15-251

Great Theoretical Ideas in Computer Science

Number Theory and Modular Arithmetic

Lecture 13 (October 5, 2010)

Divisibility:

An integer a divides b (written "a|b") if and only if there exists an Integer c such that c*a = b.

Primes:

A natural number p ≥ 2 such that among all the numbers 1,2...p only 1 and p divide p.

Fundamental Theorem of Arithmetic: Any integer greater than 1 can be uniquely written (up to the ordering of the factors) as a product of prime numbers.

Greatest Common Divisor: GCD(x,y) = greatest $k \ge 1$ s.t. k|x and k|y.

Least Common Multiple: LCM(x,y) =smallest $k \ge 1$ s.t. $x \mid k$ and $y \mid k$. Fact: $GCD(x,y) \times LCM(x,y) = x \times y$

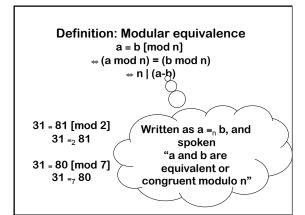
You can use

MAX(a,b) + MIN(a,b) = a+b

applied appropriately to the
factorizations of x and y to prove
the above fact...

(a mod n) means the remainder when a is divided by n.

 $a \mod n = r$ a = dn + r for some integer d



■_n is an <u>equivalence relation</u>

In other words, it is

Reflexive: a ≡_n a

Symmetric: $(a =_n b) \Rightarrow (b =_n a)$

Transitive: $(a =_n b \text{ and } b =_n c) \Rightarrow (a =_n c)$

■_n induces a natural partition of the integers into n "residue" classes.

("residue" = what left over = "remainder")

Define residue class [k] = the set of all integers that are congruent to k modulo n.

Residue Classes Mod 3:

$$[7] = \{ ..., -5, -2, 1, 4, 7, .. \} = [1]$$

 $[-1] = \{ ..., -4, -1, 2, 5, 8, .. \} = [2]$

Why do we care about these residue classes?

Because we can replace any member of a residue class with another member when doing addition or multiplication mod n and the answer will not change

To calculate: 249 * 504 mod 251

-2 * 2 = -4 = 247 just do

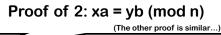
We also care about it because computers do arithmetic modulo n, where n is 2^32 or 2^64.

Fundamental lemma of plus and times mod n:

If
$$(x \equiv_n y)$$
 and $(a \equiv_n b)$. Then

1)
$$x + a =_n y + b$$

2) $x * a =_n y * b$



 $x=_n y$ iff x = i n + y for some integer i $a=_n b$ iff a = j n + b for some integer j

$$xa = (i n + y)(j n + b) = n(ijn+ib+jy) + yb$$

$$=_n yb$$

Another Simple Fact: If $(x =_n y)$ and (k|n), then: $x =_k y$

Example: $10 =_6 16 \Rightarrow 10 =_3 16$

Proof:

 $x =_n y$ iff x = in + y for some integer i Let j=n/k, or n=jk Then we have:

$$x = ijk + y$$

x = (ij)k + y therefore $x =_k y$

A <u>Unique</u> Representation System Modulo n:

We pick one representative from each residue class and do all our calculations using these representatives.

Unsurprisingly, we use 0, 1, 2, ..., n-1

Unique representation system mod 3

Finite set $S = \{0, 1, 2\}$

+ and * defined on S:

+	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

*	0	1	2
0	0	0	0
1	0	1	2
2	0	2	1

Unique representation system mod 4

Finite set $S = \{0, 1, 2, 3\}$

+ and * defined on S:

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

*	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

Notation

$$Z_n = \{0, 1, 2, ..., n-1\}$$

Define operations $+_n$ and $*_n$:

$$a +_n b = (a + b \mod n)$$

 $a *_n b = (a * b \mod n)$

Some properties of the operation +_n

$$[\text{``Closed''}]\\ x,y\in Z_n\Rightarrow x+_ny\in Z_n\\ [\text{``Associative''}]\\ x,y,z\in Z_n\Rightarrow (x+_ny)+_nz=x+_n(y+_nz)\\ [\text{``Commutative''}]\\ x,y\in Z_n\Rightarrow x+_ny=y+_nx$$

