\}$ generates G

Does Y_{so} have a generator? NO!

Generators For $(Z_n,+)$

Any $a \in Z_n$ such that GCD(a,n)=1 generates $(Z_n,+)$

Claim: If GCD(a,n) = 1, then the numbers a, 2a, ..., (n-1)a, na are all distinct modulo n

Proof (by contradiction):

Suppose xa = ya (mod n) for x,y \in {1,...,n} and x \neq y

Then n | a(x-y)

Since GCD(a,n) = 1, then $n \mid (x-y)$, which cannot happen

Order of an element

If G = (S, \Rightarrow), we use a^t denote $(a \Rightarrow a \Rightarrow ... \Rightarrow a)$ t times

Warning: Potential Confusion

If G =
$$(Z_n, +)$$
, this means "at" denotes $\underbrace{(a + a + ... + a)}_{t \text{ times}}$

If $G = (Z_n^*, *)$, "at" now denotes at mod n

Please be careful when using notation "at"!

Order of an element

If G = (S, \Rightarrow), we use a^t denote $(a \Rightarrow a \Rightarrow ... \Rightarrow a)$

Definition: The order of an element a of G is the smallest positive integer n such that $a^n = e$

The order of an element can be infinite! Example: The order of 1 in the group (Z,+) is infinite

What is the order of F_1 in Y_{SO} ?

What is the order of R₉₀ in Y_{SQ}?

Remember

order of a group G = size of the group G

order of an element g in group G = (smallest n>0 s.t. $g^n = e$)

Orders

Theorem: If G is a finite group, then for all g in G, order(g) is finite.

Proof: Consider g, $g \cdot g$, $g \cdot g \cdot g = g^3$, g^4 , ...

Since G is finite, $g^j = g^k$ for some j < k

 \Rightarrow $g^j = g^j \diamond g^{k-j}$

Multiplying both sides by (g^j)-1

 \Rightarrow e = g^{k-j}

Remember

order of a group G = size of the group G

order of an element $g = (smallest n>0 s.t. g^n = e)$

 $(n^* g \text{ is a generator of group G})$ if order(g) = order(G)

Orders

What is order(Z_n , $+_n$)?

For x in $(Z_n, +_n)$, what is order(x)?

order(x) = n/GCD(x,n)

Orders

order($Z_n^*, *_n$)? $\phi(n)$

For x in $(Z_n^{\frac{1}{x}}, *_n)$, what is order(x)?

Pomysilia des

faction agin = 1 (mod)

Orders

Theorem: Let x be an element of G. The order of x divides the order of G

Corollary: If p is prime, a^{p-1} = 1 (mod p) (remember, this is Fermat's Little Theorem)

What group did we use for the corollary? $G = (Z_p^*, *), \text{ order}(G) = p-1$

order (A) PI = XPI = 1 (molp)

Groups and Subgroups

Subgroups

Suppose G = (S, *) is a group.

If T⊆S, and if H = (T, ♦) is also a group,
then H is called a subgroup of G.

Examples

(Z, +) is a groupand (Evens, +) is a subgroup.In fact, (Multiples of k, +) is also a subgroup.

Is (Odds, +) a subgroup of (Z,+) ? $\label{eq:No!} No! \ (\text{Odds,+}) \ \text{is not even a group!}$

Examples

 $(Z_n, +_n)$ is a group and if $k \mid n$, Is $(\{0, k, 2k, 3k, ..., (n/k-1)k\}, +_n)$ subgroup of $(Z_n, +_n)$? Only if k is a divisor of n.

Is $(Z_k, +_k)$ a subgroup of $(Z_n, +_n)$?

No! it doesn't even have the same operation

Is $(Z_k, +_n)$ a subgroup of $(Z_n, +_n)$?

No! (Z_k, +_n) is not a group! (not closed)

Subgroup facts (identity)

If e is the identity in G = (S, •), what is the identity in H = (T, •)?

е

Proof: Clearly, e satisfies

e + a = a + e = a for all a in T.

But we saw there is a unique such element in any group.

Subgroup facts (inverse)

If b is a's inverse in G = (S, *), what is a's inverse in H = (T, *)?

b

Proof: let c be a's inverse in H.

Then c + a = e $\Rightarrow c + a + b = e + b$ $\Rightarrow c + e = b$ $\Rightarrow c = b$

Lagrange's Theorem

Theorem: If G is a finite group, and H is a subgroup then the order of H divides the order of G.
In symbols, |H| divides |G|.

Corollary: If x in G, then order(x) divides |G|.

Proof of Corollary:

Consider the set $T_x = (x, x^2 = x + x, x^3, ...)$ $H = (T_x, +)$ is a group. (check

Hence it is a subgroup of G = (S, *). Order(H) = order(x). (check!)

Lagrange's Theorem

Theorem: If G is a finite group, and H is a subgroup then the order of H divides the order of G.

Curious (and super-useful) corollary:

If you can show that H is a subgroup of G

then |H| is at most ½ |G|

and H ≠ G

"Right" way of looking at primality testing

Fermat: if n prime, then $a^{n-1} = 1 \pmod{n}$ for all $0 \le a \le n$.

Suppose the converse was also true: "if n composite, then exists g with 0 < g < n. $g^{n-1} != 1 \pmod{n}$ "

Then consider "bad elements" for this n: elements b such that $b^{n-1} = 1 \pmod{n}$

Bad elements form a subgroup of $Z_n \implies |Bad| \le \frac{1}{2} n$ Picking random element, it is good with probability $\frac{1}{2}$.

Sadly, converse not true. Fixing that gives Miller-Rabin.

Symmetries of the Square Compositions

Groups

Binary Operation Identity and Inverses Basic Facts: Inverses Are Unique Generators Order of element, group

Here's What You Need to Know...

Subgroups

Lagrange's theorem