A machine so simple that you can understand it in less than one minute.

The machine accepts a string if the process ends in a double circle.

The alphabet of a finite automaton is the set of symbols it uses: \{0,1\}

The language of a finite automaton is the set of strings it accepts.
Notation

An alphabet \(\Sigma \) is a finite set (e.g., \(\Sigma = \{0,1\} \))

A string over \(\Sigma \) is a finite-length sequence of elements of \(\Sigma \)

For \(x \) a string, \(|x| \) is the length of \(x \)

The unique string of length 0 will be denoted by \(\varepsilon \) and will be called the empty or null string

A language over \(\Sigma \) is a set of strings over \(\Sigma \)

A finite automaton is a 5-tuple \(M = (Q, \Sigma, \delta, q_0, F) \)

- \(Q \) is the set of states
- \(\Sigma \) is the alphabet
- \(\delta : Q \times \Sigma \to Q \) is the transition function
- \(q_0 \in Q \) is the start state
- \(F \subseteq Q \) is the set of accept states

\(L(M) \) = the language of machine \(M \)

= set of all strings machine \(M \) accepts

\(M = (Q, \Sigma, \delta, q_0, F) \) where

- \(Q = \{q_0, q_1, q_2, q_3\} \)
- \(\Sigma = \{0,1\} \)
- \(\delta : Q \times \Sigma \to Q \) transition function
- \(q_0 \in Q \) is start state
- \(F = \{q_1, q_2\} \subseteq Q \) accept states

Build an automaton that accepts all and only those strings that contain 001
Build an automaton that accepts all strings whose length is divisible by 2 but not 3

Build an automaton that accepts exactly the strings that contain 01011 as a substring?

How about an automaton that accepts exactly the strings that contain an even number of 01 pairs?

A language is regular if it is recognized by a deterministic finite automaton

L = \{ w \mid w \text{ contains 001} \} is regular
L = \{ w \mid w \text{ has an even number of 1s} \} is regular

Union Theorem
Given two languages, L_1 and L_2, define the union of L_1 and L_2 as
L_1 \cup L_2 = \{ w \mid w \in L_1 \text{ or } w \in L_2 \}

Theorem: The union of two regular languages is also a regular language

Theorem: The union of two regular languages is also a regular language

Proof Sketch: Let
M_1 = (Q_1, \Sigma, \delta_1, q_0^1, F_1) \text{ be finite automaton for } L_1
\text{ and}
M_2 = (Q_2, \Sigma, \delta_2, q_0^2, F_2) \text{ be finite automaton for } L_2

We want to construct a finite automaton
M = (Q, \Sigma, \delta, q_0, F) \text{ that recognizes } L = L_1 \cup L_2

Idea: Run both M_1 and M_2 at the same time!
Q = \text{ pairs of states, one from } M_1 \text{ and one from } M_2
= \{ (q_1, q_2) \mid q_1 \in Q_1 \text{ and } q_2 \in Q_2 \}
= Q_1 \times Q_2
Theorem: The union of two regular languages is also a regular language.

Automaton for Union

Automaton for Intersection

The Regular Operations

Union: $A \cup B = \{ w \mid w \in A \text{ or } w \in B \}$

Intersection: $A \cap B = \{ w \mid w \in A \text{ and } w \in B \}$

Reverse: $A^R = \{ w_k ... w_1 \mid w_k ... w_1 \in A \}$

Negation: $\neg A = \{ w \mid w \notin A \}$

Concatenation: $A \cdot B = \{ vw \mid v \in A \text{ and } w \in B \}$

Star: $A^* = \{ w_k ... w_1 \mid k \geq 0 \text{ and each } w_i \in A \}$

Regular Languages Are Closed Under The Regular Operations

We have seen part of the proof for Union. The proof for intersection is very similar. The proof for negation is easy.
The “Grep” Problem

Input: Text T of length t, string S of length n
Problem: Does string S appear inside text T?
Naïve method:

\[a_1, a_2, a_3, a_4, a_5, \ldots, a_t \]

Cost: Roughly nt comparisons

Automata Solution

Build a machine M that accepts any string with S as a consecutive substring
Feed the text to M
Cost: \(t \) comparisons + time to build M
As luck would have it, the Knuth, Morris, Pratt algorithm builds M quickly

Real-life Uses of DFAs

Grep
Coke Machines
Thermostats (fridge)
Elevators
Train Track Switches
Lexical Analyzers for Parsers

Are all languages regular?

Consider the language \(L = \{ a^n b^n \mid n > 0 \} \)
i.e., a bunch of a’s followed by an equal number of b’s
No finite automaton accepts this language
Can you prove this?

\(a^n b^n \) is not regular.
No machine has enough states to keep track of the number of a’s it might encounter
That is a fairly weak argument
Consider the following example...

\[L = \text{strings where the \# of occurrences of the pattern } ab \text{ is equal to the number of occurrences of the pattern } ba \]

Can’t be regular. No machine has enough states to keep track of the number of occurrences of \(ab \)

\[M \text{ accepts only the strings with an equal number of } ab \text{'s and } ba \text{'s!} \]

\[L = \text{strings where the \# of occurrences of the pattern } ab \text{ is equal to the number of occurrences of the pattern } ba \]

Can’t be regular. No machine has enough states to keep track of the number of occurrences of \(ab \)

Let me show you a professional strength proof that \(a^n b^n \) is not regular...

This is the kind of proof we expect from you...

Pigeonhole principle:
Given \(n \) boxes and \(m > n \) objects, at least one box must contain more than one object

Letterbox principle:
If the average number of letters per box is \(x \), then some box will have at least \(x \) letters (similarly, some box has at most \(x \))
Theorem: \(L = \{a^n b^n \mid n > 0 \} \) is not regular

Proof (by contradiction):
Assume that \(L \) is regular
Then there exists a machine \(M \) with \(k \) states that accepts \(L \)
For each \(0 \leq i \leq k \), let \(S_i \) be the state \(M \) is in after reading \(a^i \)
\(\exists i, j \leq k \) such that \(S_i = S_j \), but \(i \neq j \)
\(M \) will do the same thing on \(a^i b^i \) and \(a^j b^j \)
But a valid \(M \) must reject \(a^i b^i \) and accept \(a^j b^j \)

How to prove a language is not regular… (most of the time)

Assume it is regular, hence is accepted by a DFA \(M \) with \(n \) states.

Show that there are two strings \(s \) and \(s' \) which both reach some state in \(M \) (usually by pigeonhole principle)

Then show there is some string \(t \) such that string \(st \) is in the language, but \(s't \) is not.
However, \(M \) accepts either both or neither.

What are \(s, s', t \)? That's where the work is…

Deterministic Finite Automata
- Definition
- Testing if they accept a string
- Building automata

Regular Languages
- Definition
- Closed Under Union, Intersection, Negation
- Using Pigeonhole Principle to show language ain't regular

Here’s What You Need to Know…