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Sets, functions,
and the continuum hypothesis

Set theory, founded by Georg Cantor in the second half of the 19th cen-
tury, has profoundly transformed mathematics. Modern day mathematics
is unthinkable without the concept of a set, or as David Hilbert put it: “No-
body will drive us from the paradise (of set theory) that Cantor has created
for us”

One of Cantor's basic concepts was the notion of the size or cardinality of
a set M, denoted by |M|. For finite sets, this presents no difficulties: we
just count the number of elements and say that M is an n-set or has size 7,
if M contains precisely n elements. Thus two finite sets M and [V have
equal size, | M| = | N|, if they contain the same number of elements.

To carry this notion of equal size over to infinite sets, we use the following
suggestive thought experiment for finite sets. Suppose a number of people
board a bus. When will we say that the number of people is the same as the
number of available seats? Simple enough, we let all people sit down. If
everyone finds a seat, and no seat remains empty, then and only then do the
two sets (of the people and of the seats) agree in number. In other words,
the two sizes are the same if there is a bijection of one set onto the other.
This is then our definition: Two arbitrary sets M and N (finite or infinite)
are said to be of equal size or cardinality, if and only if there exists a bi-
jection from M onto V. Clearly, this notion of equal size is an equivalence
relation, and we can thus associate a number, called cardinal number, to
every class of equal-sized sets. For example, we obtain for finite sets the
cardinal numbers 0,1,2,...,n, ... where n stands for the class of n-sets,
and, in particular, 0 for the empty set @. We further observe the obvious fact
that a proper subset of a finite set M invariably has smaller size than M.
The theory becomes very interesting (and highly non-intuitive) when we
turn to infinite sets. Consider the set N = {1,2,3,...} of natural numbers.
We call a set M countable if it can be put in one-to-one correspondence
with N, In other words, M is countable if we can list the elements of M as
™1, T2, M3, . ... But now a strange phenomenon occurs. Suppose we add
to N a new element z. Then N U {z} is still countable, and hence has equal
size with N!

This fact is delightfully illustrated by “Hilbert’s hotel.” Suppose a hotel
has countably many rooms, numbered 1,2, 3, . .. with guest g; occupying
room 4; so the hotel is fully booked. Now a new guest x arrives asking
for a room, whereupon the hotel manager tells him: Sorry, all rooms are
taken. No problem, says the new arrival, just move guest g; to room 2,
g2 to Toom 3, g3 to room 4, and so on, and I will then take room 1. To the
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Sets, functions, and the continuum hypothesis

b=
Laf=

ll
*
9
?

7
¥
|/
L

ol

(1] ]

RN

colta
g

= lra

N
N

R

hajo

tajie

NN

3o

Yt | ) el | Y

manager’s surprise (he is not a mathematician) this works; he can still put
up all guests plus the new arrival !

Now it is clear that he can also put up another guest g, and another one z,
and so on. In particular, we note that, in contrast to finite sets, it may well
happen that a proper subset of an infinite set M has the same size as M. In
fact, as we will see, this is a characterization of infinity: A set is infinite if
and only if it has the same size as some proper subset.

Let us leave Hilbert's hotel and look at our familiar number sets. The set
Z of integers is again countable, since we may enumerate 7 in the form
Z ={0,1,-1,2,-2,3,-3,...}. It may come more as a surprise that the
rationals can be enumerated in a similar way.

Theorem 1. The set Q of rational numbers is countable.

B Proof. By listing the set Q" of positive rationals as suggested in the
figure in the margin, but leaving out numbers already encountered, we see
that Q" is countable, and hence so is @ by listing 0 at the beginning and
—E right after 2. With this listing

g q

Another way to interpret the figure is the following statement:
The union of countably many countable sets M, is again countable.

