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15-251
Great Theoretical Ideas 
in Computer Science

15-251
Proof  Techniques for 
Computer Scientists

Lecture 2 (August 26, 2010)

Inductive Reasoning

Induction

This is the primary way we’llThis is the primary way we’ll

1.1. prove theoremsprove theorems

2.2. construct and define objectsconstruct and define objects

Dominoes

Domino Principle: 
Line up any number of  
dominos in a row; knock 
the first one over and 
they will all fall

n dominoes numbered 0 to n-1

FFkk≡≡ The The kkthth domino fallsdomino falls

If If we set them all up in a row then we we set them all up in a row then we 
know that each one is set up to know that each one is set up to 
knock over the next one:knock over the next one:

For For all all 0 0 ≤ k < n:≤ k < n:
FFkk⇒⇒ FFk+1k+1
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n dominoes numbered 0 to n-1

FFkk≡≡ The The kkthth domino fallsdomino falls

For all 0 ≤ k < nFor all 0 ≤ k < n--1:1:
FFkk⇒⇒ FFk+1k+1

F0⇒ F1⇒ F2⇒…
F0⇒ All Dominoes Fall

The Natural Numbers

One One domino for each natural number:domino for each natural number:

0 1 2 3 4 5 ….

N = { 0, 1, 2, 3, . . .}

Plato: The Domino Principle 
works for an infinite row of 
dominoes

Aristotle: Never seen an 
infinite number of  anything, 

much less dominoes. 

Plato’s Dominoes
One for each natural number

Theorem: An infinite row of  dominoes, 
one domino for each natural number.
Knock over the first domino and they all will fall

Suppose they don’t all fall.  
Let k > 0 be the lowest numbered domino

that remains standing. 
Domino k-1 ≥ 0 did fall, but k-1 will knock over domino k. 
Thus, domino k must fall and remain standing. 
Contradiction.

Proof: 

Induction Principle: 
If P(0) and ∀k, Fk⇒Fk+1

then ∀n, Fn

Well Ordering Principle:
Every non-empty set of  positive 

integers contains a least* 
element

*under the usual ordering “<” 

Two Equivalent Axioms

We’ll talk more about axioms in Lecture 10…

Inductive Proofs

To Prove ∀∀∀∀k ∈∈∈∈ N, Sk

1. Establish “Base Case”:  S0

2. Establish that ∀∀∀∀k, Sk ⇒ Sk+1

To proveTo proveTo proveTo prove
∀∀∀∀k, Sk ⇒ Sk+1

Assume hypothetically that 
Sk for any particular k; 

Conclude that Sk+1
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Theorem?

The sum of  the first 
n odd numbers is n2

Check on small values:

Theorem?

The sum of  the first 
n odd numbers is n2

Check on small values:
1 = 1
1+3 = 4
1+3+5 = 9
1+3+5+7 = 16

Theorem?

The sum of  the first 
n odd numbers is n2

The kth odd number is 
(2k – 1), when k > 0

Sn is the statement that: 
“1+3+5+(2k-1)+...+(2n-1) = n2”

Sn = “1 + 3 + 5 + (2k-1) + . . +(2n-1) = n
2”

Establishing that ∀∀∀∀n ≥ 1 Sn

Sn = “1 + 3 + 5 + (2k-1) + . . +(2n-1) = n
2”

Establishing that ∀∀∀∀n ≥ 1 Sn

Base Case: S1

Assume “Induction Hypothesis”: Sk

That means: 

1+3+5+…+ (2k-1) = k2

1+3+5+…+ (2k-1)+(2k+1) = k2 +(2k+1)

Sum of  first k+1 odd numbers = (k+1)2

Domino Property:

Theorem
The sum of  the first n 
odd numbers is n2
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Inductive Proofs

To Prove ∀∀∀∀k ∈∈∈∈ N, Sk

1. Establish “Base Case”:  S0

2. Establish that ∀∀∀∀k, Sk ⇒ Sk+1

To proveTo proveTo proveTo prove
∀∀∀∀k, Sk ⇒ Sk+1

Assume hypothetically that 
Sk for any particular k; 

Conclude that Sk+1

ATM Machine

Suppose an ATM machine has only 
$2 and $5 bills. 

