15-251

Great Theoretical Ideas in Computer Science

15-251

Great Theoretical Ideas in Computer Science

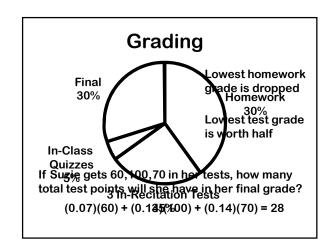
www.cs.cmu.edu/~15251

Course Staff

Instructors

TAs

Anupam Gupta Danny Sleator Adam Blank Dmitriy Chernyak Tim Wilson



9 Homeworks

Homeworks handed out Tuesdays or Thursdays due on the stated date, at midnight.

Ten points per day late penalty

No homework will be accepted more than three days late Homework MUST be typeset, and a single PDF file



Collaboration + Cheating

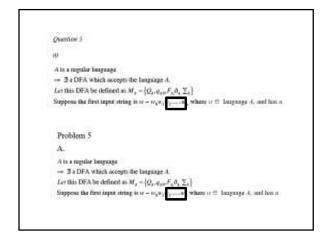
Groups of at most 3 people

You may NOT share written work

You may NOT use Google (or other search engines)

You may NOT use solutions to previous years' homework.

You MUST sign the class honor code

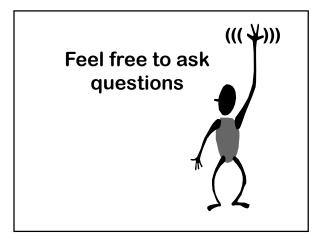


Textbook

There is NO textbook for this class

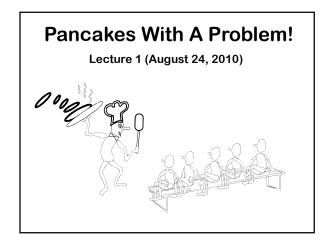
We have class notes in wiki format

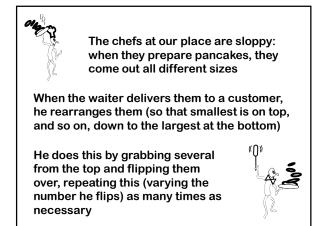
You too can edit the wiki!!! (soon)