Indeed, set My, = {an1, @n2, n3, ...} and list

oo
U M, = {a11,0a21,a12,a13, A22,031, G41, A32, A23, A14, - . - }
n=

precisely as before.
Let us contemplate Cantor’s enumeration of the positive rationals a bit
more. Looking at the figure we obtained the sequence

12112 3 43 2 112 3 45
ST TS U G UL B S L S 1 13 SIREE
and then had to strike out the duplicates suchas 2 =  or 2 = 1.

But there is a listing that is even more elegant and systematic, and which
contains no duplicates — found only quite recently by Neil Calkin and
Herbert Wilf. Their new list starts as follows:
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Here the denominator of the n-th rational number equals the numerator of

the (n + 1)-st number. In other words, the n-th fraction is b(n)/b(n + 1),

where (b(n)) _ . is a sequence that starts with
) =0

(1,1,2,1,8,2,3,1,4,3,5,2,5,3,4,1,5, ...).

This sequence has first been studied by a German mathematician, Moritz
Abraham Stern, in a paper from 1858, and is has become known as “Stern’s
diatomic series.”
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Sets, functions, and the continuum hypothesis

How do we obtain this sequence, and hence the Calkin-Wilf listing of the
positive fractions? Consider the infinite binary tree in the margin. We
immediately note its recursive rule:

B % is on top of the tree, and
3

i+3

e every node 7 has two sons: the left son is and the right son is °

We can easily check the following four properties:

(1) All fractions in the tree are reduced, that is, if £ appears in the tree,
then r and s are relatively prime.

This holds for the top ]T and then we use induction downward. If r and s
are relatively prime, then so are r and r + s, as well as s and r + s.

r

(2) Every reduced fraction = > 0 appears in the tree.

We use induction on the sum r + s. The smallest value is r 4 s = 2, that
is T = ]T and this appears at the top. If r > s, then “—= appears in the tree
by induction, and so we get % as its right son. Similarly, if r < s, then =

appears, which has £ as its left son,

8

(3) Every reduced fraction appears exactly once.

The argument is similar. If Z appears more than once, then r # s, since
any node in the tree except the top is of the form = < L or < > 1. But
if r > s or 7 < s, then we argue by induction as before.

Every positive rational appears therefore exactly once in our tree, and we
may write them down listing the numbers level-by-level from left to right.
This yields precisely the initial segment shown above.

(4) The denominator of the n-th fraction in our list equals the numerator
of the (n + 1)-st.

This is certainly true for n = 0, or when the n-th fraction is a left son.
r

Suppose the n-th number % is a right son. If £ is at the right boundary,
then s = 1, and the successor lies at Ehe left boundary and has numerator 1.

Finally, if Z is in the interior, and % is the next fraction in our sequence,
F'I
Byt

T—38

then £ is the right son of ==, L is the left son of and by induction

P— 7 ~ P
"= is the numerator of —*—, so we get s = 7.

5 g R

the denominator of

Well, this is nice, but there is even more to come. There are two natural
questions:

~ Does the sequence (b(n)), ., have a “meaning”? That is, does b(n)

count anything simple?

— Given %, is there an easy way to determine the successor in the listing?
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For example, h(6) = 3, with the hyper-
binary representations

6=4+2

6=44+1+1

6=24+2+1+1
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To answer the first question, we work out that the node b(n)/b(n + 1) has
the two sons b(2n + 1) /b(2n 4+ 2) and b(2n + 2)/b(2n + 3). By the set-up
of the tree we obtain the recursions

b(2n +1) =b(n) and b(Zn+2) =b(n) +b(n + 1). (1)

With 6(0) = 1 the sequence (b(n)),>p is completely determined by (1).
So, is there a “nice” “known” sequence which obeys the same recursion?
Yes, there is. We know that any number n can be uniquely written as a sum
of distinct powers of 2 — this is the usual binary representation of n. A
hyper-binary representation of n is a representation of n a sum of powers
of 2, where every power 2F appears at most fwice. Let i(n) be the number
of such representations for n. You are invited to check that the sequence
h(n) obeys the recursion (1), and this gives b(n) = h(n) for all n.
Incidentally, we have proved a surprising fact: Let © be a reduced fraction,
there exists precisely one integer n with r = h(n) and s = h(n + 1).

