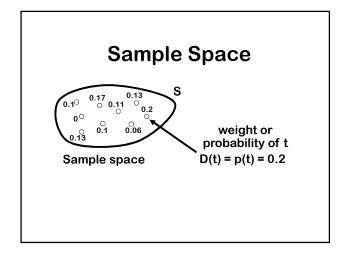
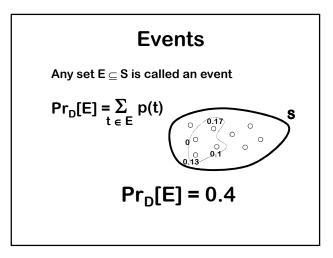

15-251

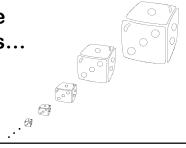
Great Theoretical Ideas in Computer Science


m


15-251

Setting Expectations for Computer Scientists

A few things from last time...


Binomials and Gaussians...

$$Pr(\text{see k heads in n flips}) = {n \choose k} p^k (1-p)^{n-k}$$

As n $\to \infty$, the plot for Pr(k heads) for p = $\frac{1}{2}$ tends to "bell curve" or "Gaussian/normal distribution"

Infinite sample spaces...

The "Geometric" Distribution

A bias-p coin is tossed until the first time that a head turns up.

sample space
$$S = \{H, TH, TTH, TTTH, ...\}$$

(shorthand $S = \{1, 2, 3, 4, ...\}$)

$$Pr(k) = (1-p)^{k-1} p$$

(sanity check)
$$\sum_{k\geq 1} \Pr(k) = \sum_{k\geq 1} (1-p)^{k-1} p$$

= $p * (1 + (1-p) + (1-p)^2 + ...)$
= $p * 1/(1-(1-p)) = 1$

The Geometric Distribution

A bias-p coin is tossed until the first time that a head turns up.

sample space
$$S = \{1, 2, 3, 4, ...\}$$

E = "first heads at even numbered flip"

$$Pr(E) = \sum_{x \text{ in } E} Pr(x) = \sum_{k \text{ even}} (1-p)^{k-1} p$$
$$= p(1-p) * (1 + (1-p)^2 + (1-p)^4 + ...)$$
$$= p(1-p) * 1/(1-(1-p)^2) = (1-p)/(2-p)$$

Expectations

"Expectation = (weighted) average"

What is the average height of a 251 student?

Sample space S = all 251 students

(implicit) probability distribution = uniform

average = (sum of heights in S)/|S|

= ($\sum_{t \text{ in } S}$ Height(t))/|S|

= $\sum_{t \text{ in S}} Pr(t) Height(t)$

Expectation

Given a probability distribution D = (S, Pr)

And any function f:S to reals

$$E[f] = \sum_{t \text{ in } S} f(t) Pr(t)$$

A function from the sample space to the reals is called a "random variable"

Random Variable

Let S be sample space in a probability distribution A Random Variable is a function from S to reals

Examples:

X = value of white die in a two-dice roll

X(3,4) = 3

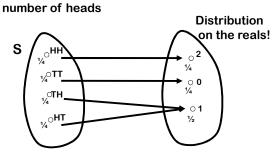
X(1,6) = 1

Y = sum of values of the two dice

Y(3,4) = 7

Y(1,6) = 7

Notational Conventions


Use letters like A, B, C for events

Use letters like X, Y, f, g for R.V.'s

R.V. = random variable

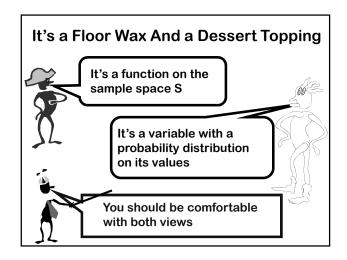
Two Coins Tossed

X: $\{TT, TH, HT, HH\} \rightarrow \{0, 1, 2\}$ counts the number of heads

Two Views of Random Variables

Think of a R.V. as

Input to the function is random


A function from S to the reals R

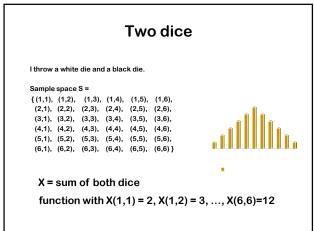
Or think of the induced distribution on R

