15-251
Great Theoretical Ideas in Computer Science

How to play the 9 stone game?

1 2 3 4 5 6 7 8

9 stones, numbered 1-9
Two players alternate moves.
Each move a player gets to take a new stone

Any subset of 3 stones adding to 15, wins.

Magic Square: Brought to humanity on the back of a tortoise from the river Lo in the days of Emperor Yu in ancient China

horizontal, or diagonal line add up to 15.

4 9 2
3 5 7
8 1 6

Magic Square: Any 3 in a vertical,

any 3 that add to 15 must be on a line.

4 9 2
3 5 7
8 1 6

Conversely,

TIC-TAC-TOE on a Magic Square Represents The Nine Stone Game

Alternate taking squares 1-9.
Get 3 in a row to win.

4 9 2
3 5 7
8 1 6

Basic Idea of this Lecture

Don't stick with the representation in which you encounter problems!

Always seek the more useful one!

This idea requires a lot of practice

Prehistoric Unary

2

3

4 ()()()

Consider the problem of finding a formula for the sum of the first n numbers

You already used induction to verify that the answer is ½n(n+1)

$$n^{th}$$
 Triangular Number
$$\Delta_n = 1 + 2 + 3 + \ldots + n - 1 + n$$

$$= n(n+1)/2$$

Here is an alternative dot proof of the same sum....

$$(\Delta_{\mathbf{n}})^{2} = \mathbf{n}^{3} + (\Delta_{\mathbf{n}-\mathbf{1}})^{2}$$

$$= \mathbf{n}^{3} + (\mathbf{n}-\mathbf{1})^{3} + (\Delta_{\mathbf{n}-\mathbf{2}})^{2}$$

$$= \mathbf{n}^{3} + (\mathbf{n}-\mathbf{1})^{3} + (\mathbf{n}-\mathbf{2})^{3} + (\Delta_{\mathbf{n}-\mathbf{3}})^{2}$$

$$= \mathbf{n}^{3} + (\mathbf{n}-\mathbf{1})^{3} + (\mathbf{n}-\mathbf{2})^{3} + \dots + \mathbf{1}^{3}$$

Rhind Papyrus

Scribe Ahmes was Martin Gardener of his day!

A man has 7 houses,
Each house contains 7 cats,
Each cat has killed 7 mice,
Each mouse had eaten 7 ears of spelt,
Each ear had 7 grains on it.
What is the total of all of these?

Sum of powers of 7

A Frequently Arising Calculation

$$(X-1) (1 + X^1 + X^2 + X^3 + ... + X^{n-2} + X^{n-1})$$

A Frequently Arising Calculation

$$(X-1) (1 + X^{1} + X^{2} + X^{3} + ... + X^{n-2} + X^{n-1})$$

$$= X^{1} + X^{2} + X^{3} + ... + X^{n-1} + X^{n}$$

$$- 1 - X^{1} - X^{2} - X^{3} - ... - X^{n-2} - X^{n-1}$$

$$= X^{n} - 1$$

$$1 + X^{1} + X^{2} + X^{3} + \dots + X^{n-2} + X^{n-1} = \frac{X^{n} - 1}{X - 1}$$
(when x \neq 1)

Geometric Series for X=2

$$1 + 2^{1} + 2^{2} + 2^{3} + \dots + 2^{n-1} = 2^{n} - 1$$

$$2^{1} + 2^{2} + 2^{3} + \dots + 2^{n} = 2^{n+1} - 2$$

$$1 + X^{1} + X^{2} + X^{3} + \dots + X^{n-2} + X^{n-1} = \frac{X^{n} - 1}{X^{n} + X^{n} + X^{n} + X^{n} + X^{n}}$$

(when $x \neq 1$)

Geometric Series for X=1/2

$$1 + \frac{1}{2} + \frac{1}{2^{2}} + \frac{1}{2^{3}} + \dots + \frac{1}{2^{n-1}} = \frac{\left(\frac{1}{2}\right)^{n} - 1}{\frac{1}{2^{n-1}}}$$

$$= 2\left(1 - \frac{1}{2^{n-1}}\right)$$

$$1 + \frac{1}{2^{n-1}} + \frac{1}{2^{n-1}} = \frac{1}{2^{n-1}}$$

$$(\text{when } x \neq 1)$$

A Similar Sum an + an-1b1 + an-2b2 + + ... + a1bn-1 + bn

$$= a^{n} \left(1 + \left(\frac{b}{a} \right) + \frac{b^{2}}{a^{2}} + \frac{b^{3}}{a^{3}} + \cdots + \frac{b^{n}}{a^{n}} \right)$$

$$= a^{n} \left(\frac{(b_{A})^{n} - 1}{b_{A} - 1} \right) = \frac{b^{n} - a^{n}}{b - a}$$

