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15-251 
Great Theoretical Ideas 

in Computer Science 

Lecture 13 (October 5, 2010) 

Number Theory and 
Modular Arithmetic 

p-1 

≡p 1 

Divisibility: 
An integer a divides b (written “a|b”)   

if  and only if  there exists an 
Integer c such that c*a = b. 

Primes: 
A natural number p ≥ 2 such that 

among all the numbers 1,2…p 
only 1 and p divide p. 

Fundamental Theorem of  Arithmetic: 
Any integer greater than 1 can be 
uniquely written (up to the ordering 

of  the factors) as a product of  
prime numbers. 

Greatest Common Divisor: 
GCD(x,y) =  

greatest k ≥ 1 s.t. k|x and k|y. 

Least Common Multiple: 
LCM(x,y) =  

smallest k ≥ 1 s.t. x|k and y|k. 
You can use 

MAX(a,b) + MIN(a,b) = a+b 
applied appropriately to the 

factorizations of  x and y to prove 
the above fact… 

Fact: 
GCD(x,y) × LCM(x,y) = x × y 
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(a mod n) means the remainder  
when  a is divided by n.  

a mod n = r 
⇔ 

a = dn + r for some integer d 

Definition: Modular equivalence 
a ≡ b [mod n]  

⇔ (a mod n) = (b mod n) 
⇔ n | (a-b) 

Written as a ≡n b, and 
spoken 

“a and b are 
equivalent or 

congruent modulo n” 

31 ≡ 81 [mod 2] 
31 ≡2 81 

31 ≡ 80 [mod 7] 
31 ≡7 80 

≡n is an equivalence relation 

In other words, it is 

Reflexive: a ≡n a 

Symmetric: (a ≡n b) ⇒ (b ≡n a) 

Transitive: (a ≡n b and b ≡n c) ⇒ (a ≡n c) 

≡n induces a natural partition of  the 
integers into n “residue” classes.  

(“residue” = what left over = “remainder”) 

Define residue class  
[k] = the set of  all integers that 

are congruent to k modulo n. 

Residue Classes Mod 3: 

[0]  = { …, -6, -3, 0, 3, 6, ..} 
[1]  = { …, -5, -2, 1, 4, 7, ..} 
[2]  = { …, -4, -1, 2, 5, 8, ..} 

 [-6] = { …, -6, -3, 0, 3, 6, ..} 
[7]  = { …, -5, -2, 1, 4, 7, ..} 
[-1] = { …, -4, -1, 2, 5, 8, ..} 

= [0] 
= [1] 
= [2] 

Why do we care about these  
residue classes? 

Because we can replace any member  
of  a residue class with another member 

when doing addition or multiplication mod n 
and the answer will not change 

To calculate: 249 *  504  mod 251 

just do      -2 * 2  = -4 = 247 

We also care about it because computers do 
arithmetic modulo n, where n is 2^32 or 2^64. 
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Fundamental lemma of   
plus and times mod n: 

If  (x ≡n y) and (a ≡n b). Then 

1)  x + a ≡n y + b 
2)  x * a ≡n y * b 

Proof  of  2: xa = yb (mod n) 
(The other proof  is similar…) 

x≡ny iff  x = i n + y  for some integer i   

a≡nb iff  a = j n + b  for some integer j   

xa = (i n + y)(j n + b) = n(ijn+ib+jy) + yb   

≡nyb  

Another Simple Fact:  
If  (x ≡n y) and (k|n), then: x ≡k y 

Example: 10 ≡6 16 ⇒ 10 ≡3 16   

Proof: 
x ≡n y  iff  x = in + y for some integer i 

Let j=n/k, or n=jk  Then we have: 

x = ijk + y 

x = (ij)k + y   therefore x ≡k y    

A Unique Representation System 
Modulo n: 

We pick one representative from  
each residue class and do all our 

calculations using these representatives. 

