15-251

Some AWESOME
Great Theoretical Ideas
in Computer Science
about Generating Functions

Generating Functions

Lecture 9 (September 21, 2010)

$$\sum_{n=0}^{\infty} x^n$$

What is a generating function and why would I use one?

$$\sum_{n=0}^{\infty} x^{n} \sum_{k=0}^{n} \binom{k}{n-k} = \sum_{k=0}^{\infty} \sum_{n=k}^{\infty} x^{n} \binom{k}{n-k}$$

$$\text{Take } r = n - k \text{ as the new dummy variable of inner summation}$$

$$\sum_{k=0}^{\infty} \sum_{n=k}^{\infty} x^{n} \binom{k}{n-k} = \sum_{k=0}^{\infty} \sum_{r=0}^{k} x^{r+k} \binom{k}{r}$$

$$\text{We recognize the inner sum as } x^{k} (1+x)^{k}$$

251 what is this i don't even

Representation

$$\langle 1, 1, 1, \ldots \rangle$$

$$a_{k} = 1$$

$$a_0 = 1$$

$$a_n = a_{n-1}$$

$$1 + 1x + 1x^2 + \dots = \frac{1}{1 - x}$$

What *IS* a Generating Function?

We'll just looking at a particular representation of sequences...

$$1 + 1x + 1x^{2} + \dots = \sum_{n=0}^{\infty} x^{n} = \frac{1}{1 - x}$$

In general, when a_n is a sequence...

$$\sum_{n=0}^{\infty} a_n x^n$$

Counting 1,2,3...

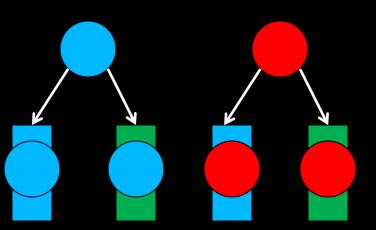
Examples plx...?

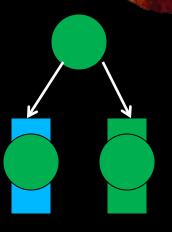
Let's talk about a particular counting problem from two lectures ago...

Danny owns 3 beanies and 2 ties. How many ways can he dress up in a beanie and a tie?

Choice 1

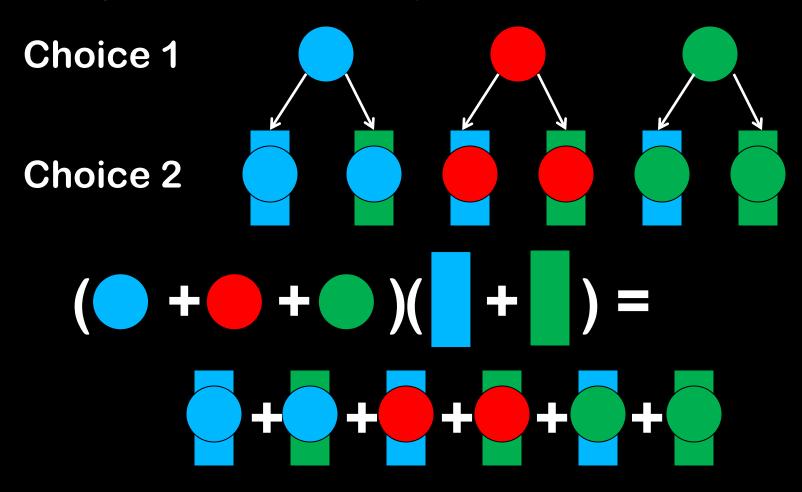
Choice 2





Counting 1,2,3...

Danny owns 3 beanies and 2 ties. How many ways can he dress up in a beanie and a tie?



Counting 1,2,3...

Danny owns 3 beanies and 2 ties. How many ways can he dress up in a beanie and a tie?

How many beanies are we choosing?
How many hats?

Since we only care about the NUMBER, we can replaces beanies and hats with 'x'

$$(x + x + x)(x + x) =$$

$$x^{2} + x^{2} + x^{2} + x^{2} + x^{2} + x^{2} = 6x^{2}$$

That is, 6 is the number of ways to choose 2 things

Counting ...4,5,6,...

Danny owns 3 beanies and 2 ties. How many ways can he dress up if he doesn't always wear a beanie or a tie (and wears at most one of each)?

How many ways for a beanie?

- 1) 1 way for no beanie
- 2) 3 ways for one beanie

$$1 + 3x$$

How many ways for a tie?

- 1) 1 way for no tie
- 2) 2 ways for one tie

$$1 + 2x$$

$$(1+3x)(1+2x) = 1+5x+6x^2$$

...And why would I use one?

