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15-251 
Great Theoretical Ideas 

in Computer Science 

Lecture 14 (October 7, 2010) 

Raising numbers to powers, 
Cyrptography and RSA, 

p-1 

≡p 1 

How do you compute… 

58 

First idea: 

5 52 53 54 55 56 57 58 

= 5*5 = 52*5 

using few multiplications? 

How do you compute… 

58 

Better idea: 

5 52 54 58 

= 5*5 = 52*52 = 54*54 

Used only 3 mults 
instead of  7 !!! 

Repeated squaring calculates 
a2k 

in k multiply operations 

compare with 
(2k – 1) multiply 

operations 
used by the naïve method 

How do you compute… 

513 

516 

too high! what now? 

assume no divisions allowed… 

Use repeated squaring again? 

5 52 54 58 
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How do you compute… 

513 

Use repeated squaring again? 

5 52 54 58 

Note that 13 = 8+4+1 

So a13 = a8 * a4 * a1 

Two more multiplies! 

1310 = (1101)2 

To compute am 

Suppose 2k ≤	
  m < 2k+1 

a a2 a4 a8 

This takes k multiplies 

Now write m as a sum of  distinct powers of  2 

am = a2k * a2i1 * … * a2it  

a2k 
. . . 

say, m = 2k + 2i1 + 2i2 … + 2it 

at most k more multiplies 

Hence, we can compute  
am  

while performing  at most  
2 ⎣log2 m⎦ multiplies 

How do you compute… 

513 (mod 11) 

First idea: Compute 513 using 5 multiplies 

5 52 54 58 512 513 

= 58*54 = 512*5 

then take the answer mod 11 

= 1 220 703 125 

1220703125 (mod 11) = 4 

How do you compute… 

513 (mod 11) 

Better idea: keep reducing the answer mod 11 

5 52 54 58 512 513 

´11 3 ´11 9 
´11 81 ´11 36 ´11 15 

´11 4 ´11 3 ´11 4 

 25 

Hence, we can compute  
am (mod n) 

while performing  at most  
2 ⎣log2 m⎦ multiplies 

where each time we multiply 
together numbers  

with ⎣log2 n⎦ + 1 bits 
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How do we implement this? 

(* compute a to the pth power modulo n *)!

let rec powermod a p n =  !
  let sq x = (x*x) mod n in !
    if p=0 then 1 else  !
      let x = sq (powermod a (p/2) n) in !
        if p mod 2 = 0 then x else (a*x) mod n !

Let’s use my favorite programming language – Ocaml. 

It’s a functional language that automatically infers the 
types of  variables.  It compiles to fast code.  It has an 
interactive shell so that you can play with the 
functions you’ve written.  (Similar to SML which you 
will learn about in 15-212 or 15-150.) 

How do you compute… 

5121242653 (mod 11) 

The current best idea would still 
need about 54 calculations 

answer = 4 

Can we exponentiate any faster? 

OK, need a little more number  
theory for this one… 

Zn = {0, 1, 2, …, n-1} 

Zn
* = {x ∈ Zn | GCD(x,n) =1} 

First, recall… 

Fundamental lemmas mod n: 

If  (x ≡n y) and (a ≡n b). Then 

1)  x + a ≡n y + b 
2)  x * a ≡n y * b 
3)  x - a ≡n y – b 

4)  cx ≡n cy ⇒ a ≡n b i.e., if  c in Zn
* 

Euler Phi Function Φ(n)  

Φ(n) = size of  Zn
*  

p prime ⇒ Φ(p) = p-1 

p, q distinct primes ⇒ 
Φ(pq) = (p-1)(q-1) 
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Fundamental lemma of  powers? 

If  (x ≡n y) 
Then ax ≡n ay ? 

NO!  

(2 ≡3 5) , but it is not 
the case that: 22 ≡3 25 

(Correct) Fundamental lemma of  
powers. 

Equivalently, 

for a ∈ Zn
*,  ax ≡n ax mod Φ(n) 

If  a ∈ Zn
*  and x ≡Φ(n) y  then ax ≡n ay 

How do you compute… 

5121242653 (mod 11) 

121242653 (mod 10) = 3 

53 (mod 11) = 125 mod 11 = 4 

Why did we 
take mod 10? 

Hence, we can compute  
am (mod n) 

while performing  at most  
2 ⎣log2 Φ(n)⎦ multiplies 

where each time we multiply 
together numbers  

with ⎣log2 n⎦ + 1 bits 

for a ∈ Zn
*,  ax ≡n ax mod Φ(n) 

343281327847324 mod 39 

Step 1: reduce the base mod 39 

Step 2: reduce the exponent mod Φ(39) = 24 

Step 3: use repeated squaring to compute 34,  
  taking mods at each step 

NB: you should check that gcd(343280,39)=1 to use lemma of  powers 

(Correct) Fundamental lemma of  
powers. 