Unsurprisingly, we use 0, 1, 2, …, n-1 

Unique representation system mod 3 

Finite set S = {0, 1, 2} 

+ and * defined on S: 

+ 0 1 2 

0 0 1 2 

1 1 2 0 

2 2 0 1 

* 0 1 2 

0 0 0 0 

1 0 1 2 

2 0 2 1 

Unique representation system mod 4 

Finite set S = {0, 1, 2, 3} 

+ and * defined on S: 

+ 0 1 2 3 

0 0 1 2 3 

1 1 2 3 0 

2 2 3 0 1 

3 3 0 1 2 

* 0 1 2 3 

0 0 0 0 0 

1 0 1 2 3 

2 0 2 0 2 

3 0 3 2 1 
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Notation 

Define operations +n and *n: 

a +n b = (a + b mod n)	


a *n b = (a * b mod n) 

Zn = {0, 1, 2, …, n-1} 
[“Closed”]  

x, y ∈ Zn  ⇒ x +n y ∈ Zn 

[“Associative”]  
x, y, z ∈ Zn ⇒ (x +n y) +n z = x +n (y +n z) 

[“Commutative”] 
x, y ∈ Zn ⇒ x +n y  = y +n x  

Some properties of  the operation +n 

Similar properties also hold for *n 

Unique representation system mod 3 

Finite set S = {0, 1, 2} 

+ and * defined on S: 

+ 0 1 2 

0 0 1 2 

1 1 2 0 

2 2 0 1 

* 0 1 2 

0 0 0 0 

1 0 1 2 

2 0 2 1 

Unique representation system mod 3 

Finite set Z3 = {0, 1, 2} 

two associative, commutative operators on Z3 

Unique representation system mod 3 

Finite set Z3 = {0, 1, 2} 

two associative, commutative operators on Z3 

+ 0 1 2 

0 0 1 2 

1 1 2 0 

2 2 0 1 

* 0 1 2 

0 0 0 0 

1 0 1 2 

2 0 2 1 

Unique representation system mod 2 

Finite set Z2 = {0, 1} 

two associative, commutative operators on Z2 

+2 0 1 

0 0 1 

1 1 0 

*2 0 1 

0 0 0 

1 0 1 

XOR AND 
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Z5 = {0,1,2,3,4} 

+ 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

* 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3

2 0

3 0 3 1 4

4 0 4 3 2

Z6 = {0,1,2,3,4,5} 

+ 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 2 3 4 5 0

2 2 3 4 5 0 1

3 3 4 5 0 1 2

4 4 5 0 1 2 3

5 5 0 1 2 3 4

* 0 1 2 3 4 5

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 0 2

3 0

4 0 4 2 0 4

5 0 5 4 3 2

For addition tables, rows and columns 
always are a permutation of  Zn 

+ 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 2 3 4 5 0

2 2 3 4 5 0 1

3 3 4 5 0 1 2

4 4 5 0 1 2 3

5 5 0 1 2 3 4

+ 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

(A group as we’ll see later in the course.) 

For multiplication, some rows and columns 
are permutation of  Zn, while others aren’t… 

* 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1

* 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 1 2 3 4 5

2 0 2 4 0 2 4

3 0 3 0 3 0 3

4 0 4 2 0 4 2

5 0 5 4 3 2 1

what’s happening here? 

For addition, the permutation property 
means you can solve, say, 

+ 0 1 2 3 4 5 

0 0 1 2 3 4 5 

1 1 2 3 4 5 0 

2 2 3 4 5 0 1 

3 3 4 5 0 1 2 

4 4 5 0 1 2 3 

5 5 0 1 2 3 4 

4 + ___  = 1 (mod 6) 

Subtraction mod n is  
well-defined 

Each row has a 0, 
hence –a is that element 

such that a + (-a) = 0 

⇒ a – b = a + (-b) 

4 + ___  = x (mod 6) for any x in Z6 

For multiplication, if  a row has a permutation 
you can solve, say, 

5 * ___  = 4 (mod 6) 

* 0 1 2 3 4 5 

0 0 0 0 0 0 0 

1 0 1 2 3 4 5 

2 0 2 4 0 2 4 

3 0 3 0 3 0 3 

4 0 4 2 0 4 2 

5 0 5 4 3 2 1 

or,  5 * ___  = 1 (mod 6) 
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But if  the row does not have the permutation 
property, how do you solve 

3 * ___  = 4 (mod 6) 

* 0 1 2 3 4 5 

0 0 0 0 0 0 0 

1 0 1 2 3 4 5 

2 0 2 4 0 2 4 

3 0 3 0 3 0 3 

4 0 4 2 0 4 2 

5 0 5 4 3 2 1 

   3 * ___  = 3 (mod 6) 

no solutions! 

multiple solutions! 

