15-251

Great Theoretical Ideas
in Computer Science

Raising numbers to powers,
Cyrptography and RSA,

Lecture 14 (October 7, 2010)

£

o=

How do you compute...

58

using few multiplications?

Firstidea:

5 52 5% 54 55 56 57 58
=5*§ 525

How do you compute...
58
Better idea:

2 £4 £8 Used only 3 mults
58 5 5 v, insteadof 71!
= 5*§ 5246845

Repeated squarking calculates
a2
in k multiply operations

compare with
(2% - 1) multiply
operations
used by the naive method

How do you compute...

513
Use repeated squaring again?

5 52 5¢ 58)@

too high! what now?

assume no divisions allowed...

How do you compute...
513
Use repeated squaring again?

5 52 54 58

Note that 13 = 8+4+1 -G 1340=(1101),

Soa'ld=a8*a4*al

Two more multiplies!

To compute a™

Suppose 2k < m < 2k+1
a a2 a* a® . . a?*
This takes k multiplies

Now write m as a sum of distinct powers of 2
say, m = 2k + 2i1 + 2i2 __ + 2it
am=a2x g2 * g2t

at most k more multiplies

Hence, we can compute
am
while performing at most
2 |log, m| multiplies

How do you compute...

513 (mod 11)

First idea: Compute 53 using 5 multiplies

5 52 54 58 512 513 =1220703125
= 58’%512*5

then take the answer mod 11

1220703125 (mod 11) =4

How do you compute...
513 (mod 11)
Better idea: keep reducing the answer mod 11
5 52 54 58 512 513

25 181 1,36 15
13 w9 4 43 4

Hence, we can compute
a™ (mod n)
while performing at most
2 |log, m| multiplies

where each time we multiply
together numbers
with |log, n| + 1 bits

How do we implement this?

Let’s use my favorite programming language — Ocaml.

It’s a functional language that automatically infers the
types of variables. It compiles to fast code. It has an
interactive shell so that you can play with the
functions you’ve written. (Similar to SML which you
will learn about in 15-212 or 15-150.)

(* compute a to the pth power modulo n *)

let rec powermod a p n =
let sq x = (x*x) mod n in
if p=0 then 1 else
let x = sq (powermod a (p/2) n) in
if p mod 2 = 0 then x else (a*x) mod n

OK, need a little more number
theory for this one...

How do you compute...

5121242653 (mOd 11)

The current best idea would still
need about 54 calculations

answer =4

Can we exponentiate any faster?

First, recall...

Z,={0,1,2, ...,n-1}

Z, ={xceZ,| GCD(x,n) =1}

Fundamental lemmas mod n:
If (x=,y)and (a=,b). Then

1) x+a=,y+b
2)x*a=,y*b
3)x-a=,y-b

4)cx=,cy =a=,bieifcinz,]

Euler Phi Function ®(n)

®(n) =size of 2"

p prime = ®(p) = p-1

p, q distinct primes =
®(pq) = (p-1)(9-1)

-Fendemente-emmea-ef-pewere?- (Correct) Fundamental lemma of

powers.
If (x=,Yy)

X= qY¥Y? *

Thena*=,a IfacZ,” and x =,y thenax= av

1
NO! Equivalently,

(2=35), butitis not foracz’, ax=, axmod o)
the case that: 22 =; 25

foracz,’, ax=,axmed®m
How do you compute...
Hence, we can compute
a™ (mod n)
while performing at most
2 |log, ®(n)] multiplies

5121 242653 (mOd 11)

121242653 (mod 10) =3

5°(mod 11) =125 mod 11 =4 where each time we multiply

Why did we together numbers
take mod 10?7 with [log, n| + 1 bits
343281327847324 ;o 39 (Correct) Fundamental lemma of
powers.

Step 1: reduce the base mod 39

IfaceZ, and x =4,y then a*=, a¥
Step 2: reduce the exponent mod ®(39) = 24
Equivalently,

NB: you should check that gcd(343280,39)=1 to use lemma of powers

Step 3: use repeated squaring to compute 34,
taking mods at each step

foracz’, ax=,axmod®m

How do you prove the lemma for powers? Proof of Euler’s Theorem: fora e Z,", a®" =, 1
Use Euler’s Theorem Defineaz ={a*,x|x€Z}foracz’

By the cancellation property, Z," = aZ’

* d(n) _ N
ForacZ,,a®" =1 [Ix=, [Tax [as x ranges over Z,"]

= size of Zn* ivi
Corollary: Fermat’s Little Theorem [x =[x (a) [Commutativity]

1=, asizeofzn” [Cancellation]
For p prime,a€Z'= ar' =1
a®n =_1
Please remember
Euler’s Theorem
Foracz a®m< 1 Basic Cryptography
Corollary: Fermat’s Little Theorem
For p prime,a€Z,"= ar' =1
One Time Pads One Time Pads

they give perfect security!

