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Divisibility:
An integer a divides b (written “a|b”)
if and only if there exists an
Integer c such that c*a=b.

Primes:
A natural number p > 2 such that
among all the numbers 1,2...p
only 1 and p divide p.

Fundamental Theorem of Arithmetic:
Any integer greater than 1 can be
uniquely written (up to the ordering

of the factors) as a product of
prime numbers.

Greatest Common Divisor:
GCD(x,y) =
greatest k > 1 s.t. k|x and k|y.

Least Common Multiple:
LCM(x,y) =
smallest k > 1 s.t. x|k and y|k.

Fact:
GCD(x,y) x LCM(x,y) =x x y

You can use
MAX(a,b) + MIN(a,b) = a+b
applied appropriately to the
factorizations of x and y to prove
the above fact...




(a mod n) means the remainder
when ais divided by n.

amodn=r
i
a=dn +r for some integer d

Definition: Modular equivalence
a=b[modn]
< (amod n) = (b mod n)

=n| (a-%

Written as a = b, and
spoken
“aand b are
equivalent or
congruent modulo n”

31 -81 [mod 2]
31 -, 81

31 -80 [mod 7]
31-,80

=, is an equivalence relation

In other words, it is
Reflexive: a=, a
Symmetric: (a=,b) = (b=, a)

Transitive: (a=,bandb=¢c)=(a=,c)

=, induces a natural partition of the
integers into n “residue” classes.

(“residue” = what left over = “remainder”)

Define residue class
[k] = the set of all integers that
are congruent to k modulo n.

Residue Classes Mod 3:

[0] =¢{...,-6,-3,0,3,6, ..}

11 ={...,-5,-2,1,4,7,.}

[2] ={...,-4,1,2,5,8,.
[-6]1={...,-6,-3,0,3,6,.} =[0]
[71={...,-5,-2,1,4,7,.}) =[1]
[-11={...,-4,-1,2,5,8,..} =[2]

Why do we care about these
residue classes?
Because we can replace any member
of aresidue class with another member
when doing addition or multiplication mod n
and the answer will not change

To calculate: 249 * 504 mod 251
justdo -2*2 =-4=247

We also care about it because computers do
arithmetic modulo n, where n is 2432 or 2264.




Fundamental lemma of
plus and times mod n:

If (x=,y)and (a=,b). Then

1) x+a=y+b
2)x*a=,y*b

—

Proof of 2: xa =yb (mod n)

(The other proof is similar...)

x=,y iff x=in+y for some integer i
a=biffa=jn+b for someintegerj

xa = (i n +y)(j n + b) = n(ijn+ib+jy) + yb
=yb

Another Simple Fact:
If (x =, y) and (k|n), then: x =, y

Example: 10 ;16 =10 =; 16

Proof:
x =,y iff x=in+y for some integeri
Let j=n/k, or n=jk Then we have:
x=ijk+y

x=(ij)k+y thereforex=,y

A Unique Representation System
Modulo n:

We pick one representative from
each residue class and do all our
calculations using these representatives.

Unsurprisingly, we use 0,1, 2, ..., n-1

Unique representation system mod 3

Finite set S ={0, 1, 2}

+ and * defined on S:

Unique representation system mod 4

Finite setS={0,1, 2, 3}

+ and * defined on S:
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Notation

Z,={0,1,2, ...,n-1}

Define operations +, and *:

a+, b= (a+bmodn)
a* b=(a*bmodn)

Some properties of the operation +,

[“Closed”]
X, YEZ, =>x+,YEZ,

[“Associative”]
XY, ZEZ, = (x+,y) +,z=x+, (Y +,2)

[“Commutative™]
X, YEZ, =X+ Yy =y+ X

Similar properties also hold for *,,

Unique representation system mod 3

Finite set$={0, 1, 2}

+ and * defined on S:
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Unique representation system mod 3

Finite setZ;={0, 1, 2}

two associative, commutative operators on Z;

Unique representation system mod 3

Finite set Z, = {0, 1, 2}

two associative, commutative operators on Z;