3 * ___ = 1 (mod 6) 

no multiplicative 
inverse! 

Division 

If  you define 1/a (mod n) = a-1 (mod n)  
as the element b in Zn 

such that a * b = 1 (mod n) 

Then x/y (mod n)  
=  

x * 1/y (mod n) 

Hence we can divide out by only the y’s 
for which 1/y is defined! 

* 0 1 2 3 4 5 6 7 

0 

1 

2 

3 

4 

5 

6 

7 

consider *8 on Z8 

And which rows do have the permutation property? 

0 0 0 0 0 0 0 0 

1 2 3 4 5 6 7 0 

0 

0 

0 

0 

0 

0 

2 

3 

4 

5 

6 

7 

A visual way to understand  
multiplication  

and the  
“permutation property”. 

hit all numbers ⇔ row 3 has the “permutation property” 

There are exactly 8 distinct  
multiples of  3 modulo 8. 

0 

1 

2 

3 

4 

5 

6 

7 

There are exactly 2 distinct  
multiples of  4 modulo 8. 

row 4 does not have “permutation property” for *8 on Z8 

0 

1 

2 

3 

4 

5 

6 

7 
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There are exactly 1 distinct  
multiples of  8 modulo 8. 

0 

1 

2 

3 

4 

5 

6 

7 

There are exactly 4 distinct  
multiples of  6 modulo 8. 

0 

1 

2 

3 

4 

5 

6 

7 

What’s the pattern? 

exactly 8 distinct multiples of 3 modulo 8. 

exactly 2 distinct multiples of 4 modulo 8 
exactly 1 distinct multiple of 8 modulo 8 

exactly 4 distinct multiples of 6 modulo 8 

exactly __________________ distinct 

multiples  of x modulo y 

Theorem: There are exactly  
LCM(n,c)/c = n/GCD(c,n) 

distinct multiples of  c modulo n 

Theorem: There are exactly k = n/GCD(c,n) 
distinct multiples of  c modulo n, and these  
multiples are { c*i mod n | 0 ≤ i < k } 

Proof: 
Clearly, c/GCD(c,n) ≥ 1  is a whole number 

ck =  cn/GCD(c,n) = n(c/GCD(c,n)) ≡n 0 
⇒ There are ≤ k distinct multiples of  c mod n:  

 c*0, c*1, c*2, …, c*(k-1)  

Also, k = factors of  n missing from c  

⇒  cx ≡n cy ⇔ n|c(x-y) ⇒ k|(x-y) ⇒ x-y ≥ k 
⇒  There are ≥ k multiples of  c.   

Hence exactly k. 

Theorem: There are exactly  
LCM(n,c)/c = n/GCD(c,n) 

distinct multiples of  c modulo n 

Hence, 
only those values of  c with GCD(c,n) = 1 

have n distinct multiples 
(i.e., the permutation property for *n on Zn) 

And remember, permutation property means 
you can divide out by c (working mod n) 
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Fundamental lemma of  division 
modulo n: 

if  GCD(c,n)=1, then ca ≡n cb ⇒ a ≡n b  

Proof: 

c*1, c*2, c*3, …, c*(n-1) are all in distinct 
residue classes modulo n. 

Q E D. 

If  you want to extend to  
general c and n 

ca ≡n cb ⇒ a ≡n/gcd(c,n) b  

Fundamental lemmas mod n: 

If  (x ≡n y) and (a ≡n b). Then 

1)  x + a ≡n y + b 
2)  x * a ≡n y * b 
3)  x - a ≡n y – b 

4)  cx ≡n cy ⇒ a ≡n b if  gcd(c,n)=1 

New definition: 

Zn
* = {x ∈ Zn | GCD(x,n) =1} 

Multiplication over this set Zn
*  

has the cancellation property. 

