15-251

Great Theoretical ldeas
in Computer Science

Complexity Theory:
Efficient Reductions Between
Computational Problems

Lecture 27 (November 25, 2008)

A Graph Named “Gadget”

K-Coloring

We define a k-coloring of a graph:

K-Coloring

We define a k-coloring of a graph:

Each node gets colored with one color

K-Coloring

We define a k-coloring of a graph:
Each node gets colored with one color

At most k different colors are used

K-Coloring

We define a k-coloring of a graph:
Each node gets colored with one color
At most k different colors are used

If two nodes have an edge between them
they must have different colors

K-Coloring

We define a k-coloring of a graph:
Each node gets colored with one color
At most k different colors are used
If two nodes have an edge between them
they must have different colors

A graph is called k-colorable if and only if it
has a k-coloring

A 2-CRAYOLA Question!

Is Gadget 2-colorable?

A 2-CRAYOLA Question!

Is Gadget 2-colorable?

No, it contains a triangle

A 2-CRAYOLA Question!

Given a graph G, how can we decide if
itis 2-colorable?

A 2-CRAYOLA Question!

Given a graph G, how can we decide if
itis 2-colorable?

Answer: Enumerate all 2" possible
colorings to look for a valid 2-color

A 2-CRAYOLA Question!

Given a graph G, how can we decide if
itis 2-colorable?

Answer: Enumerate all 2" possible
colorings to look for a valid 2-color

How can we efficiently decide if G is
2-colorable?

Theorem: G contains an odd cycle if and only
if Gis not 2-colorable

Theorem: G contains an odd cycle if and only
if Gis not 2-colorable

Alternate coloring algorithm:

Theorem: G contains an odd cycle if and only
if Gis not 2-colorable

Alternate coloring algorithm:

To 2-color a connected graph G, pick an
arbitrary node v, and color it white

Theorem: G contains an odd cycle if and only
if Gis not 2-colorable

Alternate coloring algorithm:

To 2-color a connected graph G, pick an
arbitrary node v, and color it white

Color all v’s neighbors black

Theorem: G contains an odd cycle if and only
if Gis not 2-colorable

Alternate coloring algorithm:

To 2-color a connected graph G, pick an
arbitrary node v, and color it white

Color all v’s neighbors black

Color all their uncolored neighbors
white, and so on

Theorem: G contains an odd cycle if and only
if Gis not 2-colorable

Alternate coloring algorithm:

To 2-color a connected graph G, pick an
arbitrary node v, and color it white

Color all v’s neighbors black

Color all their uncolored neighbors
white, and so on

If the algorithm terminates without a
color conflict, output the 2-coloring

Theorem: G contains an odd cycle if and only
if Gis not 2-colorable

Alternate coloring algorithm:

To 2-color a connected graph G, pick an
arbitrary node v, and color it white

Color all v’s neighbors black

Color all their uncolored neighbors
white, and so on

If the algorithm terminates without a
color conflict, output the 2-coloring

Else, output an odd cycle

A 2-CRAYOLA Question!

Theorem: G contains an odd cycle if and only
if G is not 2-colorable

A 3-CRAYOLA Question!

Is Gadget 3-colorable?

A 3-CRAYOLA Question!

Is Gadget 3-colorable?

Yes!

A 3-CRAYOLA Question!

3-Coloring Is Decidable
by Brute Force

3-Coloring Is Decidable
by Brute Force

Try out all 3" colorings until you
determine if G has a 3-coloring

A 3-CRAYOLA Oracle

A 3-CRAYOLA Oracle

3-Colorability
Oracle

A 3-CRAYOLA Oracle

3-Colorability
Oracle

A 3-CRAYOLA Oracle

YES/NO -~
S E— 3-Colorability

Oracle

Better 3-CRAYOLA Oracle

Better 3-CRAYOLA Oracle

3-Colorability
Search Oracle

Better 3-CRAYOLA Oracle

3-Colorability
Search Oracle

Better 3-CRAYOLA Oracle

NO, or
3-Colorability

’VES here is how: Search Oracle

gives 3-coloring
of the nodes

3-Colorability 3-Colorability
Search Oracle Decision Oracle

Christmas Present

»
W
3-Colorability
Decision Oracle

Christmas Present

BUT | WANTED
a SEARCH
oracle for
Christmas

| am really
bummed out

3-Colorability
Decision Oracle

Christmas Present

How do | turn a
mere decision
oracle into a
search oracle?