Unique representation system mod 2

Finite setZ, = {0, 1}

two associative, commutative operators on Z,
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Z5 = {0!1 !2’3’4}

Z,={0,1,2,3,4,5}

+ |0 1 2 34|65 * 0 1 2 3|4|5
0|0 1 2 34|65 0 [ ] 0 0|0

1 1 2 3(4|5]|0 1 0 1 2 3|4

2 2 3|45 0 1 2 02402
3|3 |4 5|0 1 2 3 0

4|14 |5]|0 1 2 |3 410|442 0| 4
5|6 0 1 2 3|4 5 0 54|32

For multiplication, some rows and columns
are permutation of Z,, while others aren’t...

* 0 1 2 3 4 * 0|1 2 | 3|4|5

o oo lol 0ol o ofofofofofo]o

1 0 1 2 3 4 1 0 1 2 3| 4 5

what’s happening here?

+ 0 1 2 3 4 * 0 4
0 0 1 2 3 4 0 0 0
1 1 2 3 4 0 1 0
2 2 3 4 0 1 2 0
3 3 4 0 1 2 3 0
4 4 0 1 2 3 4 0
For addition tables, rows and columns
always are a permutation of Z,
(A group as we’ll see later in the course.)
+ 0 4 5
+ 0 1 2 3 4 0 0 4 5
0 0 1 2 3 4 1 1 5 0
1 1 2 3 4 0 2 2 0 1
2 2 3 4 0 1 3 3 1 2
3 3 4 0 1 2 4 4 2 3
4 4 0 1 2 3 5 5 3 4
For addition, the permutation property
means you can solve, say,
4+___ =1 (mod 6)
4+ __ =x(mod 6)for any xin Z,
Subtractionmodnis|[ + [ o [ 1 | 2] 3 | 2 | 5
well-defined ol o] 1] 2]3]a]s
1 1 2 3 4 5 0
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such thata+(-a)=0 s 8 4 5 0 i 2
4 4 5 0 1 2 3
=a-b=a+(-b) 5 | 5|0 1] 2 3 | 4

For multiplication, if a row has a permutation
you can solve, say,

5§* =4 (mod6)
or, 5*___ =1 (mod 6)
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But if the row does not have the permutation
property, how do you solve

3% =4(mod6)
3% =3(mod6)

*

3*___=1(mod 6)

no multiplicative
inverse!
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Division
If you define 1/a (mod n) = a' (mod n)

as the elementbin Z,
such thata*b =1 (mod n)

Then x/y (mod n)
x*1ly (mod n)

Hence we can divide out by only the y’s
for which 1/y is defined!

And which rows do have the permutation property?

*

N|lojla|s|lw|N|[alo |~
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consider *3 on Zg

A visual way to understand
multiplication
and the
“permutation property”.

There are exactly 8 distinct
multiples of 3 modulo 8.

hit all numbers < row 3 has the “permutation property”

There are exactly 2 distinct
multiples of 4 modulo 8.

row 4 does not have “permutation property” for *; on Zg




There are exactly 1 distinct
» multiples of 8 modulo 8.

(4

There are exactly 4 distinct
multiples of 6 modulo 8.

)

Ie
N

What'’s the pattern?

exactly 8 distinct multiples of 3 modulo 8.
exactly 2 distinct multiples of 4 modulo 8
exactly 1 distinct multiple of 8 modulo 8

exactly 4 distinct multiples of 6 modulo 8

exactly distinct

multiples of x modulo y

Theorem: There are exactly
LCM(n,c)/c = n/IGCD(c,n)
distinct multiples of ¢ modulo n

Theorem: There are exactly k = n/GCD(c,n)
distinct multiples of ¢ modulo n, and these
multiples are {c*imodn|0<i<k}

Proof:
Clearly, c/GCD(c,n) 21 is a whole number

ck = cn/GCD(c,n) = n(c/GCD(c,n)) =, 0
=There are < k distinct multiples of ¢ mod n:
c*0, c*1, c*2, ..., c*(k-1)

Also, k = factors of n missing from c
= cX =, ¢y < n|c(x-y) = Kk|(x-y) = x-y 2 k

= There are = k multiples of c.