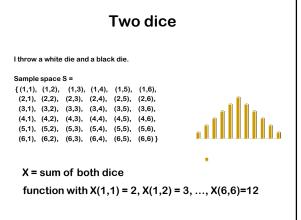
Randomness is "pushed" to the values of the function

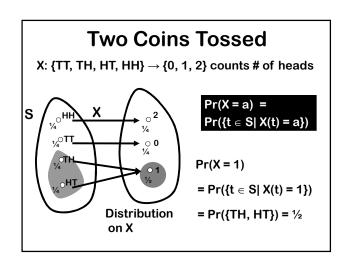
Given a distribution, a random variable transforms it into a distribution on reals

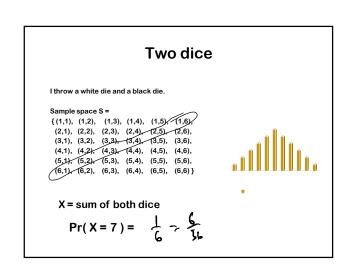
Two dice I throw a white die and a black die. Sample space S = { (1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), $(3,1),\ \ (3,2),\ \ (3,3),\ \ (3,4),\ \ (3,5),\ \ (3,6),$ (4,1), (4,2), (4,3), (4,4), (4,5), (4,6),(5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6)} X = sum of both dice function with X(1,1) = 2, X(1,2) = 3, ..., X(6,6)=12

From Random Variables to Events


Note that each event in the induced distribution


corresponds to some event in the original one.


For any random variable X and value a,


 $Pr(A) = Pr(X=a) = Pr(\{t \in S \mid X(t)=a\})$

we can define the event A that X = a

Definition: Expectation

The expectation, or expected value of a random variable X is written as E[X], and is

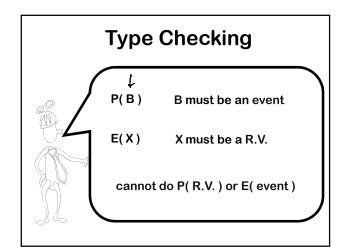
$$E[X] = \sum_{t \in S} Pr(t) X(t) = \sum_{k}^{t} k Pr[X = k]$$

X is a function on the sample space S

X has a prob. distribution on its values

(assuming X takes values in the naturals)

Quick $\sum_{t \in S} Pr(t) X(t) = \sum_{k} k Pr[X = k]$


A Quick Calculation...

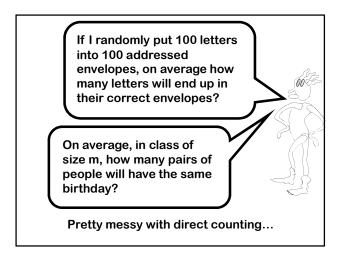
What if I flip a coin 3 times? What is the expected number of heads?

$$E[X] = (1/8) \times 0 + (3/8) \times 1 + (3/8) \times 2 + (1/8) \times 3 = 1.5$$

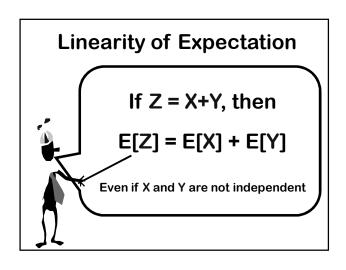
But Pr[X = 1.5] = 0

Moral: don't always expect the expected. Pr[X = E[X]] may be 0!

Operations on R.V.s


You can sum them, take differences, or do most other math operations...