3-Colorability
Decision Oracle

»
4
‘ ?J” What if | gave the oracle

partial colorings of G? For
each partial coloring of G, |
could pick an uncolored node
and try different colors on it
until the oracle says “YES”

Beanie’s Flawed ldea

Rats, the oracle
does not take
partial
colorings....

Beanie’s Fix

3-Colorability
Decision Oracle

Beanie’s Fix

3-Colorability
Decision Oracle

Beanie’s Fix

3-Colorability
Decision Oracle

Let’s now look at two
other problems:

1. K-Clique
2. K-Independent
Set

K-Cliques

K-Cliques

A K-clique is a set of K nodes with all
K(K-1)/2 possible edges between them

K-Cliques

A K-clique is a set of K nodes with all
K(K-1)/2 possible edges between them

K-Cliques

A K-clique is a set of K nodes with all
K(K-1)/2 possible edges between them

This graph contains a 4-clique

A Graph Named “Gadget”

Given: (G, k)
Question: Does G contain a k-clique?

Given: (G, k)
Question: Does G contain a k-clique?

BRUTE FORCE: Try out all n choose k
possible locations for the k clique

Independent Set

Independent Set

An independent set is a set of nodes with
no edges between them

Independent Set

An independent set is a set of nodes with
no edges between them

Independent Set

An independent set is a set of nodes with
no edges between them

This graph
contains an
independent
set of size 3

Independent Set

An independent set is a set of nodes with
no edges between them

This graph
contains an
independent
set of size 3

A Graph Named “Gadget”

Given: (G, k)
Question: Does G contain an
independent set of size k?

Given: (G, k)
Question: Does G contain an
independent set of size k?

BRUTE FORCE: Try out all n choose k
possible locations for the k independent
set

Cligue / Independent Set

Two problems that are
cosmetically different, but
substantially the same

Complement of G

Complement of G

Given a graph G, let G*, the complement of G,
be the graph obtained by the rule that two
nodes in G* are connected if and only if the
corresponding nodes of G are not connected

Complement of G

Given a graph G, let G*, the complement of G,
be the graph obtained by the rule that two
nodes in G* are connected if and only if the
corresponding nodes of G are not connected

Complement of G

Given a graph G, let G*, the complement of G,
be the graph obtained by the rule that two
nodes in G* are connected if and only if the
corresponding nodes of G are not connected

G* has an
independent
set of size k

G has a k-clique <

Let G be an n-node graph

Let G be an n-node graph

Let G be an n-node graph

Independent Clique
Set Oracle Oracle

Let G be an n-node graph
(G,k)

Independent
Set Oracle

Let G be an n-node graph
(G,k)

Independent
Set Oracle

Let G be an n-node graph
(G,k)

Independent
Set Oracle

Let G be an n-node graph

Independent
Set Oracle

Let G be an n-node graph

Let G be an n-node graph

Independent
Set Oracle

Let G be an n-node graph

Independent
Set Oracle

Let G be an n-node graph
(G,k)

Independent
Set Oracle

Let G be an n-node graph
(G,k)

Independent
Set Oracle

Let G be an n-node graph
(G,k)

Independent
Set Oracle

Let G be an n-node graph

Independent
Set Oracle

Cligue / Independent Set

Two problems that are
cosmetically different, but
substantially the same

Thus, we can quickly
reduce a clique problem

to an independent set
problem and vice versa

Thus, we can quickly
reduce a clique problem

to anHerepeadesnt set
ProlRiaRoIe ViR Mersa
and only if thereis a
fast method for the
other

Let’s now look at two
other problems:

1. Circuit Satisfiability
2. Graph 3-Colorability

Combinatorial Circuits

Combinatorial Circuits

AND, OR, NOT, 0, 1 gates wired
together with no feedback allowed

Combinatorial Circuits

AND, OR, NOT, 0, 1 gates wired
together with no feedback allowed

Circuit-Satisfiability

Circuit-Satisfiability

Given a circuit with n-inputs and one output,
Is there a way to assign 0-1 values to the input
wires so that the output value is 1 (true)?

Circuit-Satisfiability

Given a circuit with n-inputs and one output,
Is there a way to assign 0-1 values to the input
wires so that the output value is 1 (true)?

28 2N

AND || NOT

Circuit-Satisfiability

Given a circuit with n-inputs and one output,
Is there a way to assign 0-1 values to the input
wires so that the output value is 1 (true)?