+ 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 2 3 4 5 0

2 2 3 4 5 0 1

3 3 4 5 0 1 2

4 4 5 0 1 2 3

5 5 0 1 2 3 4

* 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 1 2 3 4 5

2 0 2 4 0 2 4

3 0 3 0 3 0 3

4 0 4 2 0 4 2

5 0 5 4 3 2 1

Z6 = {0, 1,2,3,4,5} 
Z6

* = {1,5} 
Recall we proved that Zn was “closed” 

under addition and multiplication? 

What about Zn
* under multiplication? 

Fact: if  a,b ε Zn
*, then ab (mod n) in Zn

*    

Proof: if  gcd(a,n) = gcd(b,n) = 1, 
then gcd(ab, n) = 1 
then gcd(ab mod n, n) = 1 

We’ve got closure 
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Z12
* = {0 ≤ x < 12 | gcd(x,12) = 1}  

= {1,5,7,11} 

*12 1 5 7 11 

1 1 5 7 11 

5 5 1 11 7 

7 7 11 1 5 

11 11 7 5 1 

Z15
* 

* 1 2 4 7 8 11 13 14 

1 1 2 4 7 8 11 13 14 

2 2 4 8 14 1 7 11 13 

4 4 8 1 13 2 14 7 11 

7 7 14 13 4 11 2 1 8 

8 8 1 2 11 4 13 14 7 

11 11 7 14 2 13 1 8 4 

13 13 11 7 1 14 8 4 2 

14 14 13 11 8 7 4 2 1 

*5 1 2 3 4 

1 1 2 3 4 

2 2 4 1 3 

3 3 1 4 2 

4 4 3 2 1 

= Z5 \ {0} Z5
* = {1,2,3,4} Fact: 

For prime p, the set Zp
* = Zp \ {0} 

Proof: 
It just follows from the definition! 

For prime p, all 0 < x < p satisfy  
gcd(x,p) = 1 

Euler Phi Function φ (n)  

φ(n) = size of  Zn
*  

=  number of  1 ≤ k < n that  
are relatively prime to n. 

p prime  
⇒ Zp

*= {1,2,3,…,p-1} 
⇒ φ (p) = p-1 

Z12
* = {0 ≤ x < 12 | gcd(x,12) = 1}  

= {1,5,7,11} 

*12 1 5 7 11 

1 1 5 7 11 

5 5 1 11 7 

7 7 11 1 5 

11 11 7 5 1 

φ(12) = 4 
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Theorem: if p,q distinct primes then 
φ(pq) = (p-1)(q-1)  

How about p = 3, q = 5? 

Theorem: if p,q distinct primes then 
φ(pq) = (p-1)(q-1)  

pq = # of  numbers from 1 to pq 
p   = # of  multiples of  q up to pq 
q   = # of  multiples of  p up to pq 

1   = # of  multiple of  both p and q up to pq 

φ(pq) = pq – p – q + 1 = (p-1)(q-1) 

Additive  
and  

Multiplicative 
Inverses 

Additive inverse of  a mod n 
= number b such that a+b=0 (mod n) 

What is the additive inverse  
of  a = 342952340 in 

Z4230493243 ? 

Answer: n – a  
= 4230493243-342952340 

=3887540903 

Multiplicative inverse of  a mod n 
= number b such that a*b=1 (mod n) 

Remember, 
only defined for numbers a in Zn

* 

Multiplicative inverse of  a mod n 
= number b such that a*b=1 (mod n) 

What is the multiplicative inverse  
of  a = 342952340 in 

Z4230493243 ? 

Answer: a-1 = 583739113 

* 
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How do you find  
multiplicative inverses  

fast ? 

Theorem: given positive integers X, Y, there 
exist integers r, s such that 

r X + s Y = gcd(X, Y) 

and we can find these integers fast! 

Now take n, and a ε Zn
* 

gcd(a, n) ? a in Zn
* ⇒ gcd(a, n) = 1 

suppose ra + sn = 1 

then ra ≡n 1 

so, r = a-1 mod n 

Extended Euclid Algorithm 

Theorem: given positive integers X, Y, there 
exist integers r, s such that 

r X + s Y = gcd(X, Y) 

and we can find these integers fast! 