Similar properties also hold for $*_n$

Unique representation system mod 3

Finite set $S = \{0, 1, 2\}$

+ and * defined on S:

ı				
	+	0	1	2
	0	0	1	2
	1	1	2	0
	2	2	0	1

	*	0	1	2
Γ	0	0	0	0
ſ	1	0	1	2
ſ	2	0	2	1

Unique representation system mod 3

Finite set $Z_3 = \{0, 1, 2\}$

two associative, commutative operators on \mathbf{Z}_3

Unique representation system mod 3

Finite set
$$Z_3 = \{0, 1, 2\}$$

two associative, commutative operators on Z₃

+	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

*	0	1	2
0	0	0	0
1	0	1	2
2	0	2	1

Unique representation system mod 2

Finite set
$$Z_2 = \{0, 1\}$$

two associative, commutative operators on Z₂

+ ₂ XOR	0	1
0	0	1
1	1	0

* 2 AND	0	1
0	0	0
1	0	1

$$Z_5 = \{0,1,2,3,4\}$$

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

$$Z_6 = \{0,1,2,3,4,5\}$$

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

*	0	1	2	3	4	5	
0	0	0	0	0	0		
1	0	1	2	3	4		
2	0	2	4	0	2		
3	0						
4	0	4	2	0	4		
5	0	5	4	3	2		

For addition tables, rows and columns always are a permutation of Z_n

(A group as we'll see later in the course.)

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

the	he course.)									
	+	0	1	2	3	4	5			
	0	0	1	2	3	4	5			
	1	1	2	3	4	5	0			
	2	2	3	4	5	0	1			
	3	3	4	5	0	1	2			
	4	4	5	0	1	2	3			
	5	5	0	1	2	3	4			

For multiplication, some rows and columns are permutation of \mathbf{Z}_{n} , while others aren't...

*	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

*	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

what's happening here?

For addition, the permutation property means you can solve, say,

$$4 + \underline{\hspace{1cm}} = x \pmod{6}$$
 for any x in Z_6

Subtraction mod n is well-defined

Each row has a 0, hence –a is that element such that a + (-a) = 0

$$\Rightarrow$$
 a - b = a + (-b)

S	+	0	1	2	3	4	5
	0	0	1	2	3	4	5
	1	1	2	3	4	5	0
	2	2	3	4	5	0	1
t	3	3	4	5	0	1	2
	4	4	5	0	1	2	3
	5	5	0	1	2	3	4

For multiplication, if a row has a permutation you can solve, say,

*	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

But if the row does not have the permutation property, how do you solve

no solutions!

3 * ___

	0	0	0	0	0	0
	1	0	1	2	3	4
_ = 1 (mod 6)	2	0	2	4	0	2
ultiplicative	3	0	3	0	3	0
avoreal	4	0	4	2	0	4

* 0 1 2 3 4

0

4

Division

If you define $1/a \pmod{n} = a^{-1} \pmod{n}$ as the element b in Z_n such that a * b = 1 (mod n)

Then x/y (mod n)

x * 1/y (mod n)

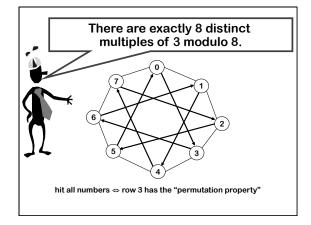
Hence we can divide out by only the y's for which 1/y is defined!

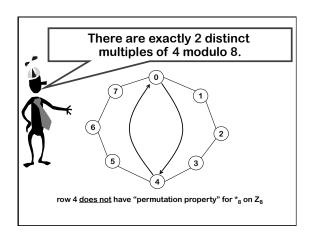
And which rows do have the permutation property?