They're fun!

Solving counting problems

Solving recurrences precisely

Proving identities

Suppose we have pennies, nickels, dimes, and quarters, and we want to know how many ways we can make change for n cents.

Let c_n be the number of ways to make change for n cents

For instance, how many ways can we make change for six cents?

- 1) 6 pennies
- 2) 1 penny and 1 nickel

So,
$$c_6 = 2$$

Suppose we have pennies, nickels, dimes, and quarters, and we want to know how many ways we can make change for n cents.

We want to represent c_n as a generating function

What choices can we make to get n cents?

We choose pennies, nickels, dimes, and quarters separately and then put them together

Suppose we have pennies, nickels, dimes, and quarters, and we want to know how many ways we can make change for n cents.

We want to represent c_n as a generating function

Remember that the EXPONENT is the 'n' in \mathcal{C}_n and the COEFFICIENT is the number of ways we can make change for n cents

To choose pennies...

$$(1+x+x^2+...)$$

Suppose we have pennies, nickels, dimes, and quarters, and we want to know how many ways we can make change for n cents.

We want to represent c_n as a generating function

Pennies:
$$(1 + x + x^2 + ...)$$

Nickels:
$$(1 + x^5 + x^{2 \times 5} + ...)$$

Dimes:
$$(1 + x^{10} + x^{2 \times 10} + \dots)$$

Quarters:
$$(1 + x^{25} + x^{2 \times 25} + \dots)$$

Suppose we have pennies, nickels, dimes, and quarters, and we want to know how many ways we can make change for n cents.

Pennies:
$$(1 + x + x^2 + ...)$$

Nickels:
$$(1 + x^5 + x^{2 \times 5} + ...)$$

Dimes:
$$(1 + x^{10} + x^{2 \times 10} + \dots)$$

Quarters:
$$(1 + x^{25} + x^{2 \times 25} + \dots)$$

Putting the pieces together...

$$(1+x+x^2+\ldots)(1+x^5+x^{10}+\ldots)(1+x^{10}+x^{20}+\ldots)(1+x^{25}+x^{50}+\ldots)$$

Suppose we have pennies, nickels, dimes, and quarters, and we want to know how many ways we can make change for n cents.

Pennies Nickels Dimes Quarters
$$(1+x+x^2+...)(1+x^5+x^{10}+...)(1+x^{10}+x^{20}+...)(1+x^{25}+x^{50}+...)$$

Quick Check...does the GF give the right answer for C_6 ?

$$(1+x+x^2+x^3+x^4+x^5+x^6)(1+x^5)(1)(1)$$

What is the coefficient of x^6 ?

$$(x^5 \times x^1 \times 1 \times 1) + (x^6 \times 1 \times 1)$$

Suppose we have pennies, nickels, dimes, and quarters, and we want to know how many ways we can make change for n cents.

Pennies Nickels Dimes Quarters
$$(1+x+x^2+\dots)(1+x^5+x^{10}+\dots)(1+x^{10}+x^{20}+\dots)(1+x^{25}+x^{50}+\dots)$$
 $\frac{1}{1-x}$ $\frac{1}{1-x^5}$ $\frac{1}{1-x^{10}}$ $\frac{1}{1-x^{25}}$

The infinite sums are clunky, can we find a simpler form?

$$C(x) = \left(\frac{1}{1-x}\right) \left(\frac{1}{1-x^5}\right) \left(\frac{1}{1-x^{10}}\right) \left(\frac{1}{1-x^{25}}\right)$$

Technical Terminology

$$(1+x+x^2+\ldots)(1+x^5+x^{10}+\ldots)(1+x^{10}+x^{20}+\ldots)(1+x^{25}+x^{50}+\ldots)$$

This is the generating function for the change problem

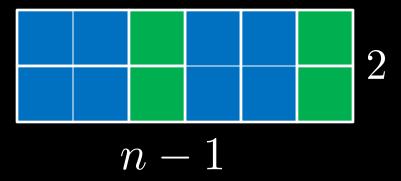
$$C(x) = \left(\frac{1}{1-x}\right) \left(\frac{1}{1-x^5}\right) \left(\frac{1}{1-x^{10}}\right) \left(\frac{1}{1-x^{25}}\right)$$

This is the closed form generating function for the change problem

$$[x^n] C(x) = c_n$$

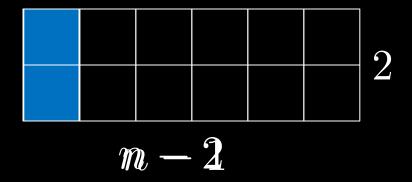
 c_n is the coefficient of x^n in $\overline{c(x)}$

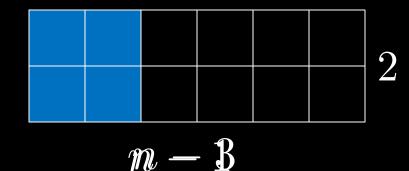
We have a $2 \times (n-1)$ board, and we would like to fill it with dominos. We have two colors of dominos: green and blue. The green ones are 1×1 , and the blue ones are 2×1 . How many ways can we tile our board using non-staggered dominos?