Let us look at the second question. We have in our tree

’ that is, with = = £, / \
\J_ 3 # AN

14z z+1

[~

T

P8

2k e
5

We now use this to generate an even larger infinite binary tree (without a
root) as follows:

0 T
_— ! \
/ ‘1—
L1
R

e

¥

2

=1

]

In this tree all rows are equal, and they all display the Calkin-Wilf listing

of the positive rationals (starting with an additional %).
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So how does one get from one rational to the next? To answer this, we first
record that for every rational x its right son is = + 1, the right grand-son is

J Y
whose left son is 757, and so on: The k-fold left son of & is 5. / .
Now to find how to get from £ = x to the “next” rational f(x) in the # \
listing, we have to analyze the situation depicted in the margin. In fact, if Tty y+ 1
!

we consider any nonnegative rational number x in our infinite binary tree,
then it is the k-fold right son of the left son of some rational ¥ > 0 (for

some k > 0), while f(x) is given as the k-fold left son of the right son of {1‘ [;
the same y. Thus with the formulas for k-fold left sons and k-fold right \ /
sons, we get \ y
Y /
r = —— + k, \

i : _I— y _H _}_\“{!. Ki’l
as claimed in the figure in the margin. Here &k = || is the integral part T+y 1+k(y+1)
of x, while 1—: {x} is the fractional part. And from this we obtain

. y+1 1 1 1
) = R+ ) - L4k FFl-L @ +i-{a
FRy+1) e ' y+1
Thus we have obtained a beautiful formula for the successor f(z) of x,

found very recently by Moshe Newman:

The function

lz] +1—{z}

z — flz) =

generates the Calkin-Wilf sequence

1 1 2 1 3 3 1 4
- L W B S e Wl il Sl

which contains every positive rational number exactly once.

The Calkin-Wilf-Newman way to enumerate the positive rationals has a \
number of additional remarkable properties. For example, one may ask for

a fast way to determine the ni-th fraction in the sequence, say for n = 105,

=

Here it is: / \
To find the n-th fraction in the Calkin-Wilf sequence, express n as a 1 7’
binary number n = (bgbr—1...b1bp)2, and then follow the path in the '"\. 07\
Calkin- Wllt tree that is determined by its digits, starting at 2 = 2. ;7/ S / A
Here b; = 1 means “take the right son,” that is, “add the dtnommcllur 1 3 2 3
to the numeramr," while b; = 0 means “take the left son,” that is, “add E,J.\ 2&] 0 3& ;‘1\
the numerator to the denominator.” 7 % \ / \ V

W] =

)
rajon

The figure in the margin shows the resulting path for n = 25 = (11001)3:
So the 25th number in the Calkin-Wilf sequence is £. The reader could Vf
easily work out a similar scheme that computes for a given fraction § (the

binary representation of) its position 7 in the Calkin-Wilf sequence.

[ 11
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Let us move on to the real numbers . Are they still countable? No, they
are not, and the means by which this is shown — Cantor’s diagonalization
method — is not only of fundamental importance for all of set theory, but
certainly belongs into The Book as a rare stroke of genius.

Theorem 2. The set IR of real numbers is not countable.

M Proof. Any subset NV of a countable set M = {m1.mg, mga,...} is at
most countable (that is, finite or countable). In fact, just list the elements
of N as they appear in M. Accordingly, if we can find a subset of R which
is not countable, then a fortiori R cannot be countable. The subset M
of B we want to look at is the interval (0, 1] of all positive real numbers r
with 0 < r < 1. Suppose, to the contrary, that M is countable, and let
M= {J‘l._'f‘-g,?'g, ...} be a listing of M. We write r, as its unique infinite
decimal expansion without an infinite sequence of zeros at the end:

rn = 0.0n10n2083...

where a,; € {0,1,...,¢ 9} for all n and i. For example, 0.7 = 0.6999...
Consider now the doubly infinite array

™ = [_‘}.I..']_If'f.]zﬂlg...