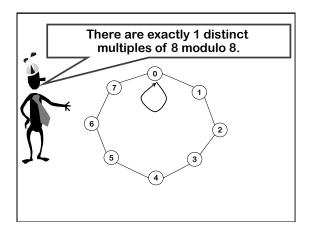
*	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7
2	0	2						
3	0	3						
4	0	4						
5	0	5						
6	0	6						
7	0	7						

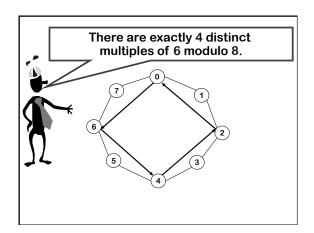
consider *_8 on \mathbf{Z}_8

A visual way to understand multiplication and the "permutation property".









What's the pattern?

exactly 8 distinct multiples of 3 modulo 8. exactly 2 distinct multiples of 4 modulo 8 exactly 1 distinct multiple of 8 modulo 8 exactly 4 distinct multiples of 6 modulo 8

exactly _____ distinct multiples of x modulo y

Theorem: There are exactly LCM(n,c)/c = n/GCD(c,n) distinct multiples of c modulo n

Theorem: There are exactly k = n/GCD(c,n) distinct multiples of c modulo n, and these multiples are { c*i mod n | $0 \le i \le k$ }

Proof:

Clearly, $c/GCD(c,n) \ge 1$ is a whole number

ck = $cn/GCD(c,n) = n(c/GCD(c,n)) \equiv_n 0$ \Rightarrow There are \le k distinct multiples of c mod n: c^*0 , c^*1 , c^*2 , ..., $c^*(k-1)$

Also, k = factors of n missing from c \Rightarrow cx \equiv_n cy \Leftrightarrow n|c(x-y) \Rightarrow k|(x-y) \Rightarrow x-y \geq k \Rightarrow There are \geq k multiples of c.

Hence exactly k.

Theorem: There are exactly LCM(n,c)/c = n/GCD(c,n) distinct multiples of c modulo n

Hence,
only those values of c with GCD(c,n) = 1
have n distinct multiples

(i.e., the permutation property for $*_n$ on Z_n)

And remember, permutation property means you can divide out by c (working mod n)

Fundamental lemma of division modulo n:

if GCD(c,n)=1, then ca \equiv_n cb \Rightarrow a \equiv_n b

Proof:

c*1, c*2, c*3, ..., c*(n-1) are all in distinct residue classes modulo n.

QED.

If you want to extend to general c and n

$$ca \equiv_{n} cb \Rightarrow a \equiv_{n/gcd(c,n)} b$$

Fundamental lemmas mod n:

If
$$(x =_n y)$$
 and $(a =_n b)$. Then

1)
$$x + a =_n y + b$$

2) $x * a =_n y * b$

3)
$$x - a \equiv_n y - b$$

4) $cx \equiv_n cy \Rightarrow a \equiv_n b$ [if $gcd(c,n)=1$]

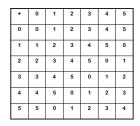
New definition:

$$Z_n^* = \{x \in Z_n \mid GCD(x,n) = 1\}$$

Multiplication over this set Z_n* has the cancellation property.

$$Z_6 = \{0, 1, 2, 3, 4, 5\}$$

 ${Z_6}^* = \{1, 5\}$



We've got closure

Recall we proved that Z_n was "closed" under addition and multiplication?

What about Z_n^* under multiplication?