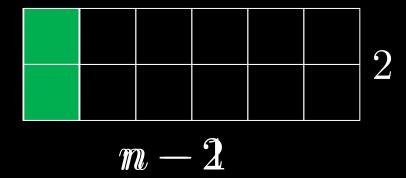


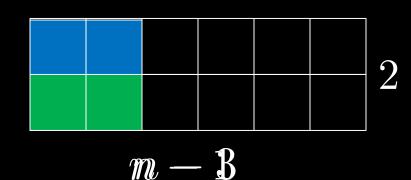
This is a non-obvious combinatorial question! How should we proceed?!?!

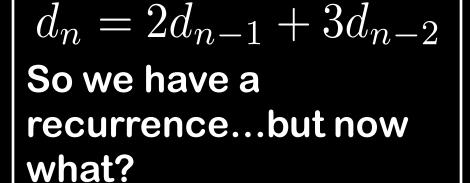
Write a recurrence!

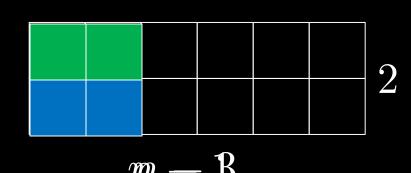












$$d_n = 2d_{n-1} + 3d_{n-2}$$

Now we derive a closed form using generating functions!

Let
$$D(x) = \sum_{n=0}^{\infty} d_n x^n = d_{\overline{0}} + x d_1 x + \sum_{n=2}^{\infty} (2 d_n d_{n-1}^n + 3 d_{n-2}) x^n$$

 d_n is the number of ways to tile a $2 \times (n-1)$ board.

We know the base cases:

$$d_0 = 0$$
$$d_1 = 1$$

Now we derive a closed form using generating functions!

Let
$$D(x) = \sum_{n=0}^{\infty} d_n x^n = x + \sum_{n=2}^{\infty} (2d_{n-1} + 3d_{n-2})x^n$$

 $= x + \sum_{n=2}^{\infty} 2d_{n-1}x^n + \sum_{n=2}^{\infty} 3d_{n-2}x^n$
 $= x + 2x \sum_{n=2}^{\infty} d_{n-1}x^{n-1} + 3x^2 \sum_{n=2}^{\infty} d_{n-2}x^{n-2}$
 $= x + 2x \sum_{n=1}^{\infty} d_n x^n + 3x^2 \sum_{n=0}^{\infty} d_n x^n$
 $= x + 2x(D(x) - d_0) + 3x^2 D(x)$

Now we derive a closed form using generating functions!

Let
$$D(x) = \sum_{n=0}^{\infty} d_n x^n = x + 2x(D(x) - d_0) + 3x^2 D(x)$$

$$D(x) = x + 2xD(x) + 3x^{2}D(x)$$
$$(1 - 2x - 3x^{2})D(x) = x$$
$$D(x) = \frac{x}{1 - 2x - 3x^{2}}$$

Why is the closed form of the GF helpful or useful?

Let
$$D(x) = \sum_{n=0}^{\infty} d_n x^n = \frac{x}{1 - 2x - 3x^2} = \frac{-1}{4(1+x)} + \frac{1}{4(1-3x)}$$

Break it into smaller pieces!

$$\frac{x}{1-2x-3x^2} = \frac{x}{(1+x)(1-3x)} = \frac{A}{1+x} + \frac{B}{1-3x} \qquad A = \frac{-1}{4}$$

$$x = (1-3x)A + (1+x)B$$

$$1 = -3A + B$$

$$0 = A + B$$

$$A = \frac{1}{4}$$

Why is the closed form of the GF helpful or useful?

Let
$$D(x) = \sum_{n=0}^{\infty} d_n x^n = \frac{x}{1 - 2x - 3x^2} = \frac{-1}{4(1+x)} + \frac{1}{4(1-3x)}$$
$$= \frac{-1}{4} \sum_{n=0}^{\infty} (-x)^n + \frac{1}{4} \sum_{n=0}^{\infty} (3x)^n$$
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$

$$\frac{1}{1 - (-x)} = \sum_{n=0}^{\infty} (-x)^n \qquad \frac{1}{1 - (3x)} = \sum_{n=0}^{\infty} (3x)^n$$

Why is the closed form of the GF helpful or useful?