Claim:  The ATM can generate any 
output amount  n ≥ 4.

Proof

Base case: n = 4. Two $2 bills.

Induction step: suppose the 
machine can already handle 
n ≥ 4 dollars. 

How do we proceed for 
n+1 dollars?

Proof

Case 1: The n dollar output 
contains a $5. 

Then we can replace the $5 by 
three $2's to get n+1 dollars.
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Proof

Case 2: The n dollar output 
contains only $2 bills.

Since n ≥ 4, there must be at least 
two $2 bills. 

Remove two, and replace them by 
one $5.

ATM Machine

Suppose an ATM machine has only 
$2 and $5 bills. 

Claim:  The ATM can generate any 
output amount  n ≥ 4.

Primes:

Note: 1 is not considered prime

A natural number n > 1 
is a prime if  it has 
no divisors besides 
1 and itself

Theorem?

Every natural number n > 1 
can be factored into primes

Sn = “n can be factored into primes”

Base case:
2 is prime ⇒ S2 is true

Sk-1 = “k-1 can be factored into primes”

How do we use the fact:

Sk = “k can be factored into primes”

to prove that:

seems like a 
good time to talk 

about
“all previous 
induction”*

*a.k.a. strong induction

Theorem?

Every natural number > 1 can 
be factored into primes

A different approach:

Assume 2,3,…,k-1 all can be factored 
into primes
Then show that k can be factored into 
primes
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Theorem?

Every natural number > 1 can 
be factored into primes

All Previous Induction
To Prove ∀∀∀∀k, Sk

Establish Base Case:  S0

Establish Domino Effect:

Assume  ∀∀∀∀j<k, Sj
use that to derive Sk

Establish Domino Effect:

Assume  ∀∀∀∀j<k, Sj
use that to derive Sk

Establish Base Case:  S0

All Previous Induction
To Prove ∀∀∀∀k, Sk

Sometimes 
called “Strong 
Induction”

It’s really a 
repackaging 
of  regular 
induction Let k be any number

“All Previous” Induction
Repackaged As

Standard Induction

Establish Base 
Case:  S0

Establish 
Domino Effect:

Let k be any number
Assume  ∀∀∀∀j<k, Sj

Prove Sk

Define Ti = ∀∀∀∀j ≤ i, Sj

Establish Base 
Case T0

Establish that 
∀k, Tk ⇒ Tk+1

Assume Tk-1

Prove Tk

And there are 
more ways to 
do inductive 

proofs 

Method of  Infinite Descent

Show that for any counter-example 
you can find a smaller one

Pierre de Fermat

Now if  you choose the “least” 
counter-example, you’d find a 
smaller counter-example

This contradicts that you had
the “least” counterexample to 
start with

Requires that any set of  statements (the counter-examples) has a 
“least” statement. Since we identify statements with the naturals,
this is the case for us.
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Theorem:
Every natural number > 1 can 
be factored into primes

Let n be a counter-example

Hence n is not prime, so n = ab

If  both a and b had prime factorizations, 
then n would too

Thus a or b is a smaller counter-example

Method of  Infinite Descent

Show that for any counter-example 
you can find a smaller one

Pierre de Fermat

Now if  you choose the “least” 
counter-example, you’d find a 
smaller counter-example

This contradicts that you had
the “least” counterexample to 
start with

Regular Induction

All-previous Induction 

Infinite Descent

And one more way of  
packaging induction…

Invariants

Invariant (n): 
1. Not varying; constant. 
2. Mathematics. Unaffected 

by a designated operation, 
as a transformation of  
coordinates.

