Leonardo Fibonacci
In 1202, Fibonacci proposed a problem about the growth of rabbit populations

A rabbit lives forever
The population starts as single newborn pair
Every month, each productive pair begets a new pair which will become productive after 2 months old

\[F_n = \# \text{ of rabbit pairs at the beginning of the } n^{\text{th}} \text{ month} \]

<table>
<thead>
<tr>
<th>month</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>rabbits</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>13</td>
</tr>
</tbody>
</table>

Fibonacci Numbers
Stage 0, Initial Condition, or Base Case:
Fib(1) = 1; Fib (2) = 1

Inductive Rule:
For \(n > 3 \), Fib(n) = Fib(n-1) + Fib(n-2)

Sequences That Sum To \(n \)
Let \(f_{n+1} \) be the number of different sequences of 1’s and 2’s that sum to \(n \).

\[f_1 = 1 \quad 0 = \text{the empty sum} \]
\[f_2 = 1 \quad 1 = 1 \]
\[f_3 = 2 \quad 2 = 1 + 1 \]
\[2 \]
Sequences That Sum To n
Let f_{n+1} be the number of different sequences of 1's and 2's that sum to n.

$$
4 = 2 + 2 \\
= 2 + 1 + 1 \\
1 + 2 + 1 \\
1 + 1 + 2 \\
1 + 1 + 1 + 1
$$

Fibonacci Numbers Again
Let f_{n+1} be the number of different sequences of 1's and 2's that sum to n.

$$
f_{n+1} = f_n + f_{n-1}
$$

$f_1 = 1$ \quad $f_2 = 1$

Visual Representation: Tiling
Let f_{n+1} be the number of different ways to tile a $1 \times n$ strip with squares and dominoes.

f_n tilings that start with a square.

f_{n-1} tilings that start with a domino.

f_{n+1} is number of ways to tile length n.

1 way to tile a strip of length 0

1 way to tile a strip of length 1:

2 ways to tile a strip of length 2:
Fibonacci Identities

Some examples:

\[F_{2n} = F_1 + F_3 + F_5 + \ldots + F_{2n-1} \]

\[F_{m+n+1} = F_{m+1} F_{n+1} + F_m F_n \]

\[(F_n)^2 = F_{n-1} F_{n+1} + (-1)^n \]

\[(F_n)^2 = F_{n-1} F_{n+1} + (-1)^n \]

\[(F_n)^2 = F_{n-1} F_{n+1} + (-1)^n \]

Draw a vertical “fault line” at the rightmost position (<n) possible without cutting any dominoes

Swap the tails at the fault line to map to a tiling of 2 (n-1)’s to a tiling of an n-2 and an n.
(F_n)^2 = F_{n-1}F_{n+1} + (-1)^{n-1}

n even

n odd

Counting Petals
5 petals: buttercup, wild rose, larkspur, columbine (aquilegia)
8 petals: delphiniums
13 petals: ragwort, corn marigold, cineraria, some daisies
21 petals: aster, black-eyed susan, chicory
34 petals: plantain, pyrethrum
55, 89 petals: michaelmas daisies, the asteraceae family.

Definition of ϕ (Euclid)
Ratio obtained when you divide a line segment into two unequal parts such that the ratio of the whole to the larger part is the same as the ratio of the larger to the smaller.

ϕ = \frac{AC}{AB} = \frac{AB}{BC}

ϕ^2 = \frac{AC}{BC}

ϕ^2 - ϕ - 1 = 0

ϕ = \frac{1 + \sqrt{5}}{2}

Sneezwort (Achilleaptarmica)
Each time the plant starts a new shoot it takes two months before it is strong enough to support branching.

The Fibonacci Quarterly

ϕ^2 - ϕ - 1 = 0

ϕ = \frac{1 + \sqrt{5}}{2}
Golden ratio supposed to arise in...

Parthenon, Athens (400 B.C.)

The great pyramid at Gizeh

Ratio of a person’s height to the height of his/her navel

Mostly circumstantial evidence...