T2 “.(_F-_gg 22093,

rn = Uagi1ap20a3...

For every n, choose b, € {1, ...,8} different from a,,,,: clearly this can be
done. Then b = 0.b1babs...b,... is a real number in our set M and hence
must have an index, say b = . But this cannot be, since by 1s different
from agr. And this is the whole proof! |

Let us stay with the real numbers for a moment. We note that all four

\ types of intervals (0, 1), (0,1],(0,1) and [0, 1] have the same size. As an
example, we verify that (0, 1] and (0, 1) have equal cardinality. The map
f:(0,1] — (0, 1), & — y defined by

% —a for -.]j— = B 1,

3 - 1o, 1

\ 3 —Z for 1 < a < 3

Yy = 3 S RN |

G £ —a for g <z<j,

\ =

- douthqob Indeed, the map is bijective, since the range of iy in thc first line
0 1 » = < y < 1, in the second line ll <y < 12 in the third line sy < 11

Abijective f : (0,1] — (0,1) and so on.
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Next we find that any two intervals (of finite length > () have equal size
by considering the central projection as in the figure. Even more is true:
Every interval (of length > 0) has the same size as the whole real line R.
To see this, look at the bent open interval (0, 1) and project it onto & from
the center S.

So, in conclusion, any open, half-open, closed (finite or infinite) interval of
length > 0 has the same size, and we denote this size by ¢, where ¢ stands
for continium (a name sometimes used for the interval [0,1]).

That finite and infinite intervals have the same size may come expected on
second thought, but here is a fact that is downright counter-intuitive.

Theorem 3. The set R? of all ordered pairs of real numbers (that is, the
real plane) has the same size as R.

B Proof. To see this, it suffices to prove that the set of all pairs (x,y),
0 < z,y < 1, can be mapped bijectively onto (0, 1]. The proof is again
from The Book. Consider the pair (x,y) and write z,y in their unique
non-terminating decimal expansion as in the following example:

xa = 03 01 2 00T 08
y = 0009 2 05 1 0008

Note that we have separated the digits of = and y into groups by always
going to the next nonzero digit, inclusive. Now we associate to (x,y) the
number z € (0, 1] by writing down the first z-group, after that the first
y-group, then the second z-group, and so on. Thus, in our example, we
obtain
z = 0.30090122050071080008 ...

Since neither z nor y exhibits only zeros from a certain point on, we find
that the expression for z is again a non-terminating decimal expansion.
Conversely, from the expansion of z we can immediately read off the
preimage (z, y), and the map is bijective — end of proof. O

As (z,y) — @ + iy is a bijection from R? onto the complex numbers C,
we conclude that |C| = |R| = ¢. Why is the result |[R?| = |R| so unex-
pected? Because it goes against our intuition of dimension. It says that the
2-dimensional plane R? (and, in general, by induction, the n-dimensional
space R™) can be mapped bijectively onto the 1-dimensional line R. Thus
dimension is not generally preserved by bijective maps. If, however, we
require the map and its inverse to be continuous, then the dimension is pre-
served, as was first shown by Luitzen Brouwer.

Let us go a little further. So far, we have the notion of equal size. When
will we say that M is at most as large as N7 Mappings provide again the
key. We say that the cardinal number m is less than or equal to n, if for
sets M and N with |M| = m , |N| = n, there exists an injection from M
into V. Clearly, the relation m < n is independent of the representative
sets M and IV chosen. For finite sets this corresponds again to our intuitive
notion: An m-set is at most as large as an n-set if and only if m < n.
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Now we are faced with a basic problem. We would certainly like to have
that the usual laws concerning inequalities also hold for cardinal numbers.
But is this true for infinite cardinals? In particular, is it true that m < n,
n < m imply m = n? This is not at all obvious: We are given infinite
sets M and N as well as maps f : M — Noandg : N — M that
are injective but not necessarily surjective. This suggests to construct a
bijection by relating some elements m € M to f(m) € N, and some
elements n € N to g(n) € M. But it is not clear whether the many
possible choices can be made to “fit together.”

