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A Graph Named “Gadget”
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K-Coloring

We define a k-coloring of a graph:
Each node gets colored with one color
At most k different colors are used
If two nodes have an edge between them
they must have different colors

A graph is called k-colorable if and only if it
has a k-coloring



A 2-CRAYOLA Question!

Is Gadget 2-colorable?




A 2-CRAYOLA Question!

Is Gadget 2-colorable?

No, it contains a triangle
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A 2-CRAYOLA Question!

Given a graph G, how can we decide if
itis 2-colorable?

Answer: Enumerate all 2" possible
colorings to look for a valid 2-color

How can we efficiently decide if G is
2-colorable?



Theorem: G contains an odd cycle if and only
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Theorem: G contains an odd cycle if and only
if Gis not 2-colorable

Alternate coloring algorithm:

To 2-color a connected graph G, pick an
arbitrary node v, and color it white

Color all v’s neighbors black

Color all their uncolored neighbors
white, and so on

If the algorithm terminates without a
color conflict, output the 2-coloring

Else, output an odd cycle



A 2-CRAYOLA Question!

Theorem: G contains an odd cycle if and only
if G is not 2-colorable



A 3-CRAYOLA Question!

Is Gadget 3-colorable?




A 3-CRAYOLA Question!

Is Gadget 3-colorable?

Yes!



A 3-CRAYOLA Question!




3-Coloring Is Decidable
by Brute Force



3-Coloring Is Decidable
by Brute Force

Try out all 3" colorings until you
determine if G has a 3-coloring
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A 3-CRAYOLA Oracle

YES/NO -~
S E— 3-Colorability

Oracle
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Better 3-CRAYOLA Oracle

NO, or
3-Colorability

’VES here is how: Search Oracle

gives 3-coloring
of the nodes



3-Colorability 3-Colorability
Search Oracle Decision Oracle



Christmas Present

»
W
3-Colorability
Decision Oracle




Christmas Present

BUT | WANTED
a SEARCH
oracle for
Christmas

| am really
bummed out

3-Colorability
Decision Oracle




Christmas Present

How do | turn a
mere decision
oracle into a
search oracle?

3-Colorability
Decision Oracle




»
4
‘ ?J” What if | gave the oracle

partial colorings of G? For
each partial coloring of G, |
could pick an uncolored node
and try different colors on it
until the oracle says “YES”




Beanie’s Flawed ldea

Rats, the oracle
does not take
partial
colorings....




Beanie’s Fix

3-Colorability
Decision Oracle
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Beanie’s Fix

3-Colorability
Decision Oracle




Let’s now look at two
other problems:

1. K-Clique
2. K-Independent
Set
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K-Cliques

A K-clique is a set of K nodes with all
K(K-1)/2 possible edges between them

This graph contains a 4-clique



A Graph Named “Gadget”




Given: (G, k)
Question: Does G contain a k-clique?



Given: (G, k)
Question: Does G contain a k-clique?

BRUTE FORCE: Try out all n choose k
possible locations for the k clique
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set of size 3




A Graph Named “Gadget”




Given: (G, k)
Question: Does G contain an
independent set of size k?



Given: (G, k)
Question: Does G contain an
independent set of size k?

BRUTE FORCE: Try out all n choose k
possible locations for the k independent
set



Cligue / Independent Set

Two problems that are
cosmetically different, but
substantially the same
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Complement of G

Given a graph G, let G*, the complement of G,
be the graph obtained by the rule that two
nodes in G* are connected if and only if the
corresponding nodes of G are not connected




G* has an
independent
set of size k

G has a k-clique <
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Let G be an n-node graph

Independent
Set Oracle




Cligue / Independent Set

Two problems that are
cosmetically different, but
substantially the same



Thus, we can quickly
reduce a clique problem

to an independent set
problem and vice versa




Thus, we can quickly
reduce a clique problem

to anHerepeadesnt set
ProlRiaRoIe ViR Mersa
and only if thereis a
fast method for the
other




Let’s now look at two
other problems:

1. Circuit Satisfiability
2. Graph 3-Colorability



Combinatorial Circuits



Combinatorial Circuits

AND, OR, NOT, 0, 1 gates wired
together with no feedback allowed



Combinatorial Circuits

AND, OR, NOT, 0, 1 gates wired
together with no feedback allowed
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Circuit-Satisfiability

Given a circuit with n-inputs and one output,
Is there a way to assign 0-1 values to the input
wires so that the output value is 1 (true)?

11 0
Yy
AND || NOT

Yes, this circuit is
satisfiable: 110



Circuit-Satisfiability

Given: A circuit with n-inputs and one
output, is there a way to assign 0-1 values to
the input wires so that the output value is 1

(true)?



Circuit-Satisfiability

Given: A circuit with n-inputs and one
output, is there a way to assign 0-1 values to

the input wires so that the output value is 1
(true)?

BRUTE FORCE: Try out all 2" assignments



3-Colorability

Circuit
Satisfiability
v 3 ¥
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How do we force the
graph to be 3 colorable
exactly when the
circuit is satifiable?



How do we force the
graph to be 3 colorable
exactly when the
circuit is satifiable?
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Let C be an n-input circuit

Graph composed of
gadgets that mimic

the gates in C

3-color
Oracle Oracle



You can quickly transform a
method to decide 3-coloring into
a method to decide circuit
satifiability!




Given an oracle for
circuit SAT, how can
you quickly solve
3-colorability?



Can you make a circuit
that takes a description
of a graph and a node
coloring, and checks if it
is a valid 3-coloring?



X (n choose 2 bits) Y (2n bits)
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graph X and an assignment of colors to
nodes Y, and verifies that Y is a valid 3
coloring of X. l.e., V (X,Y)=1iff Yisa 3

coloring of X
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Via(X,Y)

Let V,_be a circuit that takes an n-node

graph X and an assignment of colors to
nodes Y, and verifies that Y is a valid 3
coloring of X. l.e., V (X,Y)=1iff Yisa 3

coloring of X

X is expressed as an n choose 2 bit
seguence. Y is expressed as a 2n bit
sequence

Given n, we can construct V  in time O(n?)
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Circuit-SAT / 3-Colorability

Two problems that are
cosmetically different, but
substantially the same
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Circuit-SAT / 3-Colorability
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Given an oracle for
circuit SAT, how can
you quickly solve k-
cligue?




Circuit-SAT / 3-Colorability

Cligue / Independent Set



Four problems that are
cosmetically different,
but substantially the
same



FACT: No one knows a
way to solve any of the
4 problems that is fast
on all instances



Summary

Many problems that appear
different on the surface can be
efficiently reduced to each other,
revealing a deeper similarity