Let
$$D(x) = \sum_{n=0}^{\infty} d_n x^n = \frac{x}{1 - 2x - 3x^2} = \frac{-1}{4} \sum_{n=0}^{\infty} (-x)^n + \frac{1}{4} \sum_{n=0}^{\infty} (3x)^n$$

$$= \frac{1}{4} \sum_{n=0}^{\infty} (-1)^{n+1} x^n + \frac{1}{4} \sum_{n=0}^{\infty} 3^n x^n$$

$$= \frac{1}{4} \sum_{n=0}^{\infty} ((-1)^{n+1} x^n + 3^n x^n)$$

$$= \sum_{n=0}^{\infty} \frac{1}{4} ((-1)^{n+1} + 3^n) x^n$$

$$d_n = \frac{1}{4} ((-1)^{n+1} + 3^n)$$

$$a_n=5a_{n-1}-8a_{n-2}+4a_{n-3}$$
 for n>2 $a_0=0$, $a_1=1$, $a_2=4$ Solve this recurrence...or else!

Let
$$A(x) = \sum_{n=0}^{\infty} a_n x^n = x + 4x^2 + \sum_{n=3}^{\infty} (5a_{n-1} - 8a_{n-2} + 4a_{n-3})x^n$$

$$a_n=5a_{n-1}-8a_{n-2}+4a_{n-3}$$
 for n>2 $a_0=0$, $a_1=1$, $a_2=4$ Solve this recurrence...or else!

Let
$$A(x) = \sum_{n=0}^{\infty} a_n x^n = x + 4x^2 + \sum_{n=3}^{\infty} (5a_{n-1} - 8a_{n-2} + 4a_{n-3})x^n$$

$$= x + 4x^2 + \sum_{n=3}^{\infty} 5a_{n-1}x^n - \sum_{n=3}^{\infty} 8a_{n-2}x^n + \sum_{n=3}^{\infty} 4a_{n-3}x^n$$

$$= x + 4x^2 + 5x \sum_{n=3}^{\infty} a_{n-1}x^{n-1} - 8x^2 \sum_{n=3}^{\infty} a_{n-2}x^{n-2} + 4x^3 \sum_{n=3}^{\infty} a_{n-3}x^{n-3}$$

$$= x + 4x^2 + 5x \sum_{n=2}^{\infty} a_n x^n - 8x^2 \sum_{n=1}^{\infty} a_n x^n + 4x^3 \sum_{n=0}^{\infty} a_n x^n$$

$$= x + 4x^2 + 5x(A(x) - a_0 - a_1x^1) - 8x^2(A(x) - a_0) + 4x^3A(x)$$

$$a_n=5a_{n-1}-8a_{n-2}+4a_{n-3}$$
 for n>2 $a_0=0$, $a_1=1$, $a_2=4$ Solve this recurrence...or else!

Let
$$A(x) = \sum_{n=0}^{\infty} a_n x^n$$

$$= x + 4x^2 + 5x(A(x) - a_0 - a_1 x^1) - 8x^2(A(x) - a_0) + 4x^3 A(x)$$

$$A(x) = x + 4x^2 + 5x(A(x) - x^1) - 8x^2(A(x)) + 4x^3 A(x)$$

$$(1 - 5x + 8x^2 - 4x^3)A(x) = x + 4x^2 - 5x^2$$

$$A(x) = \frac{x - x^2}{1 - 5x + 8x^2 - 4x^3}$$

$$a_n=5a_{n-1}-8a_{n-2}+4a_{n-3}$$
 for n>2 $a_0=0$, $a_1=1$, $a_2=4$ Solve this recurrence...or else!

Let
$$A(x) = \sum_{n=0}^{\infty} a_n x^n = \frac{x - x^2}{1 - 5x + 8x^2 - 4x^3}$$

$$= \frac{x(1 - x)}{(1 - 2x)^2 (1 - x)}$$

$$= \frac{x}{(1 - 2x)^2}$$

What next? Partial fractions? We could! It would work, but...

No. Let's be sneaky instead!