Hence exactly k.

Theorem: There are exactly
LCM(n,c)/c =n/GCD(c,n)
distinct multiples of ¢ modulo n

Hence,
only those values of ¢ with GCD(c,n) =1
have n distinct multiples

i.e., the permutation property for * on Z
n n

And remember, permutation property means
you can divide out by c (working mod n)




Fundamental lemma of division
modulo n:
if GCD(c,n)=1,thenca=,cb=a=,b
Proof:
c*1, ¢*2, ¢*3, ..., c*(n-1) are all in distinct
residue classes modulo n.

QED.

If you want to extend to
generalc and n

cas,cb=a =nigcd(c,n) b

Fundamental lemmas mod n:
If (x=,y)and (a=,b). Then

1)x+a=,y+b

2)x*a=,y*b

3)x-a=,y-b
4)cx=,cy=a=,b

New definition:

Z, ={xcZ,| GCD(x,n) =1}

Multiplication over this set Z,*
has the cancellation property.

26 = {0) 112)374,5}
Zg ={1,5}

We’ve got closure

Recall we proved that Z, was “closed”
under addition and multiplication?

What about Z* under multiplication?
Fact: if a,b € Z*, then ab (mod n) in Z*
Proof: if gcd(a,n) = gcd(b,n) =1,

then gcd(ab, n) =1
then gcd(ab mod n, n) =1




Z,,={0<x<12|gcd(x,12) = 1}

={1,5,7,11} * 1 2 4 7 8 | 11| 13 | 14
2 | a4 7 8 | 11| 13 | 14
4 | 8 | 14 | 1 7 | 11| 13
Yo | 1|58 | 7T |1
8 | 1 |13 | 2 |14 | 7 | 11

-
N

1| 4 | 13|14

13 13 11 7 1 14 8

14 14 13 11 8 7 4 2

Z;"={1,2,3,4} =Z5\{0} Fact:
For prime p, the set 2" =Z_\ {0}
| 1| 2] 3|4
1 1 2 3 4 . Proof: e
2 2 a1 s It just follows from the definition!
3|38 |1 ] 4|2 X .
R EERERE For prime p, all 0 < x < p satisfy

gcd(x,p) =1

Euler Phi Function ¢ (n
¢ ) Z2,,,={0<x<12|gcd(x,12) = 1}

= si . ={1,5,7,11}
¢(n) = size of Z,,

= number of 1 <k <n that
are relatively prime to n. N

2| 1| 5| 7 |1

1 1 5 7 11

p prime
:Zp*= {1,2,3,...,p-1} 5 5 1 11
= ¢ (p) = p-1 707 |11 1 5




Theorem: if p,q distinct primes then
o(pq) = (p-1)(a-1)

How aboutp =3, q =57

Theorem: if p,q distinct primes then
o(pq) = (p-1)(9-1)

pg = # of numbers from 1 to pq
p =# of multiples of q up to pq
q =# of multiples of p up to pq
1 =# of multiple of both p and q up to pq

d(pa) =pa-p-q+1=(p-1)(9-1)

Additive
and

Multiplicative
L@j Inverses

Additive inverse of a mod n
= number b such that a+b=0 (mod n)

What is the additive inverse
of a=342952340in

Z4230493243 ?

Answer:n-a
=4230493243-342952340
=3887540903

Multiplicative inverse of a mod n
= number b such that a*b=1 (mod n)

Remember,
only defined for numbers ain Z*

Multiplicative inverse of amod n
= number b such that a*b=1 (mod n)

What is the multiplicative inverse
of a=342952340 in

*
24230493243 ?

Answer: a' =583739113
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How do you find
multiplicative inverses
fast ?

Theorem: given positive integers X, Y, there
exist integers r, s such that

rX+sY=gcd(X,Y)
and we can find these integers fast!
Now taken,andacZ.*
gcd(a, n) ? ainZ*=gcd(a,n)=1

supposera+sn=1
thenra=,1

so,r=a’'modn

Theorem: given positive integers X, Y, there
exist integers r, s such that

rX+sY=gcd(X,Y)

and we can find these integers fast!