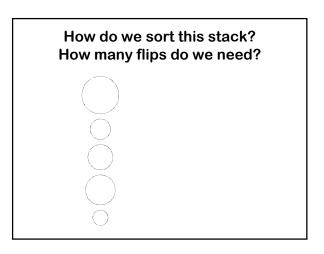
15-251

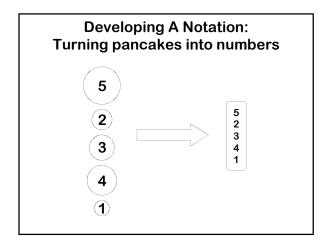
Cooking for Computer Scientists

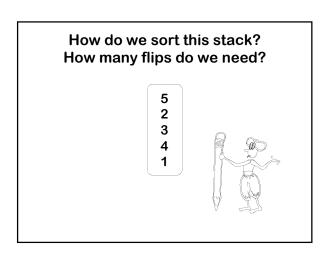


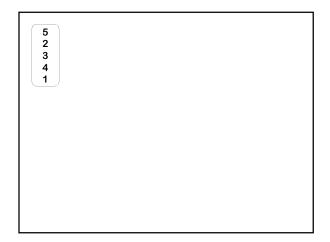


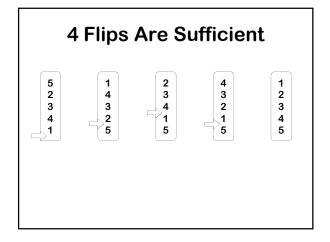


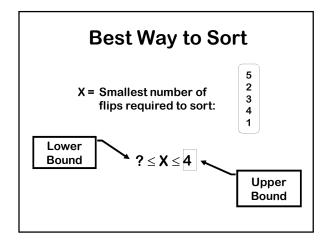


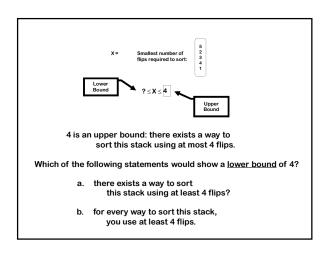


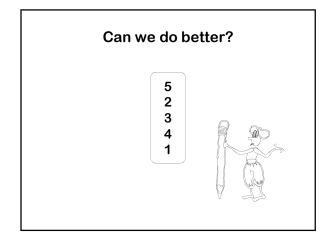


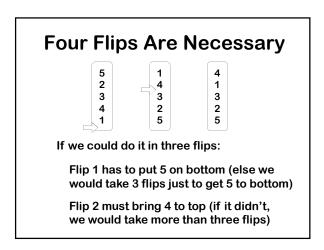


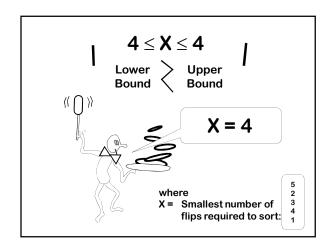


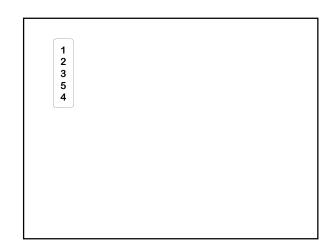


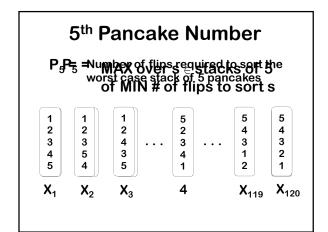


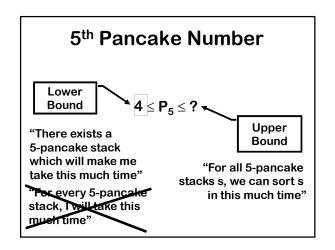






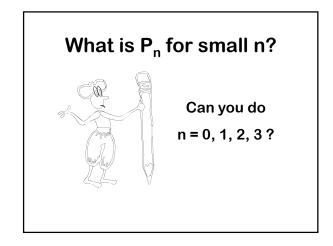






 $P_n = MAX \text{ over } s \in stacks \text{ of } n \text{ pancakes}$ of MIN # of flips to sort s $P_n = The number of flips required to sort$

the worst-case stack of n pancakes



Initial Values of P_n

n	0	1	2	3
Pn	0	0	1	3

$$P_3 = 3$$

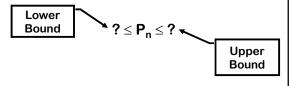
1 3 2

requires 3 Flips, hence $P_3 \ge 3$

ANY stack of 3 can be done by getting the big one to the bottom (\le 2 flips), and then using \le 1 flips to handle the top two

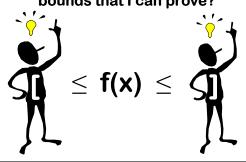
nth Pancake Number

P_n = Number of flips required to sort the worst case stack of n pancakes



Bracketing:

What are the best lower and upper bounds that I can prove?



$$? \le P_n \le ?$$

Try to find upper and lower bounds on P_n , for n > 3

Bring-to-top Method

Bring biggest to top Place it on bottom

Bring next largest to top Place second from bottom

And so on...

Upper Bound On P_n:

Bring-to-top Method For n Pancakes

If n=1, no work required — we are done! Otherwise, flip pancake n to top and then flip it to position n

Now use:

Bring To Top Method For n-1 Pancakes

Total Cost: at most 2(n-1) = 2n -2 flips

Better Upper Bound On P_n: Bring-to-top Method For n Pancakes

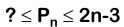
If n=2, at most one flip and we are done! Otherwise, flip pancake n to top and then flip it to position n

Now use:

Bring To Top Method For n-1 Pancakes

Total Cost: at most 2(n-2) + 1 = 2n - 3 flips

$$? \le P_n \le 2n-3$$



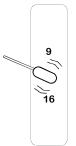
What other bounds can you prove on P_n?

Breaking Apart Argument

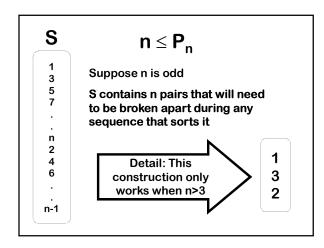
Suppose a stack S has a pair of adjacent pancakes that will not be adjacent in the sorted stack

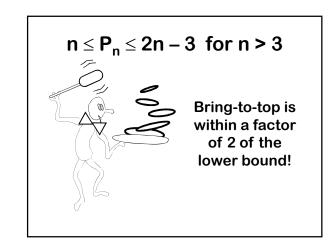
Any sequence of flips that sorts stack S must have one flip that inserts the spatula between that pair and breaks them apart

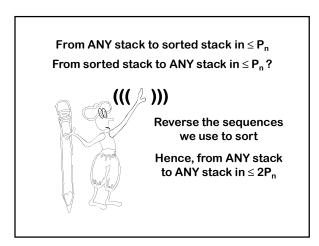
Furthermore, this is true of the "pair" formed by the bottom pancake of S and the plate