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$

$$\frac{1}{1-2x} = \sum_{n=0}^{\infty} (2x)^n$$

$$\frac{d}{dx} \left(\frac{1}{1-2x}\right) = \frac{d}{dx} \left(\sum_{n=0}^{\infty} (2x)^n\right)$$

$$\frac{2}{(1-2x)^2} = \sum_{n=0}^{\infty} n2^n x^{n-1}$$

$$\frac{x}{2} \frac{2}{(1-2x)^2} = \sum_{n=0}^{\infty} n2^n 2^n x^{m-1}$$

$$a_n=5a_{n-1}-8a_{n-2}+4a_{n-3}$$
 for n>2 $a_0=0$, $a_1=1$, $a_2=4$ Now back to the recurrence...

Let
$$A(x) = \sum_{n=0}^{\infty} a_n x^n = \frac{x}{(1-2x)^2}$$

$$\frac{x}{(1-2x)^2} = \sum_{n=0}^{\infty} n2^{n-1} x^n$$

$$A(x) = \sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} n 2^{n-1} x^n$$

$$a_n = n2^{n-1}$$

Some Common GFs

Sequence	Generating Function
$\langle 1,1,1,\ldots \rangle$	$\frac{1}{1-x}$
$\langle 1, 2, 4, \dots \rangle$	$\frac{1}{1-2x}$
$\langle 1, 2, 3, \dots \rangle$	$\frac{1}{(1-x)^2}$
$0,1,1,2,3,\ldots \rangle$	$\frac{x}{1-x-x^2}$

$$\sum_{n=0}^{\infty} x^n \sum_{k=0}^{n} \binom{k}{n-k}$$

Our first step is to swap the summations. Let's try a small example...

$$\sum_{n=0}^{10} \sum_{k=0}^{n} x^{n} \binom{k}{n-k} =$$

$$= \left(x^{0} \binom{0}{n}\right) + \left(x^{0} \binom{0}{n} + x^{1} \binom{1}{n-1}\right) + \dots + \left(x^{0} \binom{0}{n-0} + x^{1} \binom{1}{n-1} + \dots + x^{10} \binom{10}{n-10}\right)$$

$$= \sum_{n=0}^{10} x^{n} \binom{0}{n} + \sum_{n=0}^{10} x^{n} \binom{1}{n-1} + \dots + \sum_{n=0}^{10} x^{n} \binom{10}{n-10} = \sum_{k=0}^{10} \sum_{n=0}^{10} x^{n} \binom{k}{n-k}$$

$$\sum_{n=0}^{\infty} x^n \sum_{k=0}^{n} \binom{k}{n-k}$$

Our first step is to swap the summations.

$$\sum_{k=0}^{\infty} \sum_{n=k}^{\infty} x^n \binom{k}{n-k}$$

$$\sum_{k=0}^{\infty} \sum_{n=0}^{\infty} x^{n+k} \binom{k}{n}$$

$$\sum_{k=0}^{\infty} \sum_{n=0}^{\infty} x^{n+k} \binom{k}{n}$$

$$\sum_{k=0}^{\infty} x^k \sum_{n=0}^{\infty} x^n \binom{k}{n}$$

We know that...

$$\sum_{i=0}^{p} \binom{p}{i} x^i = (1+x)^p$$

$$\sum_{k=0}^{\infty} x^k \left(\sum_{n=0}^k x^n \binom{k}{n} + \sum_{n=k+1}^{\infty} x^n \binom{k}{n} \right)$$

$$\sum_{k=0}^{\infty} x^k \sum_{n=0}^k x^n \binom{k}{n}$$

$$\sum_{k=0}^{\infty} x^k (1+x)^k = \frac{1}{1-x(1+x)} = \frac{1}{1-x-x^2}$$

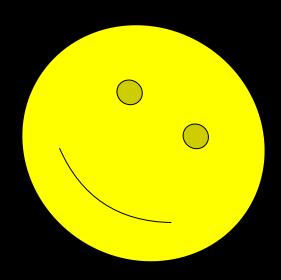
$$\sum_{n=0}^{\infty} x^n \sum_{k=0}^{n} {k \choose n-k} = \sum_{k=0}^{\infty} x^k (1+x)^k = \frac{1}{1-x-x^2}$$

From the table...
$$\sum_{n=0}^{\infty} F_n x^n = \frac{x}{1 - x - x^2}$$

So...
$$\sum_{n=0}^{\infty} F_{n+1} x^n = \frac{1}{1 - x - x^2}$$

$$\sum_{n=0}^{\infty} x^n \sum_{k=0}^{n} {k \choose n-k} = \frac{1}{1-x-x^2} = \sum_{n=0}^{\infty} F_{n+1} x^n$$

$$\sum_{k=0}^{n} \binom{k}{n-k} = F_{n+1}$$



Generating Functions

- Counting with GFs
- Solving recurrences with GFs
- How to derive base cases of recurrences
- Basic partial fractions

Here's What You Need to Know...