Invariant (n): 
3. Programming.
A rule, such as the ordering of  
an ordered list, that applies 
throughout the life of  a data 
structure or procedure. 
Each change to the data 
structure maintains the 
correctness of  the invariant

Invariant Induction
Suppose we have a time varying 
world state: W0, W1, W2, …

Argue that S is true of  the initial world

Show that if  S is true of  some world – then 
S remains true after one permissible 
operation is performed

Each state change is assumed to 
come from a list of  permissible 
operations. We seek to prove that 
statement S is true of  all future worlds
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Odd/Even Handshaking Theorem 

At any party at any point in time define a 
person’s parity as ODD/EVEN according to 
the number of  hands they have shaken

Statement: 
The number of  people of  odd parity must 
be even

If  2 people of  the same parity shake, they 
both change and hence the odd parity count 
changes by 2 – and remains even

Statement: The number of  people of  odd 
parity must be even

Initial case: Zero hands have been shaken 
at the start of  a party, so zero people have 
odd parity

Invariant Argument:

If  2 people of  different parities shake, then 
they both swap parities and the odd parity 
count is unchanged

Inductive reasoning 
is the high level idea

“Standard” Induction
“All Previous” Induction 
“Least Counter-example”

“Invariants”
all just 

different packaging

Induction Problem

A circular track that is one mile long 

There are n > 0 gas stations scattered throughout 
the track

The combined amount of  gas in all gas stations 
allows a car to travel exactly one mile

The car has a very large tank of  gas that starts 
out empty

Show that no matter how the gas stations are placed, 
there is a starting point for the car such that it can go 
around the track once (clockwise).
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g1 + g2 + … + gn = 1

d1 + d2 + … + dn = 1

So there is a k such that gk ≥ d
k

Remove the gas station (k+1)
and set the gas g’k = gk + gk+1

By the I.H. there is a good starting point for this
new set of  (n-1) gas stations and amounts.

One more useful tip…

Here’s another problem

Let ALet Amm ==

Prove that  all entries of AProve that  all entries of Amm are at most m.are at most m.

1 1
0 1

m

Prove a stronger statement!

Claim: AClaim: Amm = = 

Corollary:  All entries of ACorollary:  All entries of Amm are at most m.are at most m.

1 m
0 1

Often, to prove a 
statement inductively

you may have to 
prove a stronger 
statement first!
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Using induction to 
define mathematical objects

Induction is also how we 
can define and construct 
our world

So many things, from 
buildings to computers, are 
built up stage by stage, 
module by module, each 
depending on the previous 
stages

n 0 1 2 3 4 5 6 7

F(n)

Inductive Definition
Example

Initial Condition, or Base Case:
F(0) = 1

Inductive Rule:
For n > 0, F(n) = F(n-1) + F(n-1)

1 2 4 8 16 32 64 128

Inductive definition of  
the powers of  2! BT(n) = 2 + BT(n-1)

BT(2) = 1

Pancakes With A Problem!
Upper bound on Bring-to-top Method

Leonardo Fibonacci
In 1202, Fibonacci proposed a problem 
about the growth of  rabbit populations

month 1 2 3 4 5 6 7

rabbits

Rabbit Reproduction
A rabbit lives forever

The population starts as single newborn pair

Every month, each productive pair begets 
a new pair which will become productive 
after 2 months old

Fn= # of  rabbit pairs at the beginning of  
the nthmonth

1 1 3 52 8 13
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Fibonacci Numbers

Stage 0, Initial Condition, or Base Case:
Fib(1) = 1; Fib (2) = 1

Inductive Rule:
For n>3, Fib(n) =

month 1 2 3 4 5 6 7

rabbits 1 1 3 52 8 13

Fib(n-1) + Fib(n-2)

If  you define a 
function inductively, it 
is usually easy to 

prove it’s properties 
using induction!

Example

Theorem?: F1 + F2 + … + Fn = Fn+2 – 1

Example

Theorem?: F1 + F2 + … + Fn = Fn+2 – 1

Example

Theorem?: F1 + F2 + … + Fn = Fn+2 – 1

Base cases: n=1, F1 = F3 - 1

n=2, F1 + F2 = F4 - 1

I.H.: True for all n < k.