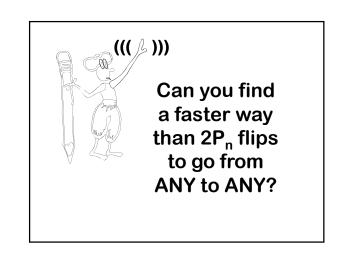


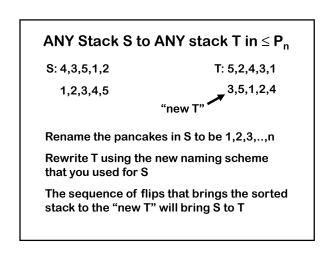
S	$n \le P_n$		
2	Suppose n is even		
6 8	S contains n pairs that will need		
	to be broken apart during any sequence that sorts it		
n			
1			
3	Detail: This 2		
5	construction only		
•	works when n>2		
n-1			

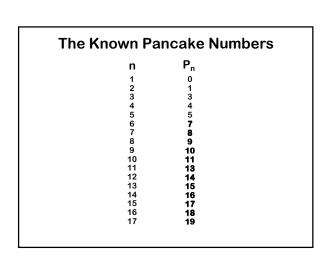












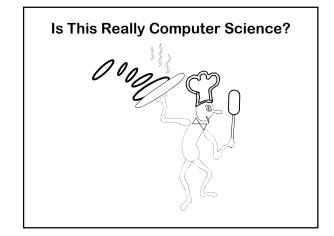
P₁₈ is Unknown

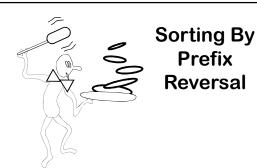
It is either 20 or 21, we don't know which.

1.2.3.4.....17.18 = 18! orderings of 18 pancakes

 $18! = 6.402373 \times 10^{15}$

To give a lower bound of 21 (say), we would have to find one of these stacks for which no sequences of 20 swaps sort the stack.





Posed in *Amer. Math. Monthly* 82 (1), 1975, "Harry Dweighter" a.k.a. Jacob Goodman

$(17/16)n \le P_n \le (5n+5)/3$

William H. Gates and Christos Papadimitriou. Bounds For Sorting By Prefix Reversal. *Discrete Mathematics*, vol 27, pp 47-57, 1979.

$(15/14)n \le P_n \le (5n+5)/3$

H. Heydari and H. I. Sudborough. On the Diameter of the Pancake Network. *Journal of Algorithms*, vol 25, pp 67-94, 1997.

$(15/14)n \le P_n \le (18/11)n$

B. Chitturi, W. Fahle, Z. Meng, L. Morales, C. O. Shields, I. H. Sudborough and W. Voit. An (18/11)n upper bound for sorting by prefix reversals, to appear in *Theoretical Computer Science*, 2008.

Burnt Pancakes

 $\text{(3/2)} n \leq BP_n \leq 2n\text{-}2$

David S. Cohen and Manuel Blum. On the problem of sorting burnt pancakes. Discrete Applied Mathematics, 1995.

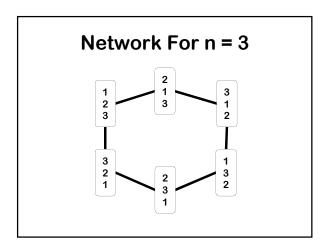
How many different stacks of n pancakes are there?

 $n! = 1 \times 2 \times 3 \times ... \times n$

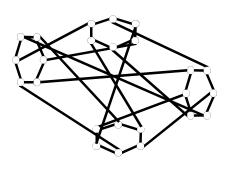
Pancake Network: Definition For n! Nodes

For each node, assign it the name of one of the n! stacks of n pancakes

Put a wire between two nodes if they are one flip apart



Network For n=4



Pancake Network: Message Routing Delay

What is the maximum distance between two nodes in the pancake network?

P"

Pancake Network: Reliability

If up to n-2 nodes get hit by lightning, the network remains connected, even though each node is connected to only n-1 others

The Pancake Network is optimally reliable for its number of edges and nodes

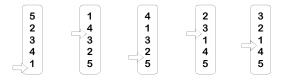
An Algorithms Problem

Suppose I give you a n-stack of pancakes

You want to use the minimum number of flips possible to sort this stack.

How quickly can you compute this sequence of flips?

For a particular stack bring-to-top not always optimal



Bring-to-top takes 5 flips, but we can do in 4 flips

In fact, <u>naïve</u> bring-to-top is not even close to optimal in general!

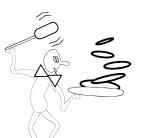
In fact, <u>naïve</u> bring-to-top is not even close to optimal in general!

Can you alter bring-to-top to take at most 3 * optimal number of flips in general?

how about 2 * optimal number of flips?

Mutation Distance

One "Simple" Problem



A host of problems and applications at the frontiers of science

High Level Point

Computer Science is not merely about computers and programming, it is about mathematically modeling our world, and about finding better and better ways to solve problems

Here's What You Need to Know... Definitions of:

nth pancake number lower bound upper bound

Proof of:

ANY to ANY in $\leq P_n$

Important Technique: Bracketing