A Take-Away Game

Two Players: I and II
A move consists of removing one, two, or three chips from the pile
Players alternate moves, with Player I starting
Player that removes the last chip wins

Which player would you rather be?
Try Small Examples!

If there are 1, 2, or 3 only, player who moves next wins

If there are 4 chips left, player who moves next must leave 1, 2 or 3 chips, and his opponent will win

With 5, 6 or 7 chips left, the player who moves next can win by leaving 4 chips

0, 4, 8, 12, 16, … are target positions; if a player moves to that position, they can win the game

Therefore, with 21 chips, Player I can win!

What if the last player to move loses?

If there is 1 chip, the player who moves next loses

If there are 2, 3, or 4 chips left, the player who moves next can win by leaving only 1

In this case, 1, 5, 9, 13, … are a win for the second player

Combinatorial Games

There are two players

There is a finite set of possible positions

The rules of the game specify for both players and each position which moves to other positions are legal moves

The players alternate moving

The game ends in a finite number of moves (no draws!)

Normal Versus Misère

Normal Play Rule: The last player to move wins

Misère Play Rule: The last player to move loses

A Terminal Position is one where neither player can move anymore

What is Omitted

No random moves

(This rules out games like poker)

No hidden moves

(This rules out games like battleship)

No draws in a finite number of moves

(This rules out tic-tac-toe)
P-Positions and N-Positions

P-Position: Positions that are winning for the Previous player (the player who just moved)

N-Position: Positions that are winning for the Next player (the player who is about to move)

What’s a P-Position?

“Positions that are winning for the Previous player (the player who just moved)”

That means:

For any move that N makes
There exists a move for P such that
For any move that N makes
There exists a move for P such that
... There exists a move for P such that
There are no possible moves for N

P-positions and N-positions can be defined recursively by the following:

1. All terminal positions are P-positions for normal play
2. From every N-position, there is at least one move to a P-position
3. From every P-position, every move is to an N-position

Chomp!

Two-player game, where each move consists of taking a square and removing it and all squares to the right and above.

Player who takes position (0,0) loses

Show That This is a P-position

N-Positions!
Show That This is an N-position

Let's Play! I'm player I

Mirroring is an extremely important strategy in combinatorial games!

Theorem: Player I can win in any square starting position of Chomp

Proof:
The winning strategy for player I is to chomp on $(1,1)$, leaving only an “L” shaped position

Then, for any move that Player II takes, Player I can simply mirror it on the flip side of the “L”

What about rectangular boards?
What about rectangular boards?

Theorem: Player I can win in any rectangular starting position

Proof:
Look at this first move:

If this is a P-position, then player 1 wins
Otherwise, there exists a P-position that can be obtained from this position
And player I could have just taken that move originally

Move-the-Token

Two-player game, where each move consists of taking the token and moving it either downwards or to the left (but not both).

Player who makes the last move - to (0,0) - wins

Positions (x,y) are precisely the P-position
The Game of Nim

Two players take turns moving
Winner is the last player to remove chips

A move consists of selecting a pile and removing chips from it (you can take as many as you want, but you have to at least take one)
In one move, you cannot remove chips from more than one pile

Analyzing Simple Positions

We use \((x,y,z)\) to denote this position

\((0,0,0)\) is a: P-position

One-Pile Nim

What happens in positions of the form \((x,0,0)\)?
The first player can just take the entire pile, so \((x,0,0)\) is an N-position

Two-Pile Nim

P-positions are those for which the two piles have an equal number of chips
If it is the opponent’s turn to move from such a position, he must change to a position in which the two piles have different number of chips
From a position with an unequal number of chips, you can easily go to one with an equal number of chips (perhaps the terminal position)

Two-Pile Nim

Seen this before?
It’s the “Move-the-Token” game

3-Pile Nim

Two players take turns moving
Winner is the last player to remove chips
Nim-Sum

The nim-sum of two non-negative integers is their addition (without carry) in base 2. We will use \oplus to denote the nim-sum:

- $2 \oplus 3 = (10)_2 \oplus (11)_2 = (01)_2 = 1$
- $5 \oplus 3 = (101)_2 \oplus (011)_2 = (110)_2 = 6$
- $7 \oplus 4 = (111)_2 \oplus (100)_2 = (011)_2 = 3$

\oplus is associative: $(a \oplus b) \oplus c = a \oplus (b \oplus c)$

\oplus is commutative: $a \oplus b = b \oplus a$

For any non-negative integer x,

$$x \oplus x = 0$$

If $x \oplus y = 0 \iff x = y$

Cancellation Property Holds

If $x \oplus y = x \oplus z$
Then $x \oplus x \oplus y = x \oplus x \oplus z$
So $y = z$

Bouton's Theorem: A position (x,y,z) in Nim is a P-position if and only if $x \oplus y \oplus z = 0$

Proof:
Let Z denote the set of Nim positions with nim-sum zero.
Let NZ denote the set of Nim positions with non-zero nim-sum.
We prove the theorem by proving that Z and NZ satisfy the three conditions of P-positions and N-positions:

1. All terminal positions are in Z.
 The only terminal position is $(0,0,0)$.
2. From each position in NZ, there is a move to a position in Z.
 Look at leftmost column with an odd # of 1s.
 Rig any of the numbers with a 1 in that column so that everything adds up to zero.
3. Every move from a position in Z is to a position in NZ.
 If (x,y,z) is in Z, and x is changed to $x' < x$,
 then we cannot have $x \oplus y \oplus z = 0 = x' \oplus y \oplus z$.
 Because then $x = x'$.
k-Pile Nim

Combinatorial Games
• P-positions versus N-positions
• When there are no draws, every position is either P or N

Nim
• Definition of the game
• Nim-sum
• Bouton’s Theorem

Here’s What You Need to Know…