Fact: if a,b ϵZ_n^* , then ab (mod n) in Z_n^*

Proof: if gcd(a,n) = gcd(b,n) = 1, then gcd(ab, n) = 1then $gcd(ab \mod n, n) = 1$

$$Z_{12}^* = \{0 \le x < 12 \mid gcd(x,12) = 1\}$$

= \{1,5,7,11\}

*12	1	5	7	11
1	1	5	7	11
5	5	1	11	7
7	7	11	1	5
11	11	7	5	1

$$Z_{15}^{*}$$

*	1	2	4	7	8	11	13	14
1	1	2	4	7	8	11	13	14
2	2	4	8	14	1	7	11	13
4	4	8	1	13	2	14	7	11
7	7	14	13	4	11	2	1	8
8	8	1	2	11	4	13	14	7
11	11	7	14	2	13	1	8	4
13	13	11	7	1	14	8	4	2
14	14	13	11	8	7	4	2	1

$$Z_5^* = \{1,2,3,4\}$$

 $= Z_5 \setminus \{0\}$

*5	1	2	3	4
1	1	2	3	4
2	2	4	1	3
3	3	1	4	2
4	4	3	2	1

Fact:

For prime p, the set $Z_p^* = Z_p \setminus \{0\}$

Proof:

It just follows from the definition!

For prime p, all 0 < x < p satisfy gcd(x,p) = 1

Euler Phi Function ϕ (n)

 $\phi(n)$ = size of Z_n^* = number of 1 \leq k < n that are relatively prime to n.

$$\begin{array}{c} \text{p prime} \\ \Rightarrow Z_p^{\;\star} \text{= } \{1,2,3,...,\text{p-1}\} \\ \Rightarrow \varphi \text{ (p) = p-1} \end{array}$$

$$Z_{12}^* = \{0 \le x < 12 \mid gcd(x,12) = 1\}$$

= \{1,5,7,11\}

φ(12) = 4

* 12	1	5	7	11
1	1	5	7	11
5	5	1	11	7
7	7	11	1	5
11	11	7	5	1

Theorem: if p,q distinct primes then $\phi(pq) = (p-1)(q-1)$

How about p = 3, q = 5?

Theorem: if p,q distinct primes then $\phi(pq) = (p-1)(q-1)$

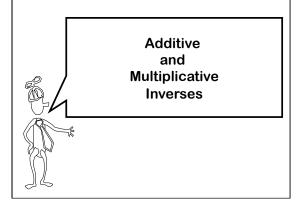
pq = # of numbers from 1 to pq

p = # of multiples of q up to pq

q = # of multiples of p up to pq

1 = # of multiple of both p and q up to pq

$$\phi(pq) = pq - p - q + 1 = (p-1)(q-1)$$



Additive inverse of a mod n = number b such that a+b=0 (mod n)

What is the additive inverse of a = 342952340 in $Z_{4230493243}$?

Answer: n – a = 4230493243-342952340 =3887540903

Multiplicative inverse of a mod n = number b such that a*b=1 (mod n)

Remember, only defined for numbers a in $\mathbf{Z_n}^*$

Multiplicative inverse of a mod n = number b such that a*b=1 (mod n)

What is the multiplicative inverse of a = 342952340 in $Z^*_{4230493243}$?

Answer: a⁻¹ = 583739113

How do you find multiplicative inverses <u>fast</u>?

Theorem: given positive integers X, Y, there exist integers r, s such that r X + s Y = gcd(X, Y)

and we can find these integers fast!

Now take n, and a εZ_n^*

gcd(a, n)? a in $Z_n^* \Rightarrow gcd(a, n) = 1$

suppose ra + sn = 1

then ra $\equiv_n 1$

so, $r = a^{-1} \mod n$

Theorem: given positive integers X, Y, there exist integers r, s such that r X + s Y = gcd(X, Y)

and we can find these integers fast!

How?

Extended Euclid Algorithm

Euclid's Algorithm for GCD

Euclid(A,B)

If B=0 then return A

else return Euclid(B, A mod B)

Euclid(67,29) $67 - 2*29 = 67 \mod 29 = 9$ Euclid(29,9) $29 - 3*9 = 29 \mod 9 = 2$ Euclid(9,2) $9 - 4*2 = 9 \mod 2 = 1$ Euclid(2,1) $2 - 2*1 = 2 \mod 1 = 0$

Euclid(1,0) outputs 1

Proof that Euclid is correct

Euclid(A,B)

If B=0 then return A

else return Euclid(B, A mod B)

Let $G = \{g \mid g|A \text{ and } g|B\}$

The GCD(A,B) is the maximum element of G.