The affirmative answer is provided by the famous Schrider-Bernstein
theorem, which Cantor announced in 1883. The first proofs were given
by Friedrich Schrider and Felix Bernstein quite some time later. The fol-
lowing proof appears in a little book by one of the twentieth century giants
of set theory, Paul Cohen, who is famous for resolving the continuum
hypothesis (which we will discuss below).

“Schrider and Bernstein painting”

Theorem 4. If each of two sets M and N can be mapped injectively into
the other, then there is a bijection from M to N, that is, |M| = |N|.

B Proof. We may certainly assume that M and N are disjoint — if not,
then we just replace IV by a new copy.

Now f and g map back and forth between the elements of M and those
of N. One way to bring this potentially confusing situation into perfect
clarity and order is to align M U N into chains of elements: Take an arbi-
trary element 1y € M, say, and from this generate a chain of elements by
applying f, then g, then f again, then g, and so on. The chain may close up
(this is Case 1) if we reach mg again in this process, or it may continue with
distinct elements indefinitely. (The first “duplicate™ in the chain cannot be
an element different from mg, by injectivity.)

If the chain continues indefinitely, then we try to follow it backwards:
From my to g~ (myg) if myg is in the image of g, then to f~' (g~ (mg))
if g~ (rmp) is in the image of £, and so on. Three more cases may arise

here: The process of following the chain backwards may go on indefinitely
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(Case 2), it may stop in an element of M that does not lie in the image of g
(Case 3), or it may stop in an element of NN that does not lie in the image
of f (Case 4).

Thus M U NV splits perfectly into four types of chains, whose elements
we may label in such a way that a bijection is simply given by putting
F : my; —— n;. We verify this in the four cases separately:

Case 1. Finite cycles on 2k 4 2 distinct elements (& > 0)

/ g f f
My —=Np —== M| —= - Me —F=> 7j
\*H,__ g = =

Case 2. Two-way infinite chains of distinct elements

f g f g f

- T —= ) — 1Tl —3— T} — 1Tl ——

Case 3. The one-way infinite chains of distinct elements that start at the
elements mg € M\g(N)

f g f g f

My —== Ny —= 111 —F= 11| —3 [Ty —F=>

Case 4. The one-way infinite chains of distinct elements that start at the
elements ng € N\ f(M)

g f g
ng — 1y —F= 1] —3= M —>= -++ []

What about the other relations governing inequalities? As usual, we set
m < nif m < n, but m # n. We have just seen that for any two cardinals
m and n at most one of the three possibilities

m<n, m=n,m>n

holds, and it follows from the theory of cardinal numbers that, in fact, pre-
cisely one relation is true. (See the appendix to this chapter, Proposition 2.)
Furthermore, the Schriider-Bernstein Theorem tells us that the relation < is
transitive, that is, m < m and n < p imply m < p. Thus the cardinalities
are arranged in linear order starting with the finite cardinals 0,1,2.3,.. ..
Invoking the usual Zermelo-Fraenkel axiom system (in particular, the ax-
iom of choice) we easily find that any infinite set M contains a countable
subset. In fact, M contains an element, say 1. The set M \ {m } is not
empty (since it is infinite) and hence contains an element ms. Consider-
ing M \ {m,,ms} we infer the existence of mg, and so on. So, the size
of a countable set is the smallest infinite cardinal, usually denoted by Ny
(pronounced “aleph zero™).

“The smallest infinite cardinal”




