
1

15-251
Great Theoretical Ideas

in Computer Science

Lecture 14 (October 7, 2010)

Raising numbers to powers,
Cyrptography and RSA,

p-1

≡p 1

How do you compute…

58

First idea:

5 52 53 54 55 56 57 58

= 5*5 = 52*5

using few multiplications?

How do you compute…

58

Better idea:

5 52 54 58

= 5*5 = 52*52 = 54*54

Used only 3 mults
instead of 7 !!!

Repeated squaring calculates
a2k

in k multiply operations

compare with
(2k – 1) multiply

operations
used by the naïve method

How do you compute…

513

516

too high! what now?

assume no divisions allowed…

Use repeated squaring again?

5 52 54 58

2

How do you compute…

513

Use repeated squaring again?

5 52 54 58

Note that 13 = 8+4+1

So a13 = a8 * a4 * a1

Two more multiplies!

1310 = (1101)2

To compute am

Suppose 2k ≤	
 m < 2k+1

a a2 a4 a8

This takes k multiplies

Now write m as a sum of distinct powers of 2

am = a2k * a2i1 * … * a2it

a2k
. . .

say, m = 2k + 2i1 + 2i2 … + 2it

at most k more multiplies

Hence, we can compute
am

while performing at most
2 ⎣log2 m⎦ multiplies

How do you compute…

513 (mod 11)

First idea: Compute 513 using 5 multiplies

5 52 54 58 512 513

= 58*54 = 512*5

then take the answer mod 11

= 1 220 703 125

1220703125 (mod 11) = 4

How do you compute…

513 (mod 11)

Better idea: keep reducing the answer mod 11

5 52 54 58 512 513

´11 3 ´11 9
´11 81 ´11 36 ´11 15

´11 4 ´11 3 ´11 4

 25

Hence, we can compute
am (mod n)

while performing at most
2 ⎣log2 m⎦ multiplies

where each time we multiply
together numbers

with ⎣log2 n⎦ + 1 bits

3

How do we implement this?

(* compute a to the pth power modulo n *)!

let rec powermod a p n = !
 let sq x = (x*x) mod n in !
 if p=0 then 1 else !
 let x = sq (powermod a (p/2) n) in !
 if p mod 2 = 0 then x else (a*x) mod n !

Let’s use my favorite programming language – Ocaml.

It’s a functional language that automatically infers the
types of variables. It compiles to fast code. It has an
interactive shell so that you can play with the
functions you’ve written. (Similar to SML which you
will learn about in 15-212 or 15-150.)

How do you compute…

5121242653 (mod 11)

The current best idea would still
need about 54 calculations

answer = 4

Can we exponentiate any faster?

OK, need a little more number
theory for this one…

Zn = {0, 1, 2, …, n-1}

Zn
* = {x ∈ Zn | GCD(x,n) =1}

First, recall…

Fundamental lemmas mod n:

If (x ≡n y) and (a ≡n b). Then

1)  x + a ≡n y + b
2)  x * a ≡n y * b
3)  x - a ≡n y – b

4)  cx ≡n cy ⇒ a ≡n b i.e., if c in Zn
*

Euler Phi Function Φ(n)

Φ(n) = size of Zn
*

p prime ⇒ Φ(p) = p-1

p, q distinct primes ⇒
Φ(pq) = (p-1)(q-1)

4

Fundamental lemma of powers?

If (x ≡n y)
Then ax ≡n ay ?

NO!

(2 ≡3 5) , but it is not
the case that: 22 ≡3 25

(Correct) Fundamental lemma of
powers.

Equivalently,

for a ∈ Zn
*, ax ≡n ax mod Φ(n)

If a ∈ Zn
* and x ≡Φ(n) y then ax ≡n ay

How do you compute…

5121242653 (mod 11)

121242653 (mod 10) = 3

53 (mod 11) = 125 mod 11 = 4

Why did we
take mod 10?

Hence, we can compute
am (mod n)

while performing at most
2 ⎣log2 Φ(n)⎦ multiplies

where each time we multiply
together numbers

with ⎣log2 n⎦ + 1 bits

for a ∈ Zn
*, ax ≡n ax mod Φ(n)

343281327847324 mod 39

Step 1: reduce the base mod 39

Step 2: reduce the exponent mod Φ(39) = 24

Step 3: use repeated squaring to compute 34,
 taking mods at each step

NB: you should check that gcd(343280,39)=1 to use lemma of powers

(Correct) Fundamental lemma of
powers.

Equivalently,

for a ∈ Zn
*, ax ≡n ax mod Φ(n)

If a ∈ Zn
* and x ≡Φ(n) y then ax ≡n ay

5

Use Euler’s Theorem

For a ∈ Zn
*, a Φ(n) ≡n 1

Corollary: Fermat’s Little Theorem

For p prime, a ∈ Zp
*⇒ ap-1 ≡p 1

How do you prove the lemma for powers? Proof of Euler’s Theorem: for a ∈ Zn
*, aΦ(n) ≡n 1

Define a Zn
* = {a *n x | x ∈ Zn

*} for a ∈ Zn
*

By the cancellation property, Zn
* = aZn

*

∏  x ≡n Π ax [as x ranges over Zn
*]

∏ x ≡n ∏ x (a size of Zn*) [Commutativity]

1 =n asize of Zn* [Cancellation]

aΦ(n) =n 1

Euler’s Theorem

For a ∈ Zn
*, a Φ(n) ≡n 1

Corollary: Fermat’s Little Theorem

For p prime, a ∈ Zp
*⇒ ap-1 ≡p 1

Please remember

Basic Cryptography

One Time Pads One Time Pads

they give perfect security!

