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Induction

This is the primary way we’ll
1. prove theorems
2. construct and define objects

Dominoes

Domino Principle:

(4 Line up any number of
dominos in a row; knock
the first one over and
they will all fall

Ve

n dominoes numbered 0 to n-1

F. = The kt" domino falls

If we set them all up in a row then we
know that each one is set up to
knock over the next one:

Forall0O<k<n: 4 '
Fi = Fuu




n dominoes numbered 0 to n-1

F,.= The k* domino falls

Forall0<k <n-1:
Fk = Fya

Fo=Fi=F=..
F, = All Dominoes Fall™"

The Natural Numbers

N={0,1,2,3,...}

One domino for each natural number:

Plato: The Domino Principle
works for an infinite row of
dominoes

Aristotle: Never seen an
infinite number of anything,
much less dominoes.

| =

Plato’s Dominoes

One for each natural number
|

Theorem: An infinite row of dominoes,
one domino for each natural number.
Knock over the first domino and they all will fall

Proof:
Suppose they don’t all fall.
Let k > 0 be the lowest numbered domino

that remains standing.
Domino k-1 > 0 did fall, but k-1 will knock over domino k.
Thus, domino k must fall and remain standing.
Contradiction.

Two Equivalent Axioms

Induction Principle:
If B(0) and vk, F,=F,.,
* thenvn,F,

Well Ordering Principle:
Every non-empty set of positive R =
integers contains a least*

element 2

*under the usual ordering “<”

We’ll talk more about axioms in Lecture 10...

Inductive Proofs

To Prove Yk € N@

1. Establish “Base Case”
2. Establish that vk, S, = S,,,

Assume hypothetically that
To prove S, for any particular k;
VK, Sy = Syiq
Conclude that S, ,




Theorem? \

= The sum of the first
NI n odd numbers is n2
’/ ) ‘\ “ Check on small values:
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Theorem? \

'S The sum of the first
n odd nhumbers is n?

‘\ P Check on small values:

T 1+3 =4
AN 1+3+5 =9
143+5+7 =16

. )
Theorem?
W; The sum of the first
n odd numbers is n?
/ Vo —, \ The kth odd number is
\ ‘:—;7‘ | (@k-1),whenk>0
\‘ ‘ | @s the statement that:
| /A *T+3+5+(2k-1)+...+(2n-1) = n2”
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Establishing that vh>1 S,

S,=“1+3+5+(2k-1) +..+(2n-1) =n?”

E«A&Cm‘. a/(gf‘ v S4

M Miume S, 0 bwe freomen
tnductn SKP .

A424S - -+ @a-0) k Onn)
~—— —

- “'L X Lz“_‘_‘) b‘j u.
= Yrlaxl = (v\‘\-l)‘ Yy Dkdmt @
)

Establishing that Vn>1 S
S,=“1+3+5+(2k-1) +..+(2n-1)=n?’
Base Case: S,

Domino Property:

Assume “Induction Hypothesis”: S,

That means:

1+3+5+...+ (2k-1) = k2

1+3+5+...+ (2k-1)+(2k+1) =k2+(2k+1)
Sum of first k+1 odd numbers = (k+1)?

Theorem \/

The sum of the first n
odd numbers is n2




Inductive Proofs

To Prove Yk e N, S,
1. Establish “Base Case”: S,
2. Establish that vk, S, = S, 4

Assume hypothetically that
To prove S, for any particular k;
VK, Sk = Sy
Conclude that S, .,

ATM Machine

Suppose an ATM machine has only
$2 and $5 bills.

Claim: The ATM can generate any
output amount n>4.

R

Brac taae . W= o‘—*v-k §2 +br

\,}"MNN wtmnkyuk ;n. (mng,w

. n 24)
[
\M
ehun o okt §v Sn ha o §<
Wl&u & L 3 $2bilb

ﬁ%-ﬂ\
dae Stnee "2 4 ol ol Willsane 2 biI
; wos 3 2 42 bk
o vipmee k1 45 UM ©
Proof

Base case: n =4. Two $2 bills.

Induction step: suppose the
machine can already handle
n >4 dollars.

How do we proceed for
n+1 dollars?

Proof

Case 1: The n dollar output
contains a $5.

Then we can replace the $5 by
three $2's to get n+1 dollars.




Proof

Case 2: The n dollar output
contains only $2 bills.

Since n > 4, there must be at least
two $2 bills.

Remove two, and replace them by
one $5.

ATM Machine

Suppose an ATM machine has only
$2 and $5 bills.

Claim: The ATM can generate any
output amount n>4.