E.g.,
$$(X + Y)(t) = X(t) + Y(t)$$

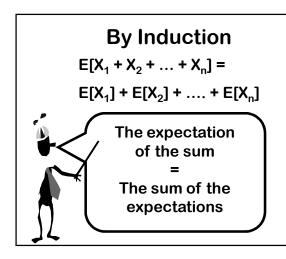

$$(X*Y)(t) = X(t) * Y(t)$$

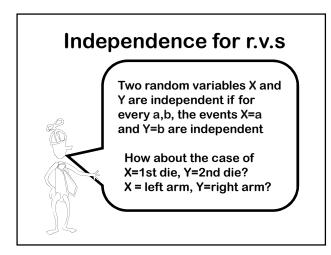
$$(X^{Y})(t) = X(t)^{Y(t)}$$

Random variables and expectations allow us to give elegant solutions to problems that seem really really messy...

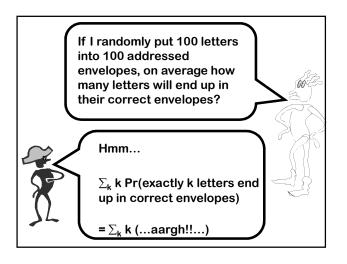
The new tool is called "Linearity of Expectation"

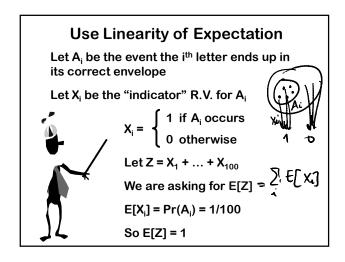
$$E[Z] = \sum_{t \in S} Pr[t] Z(t)$$

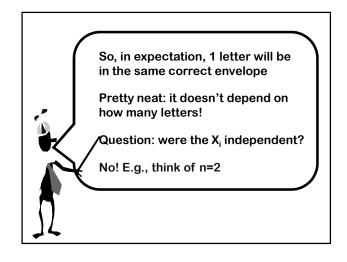

$$= \sum_{t \in S} Pr[t] (X(t) + Y(t))$$

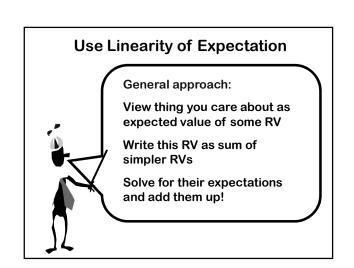

$$t \in S$$

$$= \sum_{t \in S} Pr[t] X(t) + \sum_{t \in S} Pr[t] Y(t))$$


$$t \in S$$


$$= E[X] + E[Y]$$





Let's test our Linearity of Expectation chops...

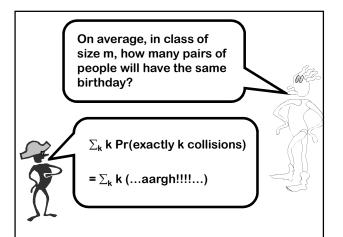
We flip n coins of bias p. What is the expected number of heads?

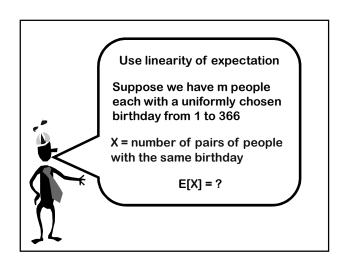
We could do this by summing

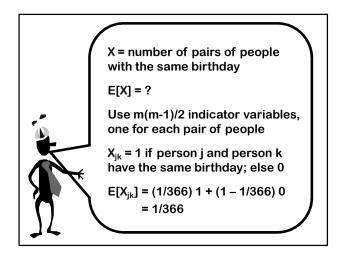
$$\sum_{k} k \operatorname{Pr}(X = k) = \sum_{k} k \binom{n}{k} p^{k} (1-p)^{n-k}$$
$$= n.p$$

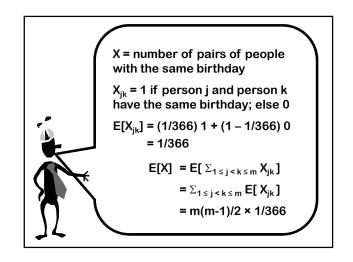
But now we know a better way!