6

But reuse is bad

XOR =

Can do other attacks as well

Agreeing on a secret

One time pads rely on having a shared secret!

Alice and Bob have never talked before
 but they want to agree on a secret…

How can they do this?

A couple of small things

A value g in Zn
* “generates” Zn

* if
 g, g2, g3, g4, …, gΦ(n)

contains all elements of Zn
*

Diffie-Hellman Key Exchange

Alice:
 Picks prime p, and a generator g in Zp*

 Picks random a in Zp*
 Sends over p, g, ga (mod p)

Bob:
 Picks random b in Zp*, and sends over gb (mod p)

Now both can compute gab (mod p)

What about Eve?

If Eve’s just listening in,
 she sees p, g, ga, gb

It’s believed that computing gab (mod p) from just
this information is not easy…

Alice:

 Picks prime p, and a value g in Zp*
 Picks random a in Zp*
 Sends over p, g, ga (mod p)

Bob:

 Picks random b in Zp*, and sends over gb (mod p)

Now both can compute gab (mod p)

also, discrete logarithms seem hard

Discrete-Log:

 Given p, g, ga (mod p), compute a

How fast can you do this?

If you can do discrete-logs fast,
you can solve the Diffie-Hellman problem fast.

How about the other way? If you can break the DH
key exchange protocol, do discrete logs fast?

7

Diffie Hellman requires both parties
to exchange information to share a secret

can we get rid of this assumption?

The RSA Cryptosystem

Our dramatis personae

Rivest Shamir Adleman

Euler Fermat

Pick secret, random large primes: p,q
Multiply n = p*q

“Publish”: n

φ(n) = φ(p) φ(q) = (p-1)*(q-1)
Pick random e ∈ Z*

φ(n)
“Publish”: e

Compute d = inverse of e in Z*
φ(n)

Hence, e*d = 1 [mod φ(n)]
“Private Key”: d

n,e is my
public key.

Use it to
send me a
message.

p,q random primes
e random ∈ Z*

φ(n)
n = p*q

e*d = 1 [mod φ(n)]
n, e

p,q prime, e random ∈ Z*
φ(n)

n = p*q
e*d = 1 [mod φ(n)]

message
m

me [mod n]

(me)d ≡n m

8

How hard is cracking RSA?

If we can factor products of two large primes,
can we crack RSA?

If we know n and Φ(n), can we crack RSA?

How about the other way? Does cracking RSA mean
we must do one of these two?

We don’t know (yet)…

How do we generate large primes?

 The density of primes is about 1/ln(n). So that if we
can efficiently test the primality of a number, then
we can generate primes fast.

Answer: The Miller-Rabin primality test.

(Gary Miller is one of our professors.)

Miller-Rabin test

 The idea is to use a “converse” of Fermat’s Theorem.
We know that:

an-1 ≡n 1
 for any prime n and any a in [2, n-1]. What if we try this

for some number a and it fails. Then we know that n is
NOT prime. Miller-Rabin is based on this idea.

Say we write n-1 as d *2s where d is odd.

Consider the following sequence of numbers mod n:

ad , a2d, a4d. . . ad*2(s-1), ad*2s= an-1 ≡n 1

Each element is the square of the previous one.

ad , a2d, a4d. . . ad*2(s-1), ad*2s= an-1 ≡n 1

 If n is prime, then at some point the sequence hits 1
and stays there from then on.

 The interesting point is: what is the number right
before the first 1. If n is prime this MUST BE n-1.

 To test a number n, we pick a random a and generate
the above sequence. If the sequence does not hit 1,
then n is composite. If there’s an element before the
first 1 and it’s not n-1, then n is composite.

 Otherwise n is “probably prime”.

Miller-Rabin Analysis

 If n is composite, then with a random a, the Miller-
Rabin algorithm says “composite” with probability
at least 3/4 .

 So if we run the test 30 times and it never says
“composite” then n is prime with “probability” 1-2-60

 In other words it’s more likely that you’ll win the
lottery three days in a row than that this is giving a
wrong answer.

 i.e. not bloody likely.

9

This ocaml implementation of the Miller-Rabin test does not
pick random random witnesses, but rather uses 2, 3, 5, and
7. It’s guaranteed to work up to about 2 billion. See the
accompanying file big_number.ml for a full high precision
implementation of Miller-Rabin with random witnesses. Fast exponentiation

Fundamental lemma of powers

 Euler phi function φ(n) = |Zn
*|

 Euler’s theorem

 Fermat’s little theorem

Diffie-Hellman Key Exchange

RSA algorithm

Generating Large Primes

Here’s What
You Need to

Know…