28 2N

AND || NOT

Yes, this circuit is
satisfiable: 110

Circuit-Satisfiability

Given a circuit with n-inputs and one output,
Is there a way to assign 0-1 values to the input
wires so that the output value is 1 (true)?

11 0
Yy
AND || NOT

Yes, this circuit is
satisfiable: 110

Circuit-Satisfiability

Given a circuit with n-inputs and one output,
Is there a way to assign 0-1 values to the input
wires so that the output value is 1 (true)?

11 0
Yy
AND || NOT

Yes, this circuit is
satisfiable: 110

Circuit-Satisfiability

Given: A circuit with n-inputs and one
output, is there a way to assign 0-1 values to
the input wires so that the output value is 1

(true)?

Circuit-Satisfiability

Given: A circuit with n-inputs and one
output, is there a way to assign 0-1 values to

the input wires so that the output value is 1
(true)?

BRUTE FORCE: Try out all 2" assignments

3-Colorability

Circuit
Satisfiability
v 3 ¥

AND || NOT

> —>

X =—>

> —>

X =—>

<4 X

NOT gate!

NOT

&

"R
|

=

D\

| 4“

o\

\/

How do we force the
graph to be 3 colorable
exactly when the
circuit is satifiable?

How do we force the
graph to be 3 colorable
exactly when the
circuit is satifiable?

Let C be an n-input circuit

Let C be an n-input circuit

3-color
Oracle

Let C be an n-input circuit

3-color
Oracle Oracle

Let C be an n-input circuit

3-color
Oracle Oracle

Let C be an n-input circuit

Graph composed of
gadgets that mimic
the gates in C

3-color
Oracle Oracle

Let C be an n-input circuit

Graph composed of
gadgets that mimic
the gates in C

3-color
Oracle Oracle

Let C be an n-input circuit

Graph composed of
gadgets that mimic

the gates in C

3-color
Oracle Oracle

You can quickly transform a
method to decide 3-coloring into
a method to decide circuit
satifiability!

Given an oracle for
circuit SAT, how can
you quickly solve
3-colorability?

Can you make a circuit
that takes a description
of a graph and a node
coloring, and checks if it
is a valid 3-coloring?

X (n choose 2 bits) Y (2n bits)
_A A

~ N
L I

-~
LLLEE LR TR
e)

J

V., (X,Y)

Via(X,Y)

Via(X,Y)

Let V,_be a circuit that takes an n-node

graph X and an assignment of colors to
nodes Y, and verifies that Y is a valid 3
coloring of X. l.e., V (X,Y)=1iff Yisa 3

coloring of X

Via(X,Y)

Let V,_be a circuit that takes an n-node

graph X and an assignment of colors to
nodes Y, and verifies that Y is a valid 3
coloring of X. l.e., V (X,Y)=1iff Yisa 3

coloring of X
X is expressed as an n choose 2 bit

seguence. Y is expressed as a 2n bit
sequence

Via(X,Y)

Let V,_be a circuit that takes an n-node

graph X and an assignment of colors to
nodes Y, and verifies that Y is a valid 3
coloring of X. l.e., V (X,Y)=1iff Yisa 3

coloring of X

X is expressed as an n choose 2 bit
seguence. Y is expressed as a 2n bit
sequence

Given n, we can construct V in time O(n?)

Let G be an n-node graph

Let G be an n-node graph

SAT
Oracle

Let G be an n-node graph

SAT
Oracle Oracle

Let G be an n-node graph

SAT
Oracle Oracle

Let G be an n-node graph

SAT
Oracle Oracle

Let G be an n-node graph

SAT
Oracle Oracle

Let G be an n-node graph

SAT
Oracle Oracle

Circuit-SAT / 3-Colorability

Two problems that are
cosmetically different, but
substantially the same

Circuit-SAT / 3-Colorability

Cligue / Independent Set

Circuit-SAT / 3-Colorability

Cligue / Independent Set

Given an oracle for
circuit SAT, how can
you quickly solve k-
cligue?

Circuit-SAT / 3-Colorability

Cligue / Independent Set

Four problems that are
cosmetically different,
but substantially the
same

FACT: No one knows a
way to solve any of the
4 problems that is fast
on all instances

Summary

Many problems that appear
different on the surface can be
efficiently reduced to each other,
revealing a deeper similarity