Linearity of Expectation!


Let X = number of heads when n


#idependent coins of bias p are flipped


Break X into n simpler RVs:


$$X_{i} = \begin{cases} 1 & \text{if the ith coin is tails} \\ 0 & \text{if the ith coin is heads} \end{cases}$$

$$E[X] = E[\Sigma_i X_i] = \Sigma_i E[X_i] = \Sigma_i p = np$$

E.g., setting m = 23, we get

E[# pairs with same birthday]

= 0.691...

How does this compare to Pr[at least one pair has same birthday]? You pick a number $n \in [1..6]$. You roll 3 dice.

If any of them match n, you win \$1. Else you pay me \$1. Want to play?

 $X_i = 1$ if i-th die matches, 0 otherwise

Expected number of dice that match: $E[X_1+X_2+X_3] = 1/6+1/6+1/6 = \frac{1}{2}$.

BUT not same as Pr(at least one die matches).

Pr(at least one die matches) = 1 - Pr(none match)= $1 - (5/6)^3 = 0.416$.

Back to Lin. of Exp.

Using linearity of expectations in unexpected places...

A Puzzle

10% of the surface of a sphere is colored green, and the rest is colored blue. Show that now matter how the colors are arranged, it is possible to inscribe a cube in the sphere so that all of its vertices are blue.

Solution

Pick a random cube. (Note: any particular vertex is uniformly distributed over surface of sphere).

Let X_i = 1 if ith vertex is blue, 0 otherwise

Let
$$X = X_1 + X_2 + ... + X_8$$

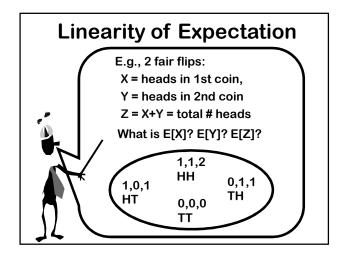
 $E[X_i] = P(X_i=1) = 9/10$

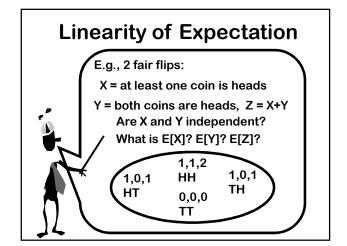
E[X] = 8*9/10 > 7

So, must have some cubes where X = 8.

The general principle we used here

Show the expected value of some random variable is "high"


Hence, there must be an outcome in the sample space where the random variable takes on a "high" value.


(Not everyone can be below the average.)

called "the probabilistic method"

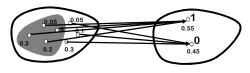
Some supplementary material

linearity of expectation: it holds even when the random variables are not independent

from random variables to events and vice versa

From Random Variables to Events

For any random variable X and value a, we can define the event A that X = a


$$Pr(A) = Pr(X=a) = Pr(\{t \in S | X(t)=a\})$$

From Events to Random Variables

For any event A, can define the "indicator random variable" for event A:

$$X_{A}(t) = \begin{cases} 1 & \text{if } t \in A \\ 0 & \text{if } t \notin A \end{cases}$$

 $E[X_A] = 1 \times Pr(X_A = 1) = Pr(A)$

How about multiplying expectations?

Multiplication of Expectations

A coin is tossed twice.

X_i = 1 if the ith toss is heads and 0 otherwise.

$$E[X_i] = 1/2$$

$$E[X_1X_2] = E[X_1]E[X_2] = 1/4$$

E[XY] = E[X]E[Y] if they are independent

Multiplication of Expectations

Consider a single toss of a coin.

X = 1 if heads turns up and 0 otherwise.

Set Y = 1 - X

 \boldsymbol{X} and \boldsymbol{Y} are

not

 $\mathsf{E}[\mathsf{X}] = \mathsf{E}[\mathsf{Y}] = 1/2$

independent

 $E[X Y] \neq E[X] E[Y]$

since XY = 0