Primes: )

A natural numbern>1
is a prime if it has

no divisors besides

1 and itself

Note: 1 is not considered prime

J

Theorem?
Every natural numbern > 1
can be factored into primes

S, = “n can be factored into primes”

Base case:
2is prime = S, is true

How do we use the fact:
Si.1 = “k-1 can be factored into primes”
to prove that:

S, =“k can be factored into primes”

good time to talk
about
“all previous
induction”*

4 .
R < - seems like a
SN

J

*a.k.a. strong induction

Theorem?
Every natural number > 1 can
be factored into primes

A different approach:

Assume 2,3,...,k-1 all can be factored
into primes

Then show that k can be factored into
primes




Theorem?
Every natural number > 1 can
be factored into primes
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All Previous Induction
To Prove Vk, S,

Establish Base Case: S,

Establish Domino Effect:

Assume Vj<k, Sj
use that to derive S,

All Previous Induction
To Prove

Sometimes
Establish Base C

Induction”

called “Strong

1€CTT

It’s really a
repackaging
of regular
induction

¥ “All Previous” Induction

Repackaged As
Standard Induction

a Define T;=Vj<i, §;

Establish Base Establish Base

Case: §, Case T,
Establish Establish that
Domino Effect: '< VK, Ty = Tyuq

Let k be any number
Assume Vj<k, Sj

Prove S,

Let k be any number
Assume T, 4

Prove T,

~ And there are

~ more ways to

do inductive
proofs

J

Method of Infinite Descent

Show that for any counter-example
you can find a smaller one

Now if you choose the “least”

counter-example, you’d find a
smaller counter-example

Pierrede Fermat Thjg contradicts that you had
the “least” counterexample to
start with

Requires that any set of statements (the counter-examples) has a
“least” statement. Since we identify statements with the naturals,
this is the case for us.




Theorem:
Every natural number > 1 can
be factored into primes

Let n be a counter-example
Hence nis not prime, son = ab

If both a and b had prime factorizations,
then n would too

Thus a or b is a smaller counter-example

Method of Infinite Descent

Show that for any counter-example
you can find a smaller one

Now if you choose the “least”
counter-example, you’d find a
smaller counter-example

Pierre de Fermat

This contradicts that you had
the “least” counterexample to
start with

Regular Induction \
All-previous Induction
Infinite Descent

And one more way of

packaging induction... )

N

Invariants

- Invariant (n):

1. Not varying; constant.

2. Mathematics. Unaffected
by a designated operation,
as a transformation of
coordinates. /

Invariant (n):

3. Programming.
A rule, such as the ordering of
an ordered list, that applies
throughout the life of a data
structure or procedure.
Each change to the data
structure maintains the
correctness of the invariant

Invariant Induction

Suppose we have a time varying
world state: W,, W, W,, ...

Each state change is assumed to
come from a list of permissible
operations. We seek to prove that
statement S is true of all future worlds

-

Argue that S is true of the initial world W,

Show that if S is true of some world - then
S remains true after one permissible
operation is performed




Odd/Even Handshaking Theorem

At any party at any point in time define a
person’s parity as ODD/EVEN according to
the number of hands they have shaken

Statement:
The number of people of odd parity must
be even

Statement: The number of people of odd
parity must be even

Initial case: Zero hands have been shaken
at the start of a party, so zero people have
odd parity

Invariant Argument:

If 2 people of the same parity shake, they
both change and hence the odd parity count
changes by 2 — and remains even

If 2 people of different parities shake, then
they both swap parities and the odd parity
count is unchanged

~

Inductive reasoning
-~ is the high level idea

. /K “Standard” Induction
I “All Previous” Induction
- \ “Least Counter-example”
Y “Invariants”
all just
different packaging

Induction Problem

A circular track that is one mile long

There are n > 0 gas stations scattered throughout
the track

The combined amount of gas in all gas stations
allows a car to travel exactly one mile

The car has a very large tank of gas that starts
out empty

Show that no matter how the gas stations are placed,
there is a starting point for the car such that it can go
around the track once (clockwise).




g:+g,+...+g,=1
d,+d,+..+d, =1

So there is a k such that g, > d,

Remove the gas station (k+1)
and set the gas g’ = gy + i1

By the I.H. there is a good starting point for this
new set of (n-1) gas stations and amounts.

N&A\}M

One more useful tip...

Here’s another problem

[
m Ar= (o \§
LetA, = [(1) 1 } v
. l
Prove that all entries of A, are at most m. A?'— (0 Q)
B e
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Prove a stronger statement!

Claim:A,=| 1 ™ ke loun
= Lo > Gk ve want

An

Corollary: All entries of A, are at most m.

) /)Often, to prove a

/| statement inductively
you may have to
prove a stronger
statement first!




Using induction to
define mathematical objects

/ T So many things, from

Induction is also how we \

can define and construct
)7 our world

] buildings to computers, are
AN built up stage by stage,
| A module by module, each
‘ depending on the previous

stages

.

Inductive Definition
Example

Initial Condition, or Base Case:

F(0)=1 . N
Inductive definition of

Inductive Rule: the powers of 2!

Forn>0, F(n) = F(n-1) + F(n-1)

F(n) 112]14]8 |16|32|64]|128

Pancakes With A Problem!