Expanding Recursively

Continued Fraction Representation

A (Simple) Continued Fraction Is Any Expression Of The Form:

\[\frac{a}{b + \frac{1}{c + \frac{1}{d + \frac{1}{e + \ddots}}}} \]

where \(a, b, c, \ldots \) are whole numbers.
A Continued Fraction can have a finite or infinite number of terms.

\[a + \frac{1}{b + \frac{1}{c + \frac{1}{d + \frac{1}{e + \frac{1}{f + \ldots}}}}} \]

We also denote this fraction by \([a,b,c,d,e,f,\ldots]\)

A Finite Continued Fraction

\[2 + \frac{1}{3 + \frac{1}{4 + \frac{1}{2}}} \]

Denoted by \([2,3,4,2,0,0,0,\ldots]\)

An Infinite Continued Fraction

\[1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \ldots}}}}} \]

Denoted by \([1,2,2,2,\ldots]\)

Recursively Defined Form For CF

\[\text{CF} = \text{whole number, or} = \text{whole number} + \frac{1}{\text{CF}} \]

Continued fraction representation of a standard fraction

\[\frac{67}{29} = 2 + \frac{1}{3 + \frac{1}{4 + \frac{1}{2}}} \]

\[\frac{67}{29} = 2 + \frac{1}{\frac{29}{9}} = 2 + \frac{1}{3 + \frac{2}{9}} = 2 + \frac{1}{3 + \frac{1}{4 + \frac{1}{2}}} \]

e.g., \(67/29 = 2\) with remainder \(9/29\)
\[= 2 + \frac{1}{(29/9)} \]
Ancient Greek Representation: Continued Fraction Representation

\[
\frac{5}{3} = 1 + \frac{1}{1 + \frac{1}{2}} = [1, 1, 1, 0, 0, 0, \ldots]
\]

Ancient Greek Representation: Continued Fraction Representation

\[
\frac{8}{5} = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1}}} = [1, 1, 1, 1, 0, 0, 0, \ldots]
\]

A Pattern?

Let \(r_1 = [1, 0, 0, 0, \ldots] = 1 \)
\(r_2 = [1, 1, 0, 0, 0, \ldots] = 2/1 \)
\(r_3 = [1, 1, 1, 0, 0, 0, \ldots] = 3/2 \)
\(r_4 = [1, 1, 1, 1, 0, 0, 0, \ldots] = 5/3 \)
and so on.

Theorem:

\(r_n = \frac{\text{Fib}(n+1)}{\text{Fib}(n)} \)
1,1,2,3,5,8,13,21,34,55,…

\[
\begin{align*}
2/1 &= 2 \\
3/2 &= 1.5 \\
5/3 &= 1.666… \\
8/5 &= 1.6 \\
13/8 &= 1.625 \\
21/13 &= 1.6153846… \\
34/21 &= 1.61904…
\end{align*}
\]

\[\varphi = 1.6180339887498948482045\]

Pineapple whorls

Church and Turing were both interested in the number of whorls in each ring of the spiral.

The ratio of consecutive ring lengths approaches the Golden Ratio.

Pineapple whorls

Church and Turing were both interested in the number of whorls in each ring of the spiral.

The ratio of consecutive ring lengths approaches the Golden Ratio.

Proposition:
Any finite continued fraction evaluates to a rational.

Theorem
Any rational has a finite continued fraction representation.

An infinite continued fraction

\[\sqrt{2} = 1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \ddots}}}}\]

Hmm.
Finite CFs = Rationals.

Then what do infinite continued fractions represent?

Hmm.
Finite CFs = Rationals.

Then what do infinite continued fractions represent?
Quadratic Equations

- \(x^2 - 3x - 1 = 0 \)
 \[x = \frac{3 + \sqrt{13}}{2} \]
- \(x^2 = 3x + 1 \)
- \(x = 3 + \frac{1}{x} \)
- \(x = 3 + \frac{1}{3 + \frac{1}{x}} = \ldots \)

A Periodic CF

Theorem:
Any solution to a quadratic equation has a periodic continued fraction.