Induction Step: F1 + F2 + … + Fk

= (F1 + F2 + … + Fk-1) + Fk
= (Fk+1 – 1) + Fk (by I.H.)

= Fk+2 – 1 (by defn.)

Another Example
T(1) = 1
T(n) =  4T(n/2) + n

Notice that T(n) is inductively defined only 
for positive powers of  2, and undefined on 
other values

T(1) = T(2) = T(4) = T(8) =1 6 28 120

Guess a closed-form formula for T(n) 

Guess: G(n) = 2n2 - n 
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G(n) = 2n2 - n

T(1) = 1
T(n) = 4T(n/2) + n

Inductive Proof  of  Equivalence

Base Case: G(1) = 1 and T(1) = 1

Induction Hypothesis:
T(x) = G(x) for x < n

Hence: T(n/2) = G(n/2) = 2(n/2)2 – n/2

T(n) = 4 T(n/2) + n

= 4 G(n/2) + n

= 4 [2(n/2)2 – n/2] + n

= 2n2 – 2n + n

= 2n2 – n

= G(n)

We inductively 
proved the assertion 
that G(n) = T(n)

Giving a formula for 
T with no 
recurrences is 
called “solving the 
recurrence for T”

T(1) = 1, T(n) = 4 T(n/2) + n

Technique 2
Guess Form, Calculate Coefficients

Guess: T(n) = an2 + bn + c 
for some a,b,c

Calculate: T(1) = 1, so  a + b + c = 1  

T(n) = 4 T(n/2) + n

an2 + bn + c = 4 [a(n/2)2 + b(n/2) + c] + n

= an2 + 2bn + 4c + n 

(b+1)n + 3c = 0

Therefore: b = -1     c = 0     a = 2

Induction can arise in 
unexpected places

The Lindenmayer  Game
Alphabet: {a,b}

Start word: a

Sub(a) = ab Sub(b) = a

NEXT(w1 w2… wn) = 
Sub(w1) Sub(w2) … Sub(wn)

Productions Rules:

How long are the 
strings at time n?

FIBONACCI(n)

Time 1: a

Time 2: ab

Time 3: aba

Time 4: abaab

Time 5: abaababa

The Koch Game

Productions Rules:

Alphabet: { F, +, - }

Start word: F

Sub(-) = -

NEXT(w1 w2… wn) = 
Sub(w1) Sub(w2) … Sub(wn)

Time 0: F
Time 1: F+F--F+F
Time 2: F+F--F+F+F+F--F+F--F+F--F+F+F+F--F+F 

Sub(F) = F+F--F+F

Sub(+) = +
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F+F--F+F

Visual representation:
F draw forward one unit
+ turn 60 degree left   
- turn 60 degrees right

The Koch Game

Visual representation:
F draw forward one unit
+ turn 60 degree left   
- turn 60 degrees right

The Koch Game

F+F--F+F+F+F--F+F--F+F--F+F+F+F--F+F

Sub(X) = X+YF+           Sub(Y) = -FX-Y

Dragon Game
Sub(L) =  +RF-LFL-FR+
Sub(R) = -LF+RFR+FL-

Note: Make 90 
degree turns instead 
of  60 degrees

Hilbert Game
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Peano-Gossamer Curve

Sierpinski Triangle

Sub(F) =  F[-F]F[+F][F]

Interpret the stuff  inside 
brackets as a branch

Lindenmayer (1968)

Inductive ProofInductive Proof

Standard FormStandard Form

All Previous FormAll Previous Form

LeastLeast--Counter Example FormCounter Example Form

Invariant FormInvariant Form

Strengthening the Inductive ClaimStrengthening the Inductive Claim

Inductive DefinitionInductive Definition

Recurrence RelationsRecurrence Relations

Fibonacci NumbersFibonacci Numbers

Guess and VerifyGuess and Verify

Here’s What 
You Need to 
Know…