How?

Extended Euclid Algorithm

Euclid’s Algorithm for GCD

Euclid(A,B)
If B=0 then return A

else return Euclid(B, A mod B)

Euclid(67,29) 67-2*29=67mod 29=9
Euclid(29,9) 29-3*9=29mod9 =2
Euclid(9,2) 9-4*2=9mod2 =1
Euclid(2,1) 2-2"1=2mod1 =0

Euclid(1,0) outputs 1

Proof that Euclid is correct
Euclid(A,B)
If B=0 then return A

else return Euclid(B, A mod B)

LetG={g| g|Aandg|B}
The GCD(A,B) is the maximum element of G.
LetG’={g| g|B and g|(A mod B)}

Claim: G=G’

G’=G, because consder x in G.
Then x|A and x|B. Therefore x|(A%B), and

x|(A%2B) ... But A mod B is just A+kB for some integer k. Similarly if x is
in G’ thenxis in G.

This combined with the base case completes the proof. QED.

Extended Euclid Algorithm

Let <r,s> denote the number r*67 + s*29.
Calculate all intermediate values in this
representation.

67=<1,0> 29=<0,1>

Euclid(67,29) 9=<1,0> - 2*<0,1> 9=<1,-2>
Euclid(29,9) 2=<0,1> - 3*<1,-2> 2=<-3,7>
Euclid(9,2) 1=<1,-2> - 4*<-3,7> 1=<13,-30>
Euclid(2,1) 0=<-3,7>-2*<13,-30> 0=<-29,67>
Euclid(1,0) outputs 1=13*67-30*29

11



Ocaml code for these algorithms

letrecgcdab =
if b=0 then a else gcd b (a mod b)

letrec euclidab =
if b=0 then (a,1,0) else
letg=albin
letr=amodbin
let (g, i,j) =euclid brin (g, ], i-i*q)
Notes: This returns (g,i,j) where g is the GCD(a,b) and i
and j are such that g=ia+jb.

It works because r = a-q*b and
g=i*b+jr > g=i"b+j*(a-9*b) > g=j*a+(i4*a)*b

(* this is a proper mod function which is in [0...b-1] *)
let (%) ab =let x =amod b in if x>=0 then x else x+b
letinversean=

let(g,i,j)=euclidanin (*g=i*a+j*n%*)
ifg!=1thenOelsei%n

Finally, a puzzle...

You have a 5 gallon bottle,
a 3 gallon bottle,
and lots of water.

How can you measure out
exactly 4 gallons?

why?

NCE ©

E. i Cotertaint
JoraWotes 1

"UNMISSABLE" i
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Diophantine equations

Does the equality
3x+5y=4
have a solution where x,y are integers?

New bottles of water puzzle

You have a 6 gallon bottle,
a 3 gallon bottle,
and lots of water.

How can you measure out
exactly 4 gallons?

Invariant

Suppose stage of system is given by (L,S)

(L gallons in larger one, S in smaller)

Set of valid moves

1. empty out either bottle

2. fill up bottle (completely) from water source
3. pour bottle into other until first one empty
4. pour bottle into other until second one full

Invariant: L,S are both multiples of 3.

Generalized bottles of water

You have a P gallon bottle,
a Q gallon bottle,
and lots of water.

When can you measure out
exactly 1 gallon?

Recall that

if P and Q have gcd(P, Q) =1
then you can find integers a and b so that
a*P +b*Q =1

Suppose a is positive, then fill out P a times
and empty out Q b times

(and move water from P to Q as needed...)

Working modulo integer n

" Definitions of Z,, Z,.

n? =n
and their properties

Fundamental lemmas of +,-,*,/
When can you divide out

Extended Euclid Algorithm

How to calculate ¢™* mod n.
Here’s What

You Need to

E R . =12*
Know... uler phi function ¢(n) =|Z,.|
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