Upper bound on Bring-to-top Method

®©
ﬁ [IP BT(n) = 2 + BT(n-1)
N

BT(2)=1

gT(V\..) = Ul\"'}

Leonardo Fibonacci

In 1202, Fibonacci proposed a problem
about the growth of rabbit populations

Rabbit Reproduction

A rabbit lives forever
The population starts as single newborn pair

Every month, each productive pair begets
a new pair which will become productive
after 2 months old

F.= # of rabbit pairs at the beginning of
the nt» month

month |1]2]3]|]4]|]5]|]6]|7
rabbits 111]12)]3]15]|]8]13

10



Fibonacci Numbers

month

2

3

415

6

7

rabbits | 1 | 1| 2] 3| 5

8

13

Stage 0, Initial Condition, or Base Case:
;-0,(‘9,40, Fib(1) =1; Fib (2) =1

Inductive Rule:
For n>3, Fib(n) = Fib(n-1) + Fib(n-2)

\

If you define a
S function inductively, it
(] | is usually easy to
prove it’s properties
using induction!

Example

Theorem”. F, +F,+ ... +F =F -1

Example

Theorem?. F, +F,+ ... +F =F -1

Example

Theorem” F, +F,+...+F =F -1

Basecases: n=1,F; =F;-1
n=2, F1 +F2=F4‘1
[+1 = 5
I.LH.: True for alln < k.

Induction Step: F; + F, + ... + F,
=(Fi+Fy+ ... +F ) +Fy

=(Fq—1)+F, (by I.H.)
=Frp—1 (by defn.)

Another Example

T()=1
T(n) = 4T(n/2) +n

Notice that T(n) is inductively defined only

for positive powers of 2, and undefined on
other values

T1)=1 T(2)=6 T(4)=28 T(8)=120

T(I\)-: 7
Guess a closed-form formula for T(n)

Guess: G(n) =2n2-n

11



Inductive Proof of Equivalence
Base Case: G(1)=1and T(1) =1

Induction Hypothesis:
T(x) = G(x) for x <n

Hence: T(n/2) = G(n/2) = 2(n/2)2 — n/2
T(n) =4 T(n/2) +n

o)) T with no

b )

We inductively \
. proved the assertion
/- that G(n) =T(n)

. Giving a formula for

recurrences is
called “solving the

recurrence for T”

=4G(n/2) +n
=4[2(n/2)2-n/2] +n G(n)=2n2-n
=2n2-2n+n
=2n%2-n T =1
T(n)=4T(n/2) +n
=G(n)
Technique 2

Guess Form, Calculate Coefficients
C T(1)=1,T(n)=4T(nl2)+n |

Guess: T(n) =an2+bn+c
for some a,b,c

Calculate: T(1)=1,so0 a+b+c=1
T(n)=4T(n/2) +n
an2+bn+c=4[a(n/2)2+ b(n/2) +c]+n
=an?+2bn+4c+n
(b+1)n+3c=0

Therefore:b=-1 c¢c=0 a=2

Induction can arise in
unexpected places

The Lindenmayer Game

Alphabet: {a,b}
Start word: a
Productions Rules:
Sub(a) =ab
NEXT(W, W, ... w,) =
Sub(w,) Sub(w,) ... Sub(w,)

Sub(b) =a

Time1:a

Time 2: ab How long are the
A , 5

Time 3: aba strings at time n?

Time 4: abaab FIBONACCI(n)

Time 5: abaababa

The Koch Game
Alphabet: { F, +, -}
Start word: F
Productions Rules: Sub(F) = F+F--F+F
Sub(+) =+
Sub(-) =-
NEXT(W, W, ... w,) =
Sub(w,) Sub(w,) ... Sub(w,)
Time O: F
Time 1: F+F--F+F
Time 2: F+F--F+F+F+F--F+F--F+F--F+F+F+F--F+F

12



The Koch Game

F+F--F+F

Visual representation:_

F draw forward one unit
+ turn 60 degree left

- turn 60 degrees right

The Koch Game

FF--F+F+F+F--F+F--F+F--F+F+F+F--F+F

Visual representation:_

F draw forward one unit
+ turn 60 degree left

- turn 60 degrees right

W5

e

Dragon Game
Sub(X) = X+YF+ Sub(Y) = -FX-Y

Hilbert Game

Sub(L) = +RF-LFL-FR+
Sub(R) = -LF+RFR+FL-

Note: Make 90
degree turns instead
of 60 degrees

13



Peano-Gossamer Curve

Sierpinski Triangle

Lindenmayer (1968)

Sub(F) = F[-F]F[+F][F]
"’#&m:&"‘

W
Ty

Interpret the stuff inside
brackets as a branch
¥

v ¥

Inductive Proof

.\ff":"fg Standard Form
y I8 b = All Previous Form

" /i Least-Counter Example Form

& A Invariant Form
kS ',I ’
(A Strengthening the Inductive Claim

pradl

:l T Inductive Definition

Wi Here’s What Recurrence Relations

You Need to Fibonacci Numbers
Know...

Guess and Verify

14