Converse:
Any periodic continued fraction is the solution of a quadratic equation.
(try to prove this!)

Non-periodic CFs

\[e - 1 = \frac{1}{1 + \frac{1}{2 + \frac{1}{1 + \frac{1}{4 + \frac{1}{1 + \frac{1}{6 + \ldots}}}}} \]

What is the pattern?

\[\pi = \frac{1}{2 + \frac{1}{7 + \frac{1}{15 + \frac{1}{1 + \frac{1}{292 + \ldots}}}}} \]

So they express more than just the rationals...

What about those non-recurring infinite continued fractions?

No one knows!
What a cool representation!

Finite CF: Rationals
Periodic CF: Quadratic roots
And some numbers reveal hidden regularity.

More good news: Convergents

Let \(\alpha = [a_1, a_2, a_3, \ldots] \) be a CF.

Define:
\[
C_1 = [a_1,0,0,0,0,\ldots] \\
C_2 = [a_1,a_2,0,0,0,\ldots] \\
C_3 = [a_1,a_2,a_3,0,0,\ldots] \text{ and so on.}
\]

\(C_k \) is called the \(k \)-th convergent of \(\alpha \)

\(\alpha \) is the limit of the sequence \(C_1, C_2, C_3, \ldots \)

Best Approximator Theorem

- A rational \(p/q \) is the best approximator to a real \(\alpha \) if no rational number of denominator smaller than \(q \) comes closer to \(\alpha \).

BEST APPROXIMATOR THEOREM:
Given any CF representation of \(\alpha \), each convergent of the CF is a best approximator for \(\alpha \)!

Best Approximators of \(\phi \)

\[
\begin{align*}
C_1 &= 3 \\
C_2 &= \frac{22}{7} \\
C_3 &= \frac{333}{106} \\
C_4 &= \frac{355}{113} \\
C_5 &= \frac{103993}{33102} \\
C_6 &= \frac{104348}{33215}
\end{align*}
\]

Continued Fraction Representation
Remember?

We already saw the convergents of this CF
\[[1,1,1,1,1,1,1,1,1,1,1,\ldots] \]
are of the form \(\text{Fib}(n+1)/\text{Fib}(n) \)

Hence:
\[\frac{1 + \sqrt{5}}{2} \]

1,1,2,3,5,8,13,21,34,55,\ldots

- \(2/1 = 2 \)
- \(3/2 = 1.5 \)
- \(5/3 = 1.666\ldots \)
- \(8/5 = 1.6 \)
- \(13/8 = 1.625 \)
- \(21/13 = 1.6153846\ldots \)
- \(34/21 = 1.61904\ldots \)
- \(\varphi = 1.6180339887498948482045\ldots \)

As we’ve seen...

\[\frac{x}{1-x-x^2} = 0 + x + x^3 + 2x^3 + 3x^4 + 5x^5 + \ldots \]
\[= F_0 + F_1x + F_2x^2 + F_3x^3 + F_4x^4 + F_5x^5 + \ldots \]

Going the Other Way

\[
\begin{align*}
(1 - z - z^2)(F_0 + F_1z + F_2z^2 + F_3z^3 + \cdots) \\
= F_0 + F_1z + F_2z^2 + F_3z^3 + \cdots \\
- F_0z - F_1z^2 - F_2z^3 - \cdots \\
- F_0z^2 - F_1z^3 - \cdots \\
= F_0 + (F_1 - F_0)z \\
= z
\end{align*}
\]

\[
F(z) = F_0 + F_1z + F_2z^2 + \cdots = \frac{z}{1 - z - z^2} \\
\frac{z}{1 - z - z^2} = \sum_{n \geq 0} \frac{1}{\sqrt{5}} (\varphi^n - \bar{\varphi}^n) z^n.
\]

\[
F_n = \frac{\varphi^n - (-\frac{1}{\varphi})^n}{\sqrt{5}} \approx \frac{\varphi^n}{\sqrt{5}}
\]
Recurrences and generating functions

Golden ratio

Continued fractions

Convergents

Closed form for Fibonacci

Here's What You Need to Know...