Equivalently, 

for a ∈ Zn
*,  ax ≡n ax mod Φ(n) 

If  a ∈ Zn
*  and x ≡Φ(n) y  then ax ≡n ay 
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Use Euler’s Theorem 

For a ∈ Zn
*, a Φ(n) ≡n 1 

Corollary: Fermat’s Little Theorem 

For p prime, a ∈ Zp
*⇒ ap-1 ≡p 1 

How do you prove the lemma for powers? Proof  of  Euler’s Theorem: for a ∈ Zn
*, aΦ(n) ≡n 1 

Define a Zn
* = {a *n x | x ∈ Zn

*} for a ∈ Zn
* 

By the cancellation property, Zn
*  = aZn

* 

∏  x ≡n  Π ax  [as x ranges over Zn
* ]    

∏ x ≡n ∏ x  (a size of  Zn*)    [Commutativity] 

1 =n  asize of  Zn*       [Cancellation] 

aΦ(n) =n 1  

Euler’s Theorem 

For a ∈ Zn
*, a Φ(n) ≡n 1 

Corollary: Fermat’s Little Theorem 

For p prime, a ∈ Zp
*⇒ ap-1 ≡p 1 

Please remember 

Basic Cryptography 

One Time Pads One Time Pads 

they give perfect security! 
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But reuse is bad 

XOR = 

Can do other attacks as well 

Agreeing on a secret 

One time pads rely on having a shared secret! 

Alice and Bob have never talked before 
 but they want to agree on a secret… 

How can they do this? 

A couple of small things 

A value g in Zn
* “generates” Zn

* if 
 g, g2, g3, g4, …, gΦ(n) 

contains all elements of Zn
* 

Diffie-Hellman Key Exchange 

Alice: 
 Picks prime p, and a generator g in Zp* 

 Picks random a in Zp* 
 Sends over p, g, ga (mod p) 

Bob: 
 Picks random b in Zp*, and sends over gb (mod p) 

Now both can compute gab (mod p) 

What about Eve? 

If  Eve’s just listening in, 
     she sees p, g, ga, gb 

It’s believed that computing gab (mod p) from just 
this information is not easy… 

Alice: 

 Picks prime p, and a value g in Zp* 
 Picks random a in Zp* 
 Sends over p, g, ga (mod p) 

Bob: 

 Picks random b in Zp*, and sends over gb (mod p) 

Now both can compute gab (mod p) 

also, discrete logarithms seem hard 

Discrete-Log: 

 Given p, g, ga (mod p), compute a 

How fast can you do this? 

If you can do discrete-logs fast,  
you can solve the Diffie-Hellman problem fast. 

How about the other way? If you can break the DH 
key exchange protocol, do discrete logs fast? 
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Diffie Hellman requires both parties  
to exchange information to share a secret 

can we get rid of  this assumption? 

The RSA Cryptosystem 

Our dramatis personae 

Rivest Shamir Adleman 

Euler Fermat 

Pick secret, random large primes: p,q  
Multiply n = p*q 

“Publish”: n 

φ(n) = φ(p) φ(q) = (p-1)*(q-1) 
Pick random e ∈ Z*

φ(n) 
“Publish”: e 

Compute d = inverse of  e in Z*
φ(n) 

Hence, e*d = 1 [ mod φ(n) ] 
“Private Key”: d 

n,e is my  
public key.  

Use it to  
send me a  
message. 

p,q random primes 
e random ∈ Z*

φ(n) 
n = p*q 

e*d = 1 [ mod φ(n) ] 
n, e 

p,q prime, e random ∈ Z*
φ(n) 

n = p*q 
e*d = 1 [ mod φ(n) ] 

message 
m 

me [mod n] 

(me)d  ≡n m 
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How hard is cracking RSA? 

If we can factor products of two large primes,  
can we crack RSA? 

If we know n and Φ(n), can we crack RSA? 

How about the other way? Does cracking RSA mean 
we must do one of these two?  

We don’t know (yet)… 

How do we generate large primes? 

    The density of primes is about 1/ln(n).  So that if we 
can efficiently test the primality of a number, then 
we can generate primes fast. 

Answer: The Miller-Rabin primality test. 

(Gary Miller is one of our professors.) 

Miller-Rabin test 

    The idea is to use a “converse” of Fermat’s Theorem.  
We know that: 

an-1 ≡n 1 
    for any prime n and any a in [2, n-1].  What if we try this 

for some number a and it fails.  Then we know that n is 
NOT prime.  Miller-Rabin is based on this idea. 

Say we write n-1 as d *2s  where d is odd.   

Consider the following sequence of numbers mod n: 

ad , a2d, a4d. . . ad*2(s-1), ad*2s= an-1 ≡n 1 

Each element is the square of the previous one. 

ad , a2d, a4d. . . ad*2(s-1), ad*2s= an-1 ≡n 1 

      If n is prime, then at some point the sequence hits 1 
and stays there from then on. 

     The interesting point is: what is the number right 
before the first 1.  If n is prime this MUST BE n-1. 

    To test a number n, we pick a random a and generate 
the above sequence.  If the sequence does not hit 1, 
then n is composite.  If there’s an element before the 
first 1 and it’s not n-1, then n is composite. 

     Otherwise n is “probably prime”. 

Miller-Rabin Analysis 

     If n is composite, then with a random a, the Miller-
Rabin algorithm says “composite” with probability 
at least 3/4 . 

     So if we run the test 30 times and it never says 
“composite” then n is prime with “probability” 1-2-60 

    In other words it’s more likely that you’ll win the 
lottery three days in a row than that this is giving a 
wrong answer. 

     i.e. not bloody likely. 
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This ocaml implementation of  the Miller-Rabin test does not 
pick random random witnesses, but rather uses 2, 3, 5, and 
7.  It’s guaranteed to work up to about 2 billion.  See the 
accompanying file big_number.ml for a full high precision 
implementation of  Miller-Rabin with random witnesses. Fast exponentiation 

Fundamental lemma of  powers 

     Euler phi function φ(n) = |Zn
*| 

     Euler’s theorem 

     Fermat’s little theorem 

Diffie-Hellman Key Exchange 

RSA algorithm 

Generating Large Primes 

Here’s What 
You Need to 

Know… 