But reuse is bad

Can do other attacks as well

Agreeing on a secret

One time pads rely on having a shared secret!

Alice and Bob have never talked before
but they want to agree on a secret...

How can they do this?

A couple of small things

Avalue gin Z,,* “generates” Z " if
g, gZ’ 93’ 94’ ey gd)(n)
contains all elements of Z *

Diffie-Hellman Key Exchange

Alice:
Picks prime p, and a generator g in Zp*
Picks random ain Z)*
Sends over p, g, g% (mod p)

Bob:
Picks random b in Zp*, and sends over g° (mod p)

Now both can compute g2® (mod p)

What about Eve?

Alice:
Picks prime p, and a value g in Z,*
Picks random a in Z,*
Sends over p, g, g? (mod p)

Bob:
Picks random b in Z,*, and sends over gP (mod p)

Now both can compute g (mod p)

If Eve’s just listening in,
she sees p, 9, g%, g°

It’s believed that computing g2P (mod p) from just
this information is not easy...

also, discrete logarithms seem hard

Discrete-Log:
Given p, g, g2 (mod p), compute a

How fast can you do this?

If you can do discrete-logs fast,
you can solve the Diffie-Hellman problem fast.

How about the other way? If you can break the DH
key exchange protocol, do discrete logs fast?

Diffie Hellman requires both parties
to exchange information to share a secret

can we get rid of this assumption?

The RSA Cryptosystem

Our dramatis personae

Rivest Shamir Adleman

hA

Euler Fermat

Pick secret, random large primes: p,q
Multiply n = p*q
“Publish”: n

®(n) = o(p) 9(a) = (p-1)*(a-1)
Pick randome €Z',,
“Publish”: e

Compute d = inverse of e in Z',,
Hence, e*d =1 [mod ¢(n)]
“Private Key”: d

p,q random primes
erandom e Zy,
n = p*

e*d =1 [mod ¢(n)]

n,e is my
public key.
Useitto
send me a
message.

p,q prime, e random € Z
n=p*q
e*d =1 [mod ¢(n)

m
O
o

AL\.IA Mix e

Al
!
e;’b %D]o
=20
) o

3
= :l' T(et\gml W) = 33
é/

EN
< 1 4
Y
2 1% .5\
S g 13 S S deas = 3

How hard is cracking RSA?

If we can factor products of two large primes,
can we crack RSA?

If we know n and ®(n), can we crack RSA?

How about the other way? Does cracking RSA mean
we must do one of these two?

We don’t know (yet)...

How do we generate large primes?

The density of primes is about 1/In(n). So that if we
can efficiently test the primality of a number, then
we can generate primes fast.

Answer: The Miller-Rabin primality test.
(Gary Miller is one of our professors.)

Miller-Rabin test

The idea is to use a “converse” of Fermat’s Theorem.
We know that:

am™ = 1

for any prime n and any ain [2, n-1]. What if we try this
for some number a and it fails. Then we know thatn is
NOT prime. Miller-Rabin is based on this idea.

Say we write n-1 as d *2s where d is odd.
Consider the following sequence of numbers mod n:

-1
ad, a2, g%, qd*2®)’ ad*2%= gn-1 =1

Each element is the square of the previous one.

o(s-1) g
ad, a2, a4, gd 2(s), d*2%= gn-1 =1

If nis prime, then at some point the sequence hits 1
and stays there from then on.

The interesting point is: what is the number right
before the first 1. If n is prime this MUST BE n-1.

Miller-Rabin Test

To test a number n, we pick a random a and generate
the above sequence. If the sequence does not hit1,
then nis composite. If there’s an element before the
first 1 and it’s not n-1, then n is composite.

Otherwise n is “probably prime”.

Miller-Rabin Analysis

If n is composite, then with a random a, the Miller-

Rabin algorithm says “composite” with probability
atleast 3/4.

So if we run the test 30 times and it never says
“composite” then n is prime with “probability” 1-2-60

In other words it’s more likely that you’ll win the
lottery three days in a row than that this is giving a
wrong answer.

i.e. not bloody likely.

This ocaml implementation of the Miller-Rabin test does not
pick random random witnesses, but rather uses 2, 3, 5, and
7. It’s guaranteed to work up to about 2 billion. See the
accompanying file big_number.ml for a full high precision
implementation of Miller-Rabin with random witnesses.

£ Cheh <m) ¢
let (s,d) = . h in (s+1,d)

remove_twos (n-1) in (* so d*2

(* at this point x = aA(d * 2Ar) mod n *)

n true e

n false
mod n) (r+1)
n 1

siteness

composi ten:
mpositen
mpositen

Here’s What
You Need to
Know...

Fast exponentiation
Fundamental lemma of powers
Euler phi function ¢(n) = |Z,.,*|
Euler’s theorem
Fermat’s little theorem
Diffie-Hellman Key Exchange

RSA algorithm

Generating Large Primes