A slightly different one

$$0.2^{0} + 1.2^{1} + 2.2^{2} + 3.2^{3} + ... + n2^{n} = ?$$

$$S = 0.2^{0} + 1.2^{1} + 2.2^{2} + 3.2^{3} + ... + n2^{n}$$

$$- 2S = 0.2^{1} + 1.2^{2} + 2.2^{3} + 3.2^{4} + ... + (n-1)2^{n} + n.2^{n+1}$$

$$-S = 0.2^{0} + 1.2^{1} + 1.2^{2} + 1.2^{3} + 1.2^{4} + ... + 1.2^{n} - n.2^{n+1}$$

$$2^{n+1} - 2$$

$$-S = 2^{n+1} - 2 - n.2^{n+1} = -2^{n+1} (n-1) - 2$$

$$S = 2^{n+1} (n-1) + 2$$

Check Your Work!

$$0.2^{0} + 1.2^{1} + 2^{2} + 3 \cdot 2^{3} + ... + 2^{n} = S$$

We're claiming: $S = 2^{n+1} (n-1) + 2$

What is
$$S + (n+1)2^{n+1}$$
?
 $2^{n+1}(n-1) + 2 + (n+1)2^{n+1}$
 $= 2^{n+1}(2n) + 2$ Also, for n=0 both are 0.
 $= 2^{n+2}(n) + 2$ both are 0.

Two Case Studies

Bases and Representation

BASE X Representation

S =
$$a_{n-1} a_{n-2} \dots a_1 a_0$$
 represents the number:
 $a_{n-1} X^{n-1} + a_{n-2} X^{n-2} + \dots + a_0 X^0$

Base 2 [Binary Notation]

101 represents: $1(2)^2 + 0(2^1) + 1(2^0)$

= 00000

Base 7

015 represents: $0(7)^2 + 1(7^1) + 5(7^0)$

= 000000000000

Bases In Different Cultures

Sumerian-Babylonian: 10, 60, 360

Egyptians: 3, 7, 10, 60

Maya: 20 Africans: 5, 10 French: 10, 20 English: 10, 12, 20

BASE X Representation

 $S = (a_{n-1} a_{n-2} \dots a_1 a_0)_X$ represents the number:

$$a_{n-1} X^{n-1} + a_{n-2} X^{n-2} + ... + a_0 X^0$$

Largest number representable in base-X with n "digits"

=
$$(X-1 X-1 X-1 X-1 X-1 ... X-1)_X$$

$$= (X-1)(X^{n-1} + X^{n-2} + ... + X^0)$$

$$= (X^n - 1)$$

Fundamental Theorem For Binary

Each of the numbers from 0 to 2ⁿ-1is uniquely represented by an n-bit number in binary

k uses $\lfloor \log_2 k \rfloor$ + 1 digits in base 2

Fundamental Theorem For Base-X

Each of the numbers from 0 to Xⁿ-1 is uniquely represented by an n-"digit" number in base X

k uses L log_xk J + 1 digits in base X

Other Representations: Egyptian Base 3

Conventional Base 3:

Each digit can be 0, 1, or 2

Here is a strange new one:

Egyptian Base 3 uses -1, 0, 1

Example: $(1 - 1 - 1)_{EB3} = 9 - 3 - 1 = 5$

(111) 1x3 kg . . x 3 2 2 -1

We can prove a unique representation theorem

Two Case Studies

Bases and Representation

Solving Recurrences using a good representation

Example

T(1) = 1T(n) = 4T(n/2) + n

Notice that T(n) is inductively defined only for positive powers of 2, and undefined on other values

T(1) = 1 T(2) = 6 T(4) = 28 T(8) = 120

Give a closed-form formula for T(n)

Technique 1

Guess Answer, Verify by Induction

T(1) = 1, T(n) = 4 T(n/2) + n

Guess:

 $G(n) = 2n^2 - n$

Base Case: G(1) = 1 and T(1) = 1

Induction Hypothesis: T(x) = G(x) for x < n

Hence: $T(n/2) = G(n/2) = 2(n/2)^2 - n/2$

T(n) = 4 T(n/2) + n

= 4 G(n/2) + n

 $= 4 [2(n/2)^2 - n/2] + n$

 $= 2n^2 - 2n + n$

 $= 2n^2 - n = G(n)$

Technique 2

Guess Form, Calculate Coefficients

T(1) = 1, T(n) = 4 T(n/2) + n

Guess: $T(n) = an^2 + bn + c$

for some a,b,c

Calculate: T(1) = 1, so a + b + c = 1

T(n) = 4 T(n/2) + n

 $an^2 + bn + c = 4 [a(n/2)^2 + b(n/2) + c] + n$

 $= an^2 + 2bn + 4c + n$

(b+1)n + 3c = 0

Therefore: b = -1 c = 0 a = 2

Technique 3The Recursion Tree Approach

T(1) = 1, T(n) = 4 T(n/2) + n

A slight variation

T(1) = 1, $T(n) = 4 T(n/2) + n^2$

How about this one?

T(1) = 1, T(n) = 3 T(n/2) + n

... and this one?

T(1) = 1, T(n) = T(n/4) + T(n/2) + n