Let $G' = \{g \mid g \mid B \text{ and } g \mid (A \text{ mod } B)\}$

Claim: G = G'

G'=G, because consder x in G.

Then x|A and x|B. Therefore x|(A±B), and

 $x|(A\pm 2B)\dots$ But A mod B is just A+kB for some integer k. Similarly if x is

in G' then x is in G.

This combined with the base case completes the proof. QED.

Extended Euclid Algorithm

Let <r,s> denote the number r*67 + s*29.
Calculate all intermediate values in this representation.

67=<1,0> 29=<0,1>

Euclid(1,0) outputs 1 = 13*67 - 30*29

Ocaml code for these algorithms

let rec gcd a b =
if b=0 then a else gcd b (a mod b)

let rec euclid a b =
if b=0 then (a,1,0) else
let q = a/b in
let r = a mod b in
let (g, i, j) = euclid b r in (g, j, i-j*q)

Notes: This returns (g,i,j) where g is the GCD(a,b) and i and j are such that g=ia+jb.

It works because $r = a-q^*b$ and $g = i^*b + j^*r \rightarrow g = i^*b + j^*(a-q^*b) \rightarrow g = j^*a + (i-j^*q) * b$

(* this is a proper mod function which is in [0...b-1] *)

let (%) a b = let x = a mod b in if x>=0 then x else x+b

let inverse a n =

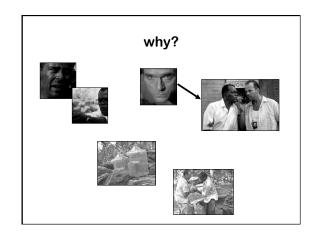
let (g, i, j) = euclid a n in (* g = i*a + j*n *)

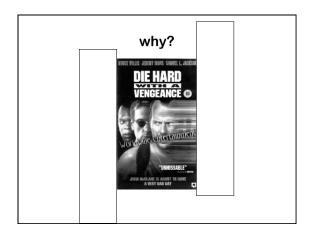
if g != 1 then 0 else i % n

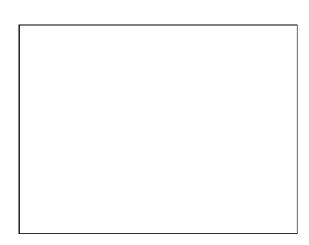
Finally, a puzzle...

You have a 5 gallon bottle, a 3 gallon bottle, and lots of water.

How can you measure out exactly 4 gallons?







Diophantine equations

Does the equality 3x + 5y = 4 have a solution where x,y are integers?

New bottles of water puzzle

You have a 6 gallon bottle, a 3 gallon bottle, and lots of water.

How can you measure out exactly 4 gallons?

Invariant

Suppose stage of system is given by (L,S) (L gallons in larger one, S in smaller)

Set of valid moves

- 1. empty out either bottle
- 2. fill up bottle (completely) from water source
- 3. pour bottle into other until first one empty
- 4. pour bottle into other until second one full

Invariant: L,S are both multiples of 3.

Generalized bottles of water

You have a P gallon bottle, a Q gallon bottle, and lots of water.

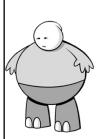
When can you measure out exactly 1 gallon?

Recall that

if P and Q have gcd(P, Q) = 1 then you can find integers a and b so that a*P + b*Q = 1

Suppose a is positive, then fill out P a times and empty out Q b times

(and move water from P to Q as needed...)



Here's What You Need to Know... Working modulo integer n

Definitions of Z_n , Z_n^* and their properties

Fundamental lemmas of +,-,*,/
When can you divide out

Extended Euclid Algorithm

How to calculate c⁻¹ mod n.

Euler phi function $\phi(n) = |Z_n^*|$