How? 
Euclid(67,29)   67 – 2*29 = 67 mod 29 = 9 
Euclid(29,9)   29 – 3*9 = 29 mod 9   = 2 
Euclid(9,2)    9 – 4*2 = 9 mod 2     = 1 
Euclid(2,1)    2 – 2*1 = 2 mod 1      = 0 
Euclid(1,0) outputs 1 

Euclid(A,B) 

If  B=0 then return A 
      else return Euclid(B, A mod B) 

Euclid’s Algorithm for GCD 

Proof  that Euclid is correct 

Euclid(A,B) 

If  B=0 then return A 
      else return Euclid(B, A mod B) 

Let G = {g |   g|A and g|B} 
The GCD(A,B) is the maximum element of  G. 
Let G’ = {g |   g|B and g|(A mod B)} 

G’=G, because consder x in G.   
Then x|A and x|B.  Therefore x|(A±B), and 
x|(A±2B) … But A mod B is just A+kB for some integer k. Similarly if  x is 
in G’ then x is in G. 

This combined with the base case completes the proof.         QED.  

Claim: G = G’ 

Extended Euclid Algorithm 

Let <r,s> denote the number r*67 + s*29.  
Calculate all intermediate values in this 

representation. 

67=<1,0>     29=<0,1>  
      

Euclid(67,29)  9=<1,0> – 2*<0,1>   9 =<1,-2> 
Euclid(29,9)  2=<0,1> – 3*<1,-2>  2=<-3,7> 
Euclid(9,2)   1=<1,-2> – 4*<-3,7>  1=<13,-30> 
Euclid(2,1)   0=<-3,7> – 2*<13,-30>  0=<-29,67>  

Euclid(1,0) outputs   1 = 13*67 – 30*29 
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let rec gcd a b =   
  if  b=0 then a else gcd b (a mod b) 

Ocaml code for these algorithms 

let rec euclid a b =   
  if  b=0 then (a,1,0) else   
    let q = a/b in  
    let r = a mod b in               
    let (g, i, j) = euclid b r in (g, j, i-j*q)  

Notes: This returns (g,i,j) where g is the GCD(a,b) and i 
and j are such that g=ia+jb.   

It works because r = a-q*b and 
g = i*b + j*r   g = i*b + j*(a-q*b)   g = j*a + (i-j*q) * b 

(* this is a proper mod function which is in [0...b-1] *) 

let (%) a b = let x = a mod b in if  x>=0 then x else x+b  

let inverse a n =   
  let (g, i, j) = euclid a n in   (* g = i*a + j*n *)  
    if  g != 1 then 0 else i % n  

Finally, a puzzle… 

You have a 5 gallon bottle,  
a 3 gallon bottle,  
and lots of  water. 

How can you measure out 
exactly 4 gallons? 

why? 

why? 
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Diophantine equations 

Does the equality  
3x + 5y = 4 

have a solution where x,y are integers? 

New bottles of water puzzle 

You have a 6 gallon bottle,  
a 3 gallon bottle,  
and lots of  water. 

How can you measure out 
exactly 4 gallons? 

Invariant 

Suppose stage of  system is given by (L,S) 
 (L gallons in larger one, S in smaller) 

Invariant: L,S are both multiples of  3. 

Set of  valid moves 
1.  empty out either bottle 
2.  fill up bottle (completely) from water source 
3.  pour bottle into other until first one empty 
4.  pour bottle into other until second one full 

Generalized bottles of water 

You have a P gallon bottle,  
a Q gallon bottle,  
and lots of  water. 

When can you measure out 
exactly 1 gallon? 

Recall that 

if  P and Q have gcd(P, Q) = 1 
then you can find integers a and b so that 

 a*P + b*Q = 1 

Suppose a is positive, then fill out P a times 
and empty out Q b times 

(and move water from P to Q as needed…) 

Working modulo integer n 

Definitions of  Zn, Zn
* 

    and their properties 

Fundamental lemmas of  +,-,*,/ 

     When can you divide out 

Extended Euclid Algorithm 
     How to calculate c-1 mod n. 

Euler phi function ϕ(n) = |Zn
*| 

Here’s What 
You Need to 

Know… 


