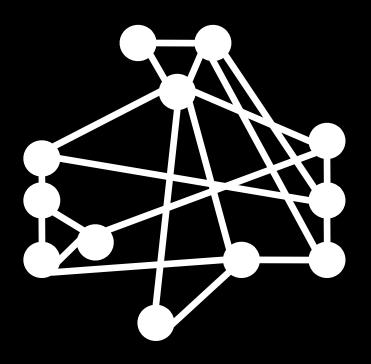
15-251

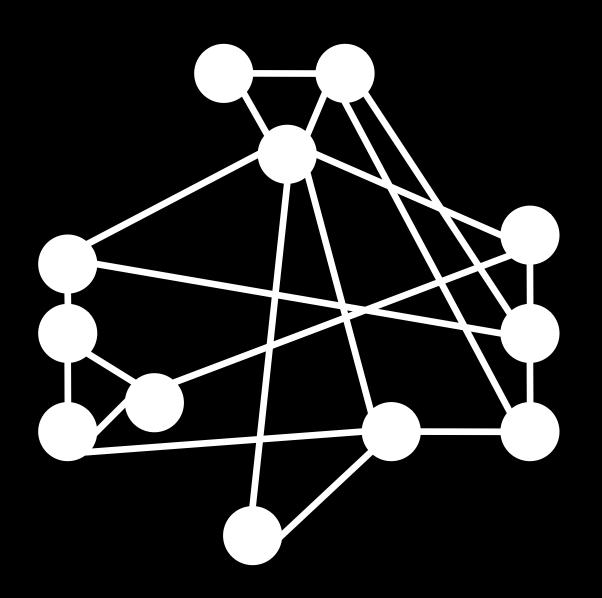
Great Theoretical Ideas in Computer Science

Complexity Theory: Efficient Reductions Between Computational Problems

Lecture 27 (November 25, 2008)



A Graph Named "Gadget"



We define a k-coloring of a graph:

We define a k-coloring of a graph:

Each node gets colored with one color

We define a k-coloring of a graph:

Each node gets colored with one color

At most k different colors are used

We define a k-coloring of a graph:

Each node gets colored with one color

At most k different colors are used

If two nodes have an edge between them they must have different colors

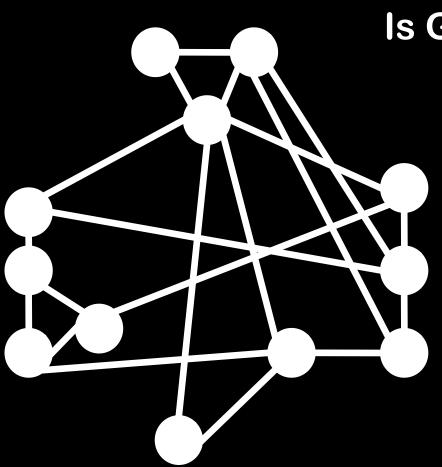
We define a k-coloring of a graph:

Each node gets colored with one color

At most k different colors are used

If two nodes have an edge between them they must have different colors

A graph is called k-colorable if and only if it has a k-coloring



Is Gadget 2-colorable?

Given a graph G, how can we decide if it is 2-colorable?

Given a graph G, how can we decide if it is 2-colorable?

Answer: Enumerate all 2ⁿ possible colorings to look for a valid 2-color

Given a graph G, how can we decide if it is 2-colorable?

Answer: Enumerate all 2ⁿ possible colorings to look for a valid 2-color

How can we efficiently decide if G is 2-colorable?

Alternate coloring algorithm:

Alternate coloring algorithm:

To 2-color a connected graph G, pick an arbitrary node v, and color it white

Alternate coloring algorithm:

To 2-color a connected graph G, pick an arbitrary node v, and color it white

Color all v's neighbors black

Alternate coloring algorithm:

To 2-color a connected graph G, pick an arbitrary node v, and color it white

Color all v's neighbors black

Color all their uncolored neighbors white, and so on

Alternate coloring algorithm:

To 2-color a connected graph G, pick an arbitrary node v, and color it white

Color all v's neighbors black

Color all their uncolored neighbors white, and so on

If the algorithm terminates without a color conflict, output the 2-coloring

Alternate coloring algorithm:

To 2-color a connected graph G, pick an arbitrary node v, and color it white

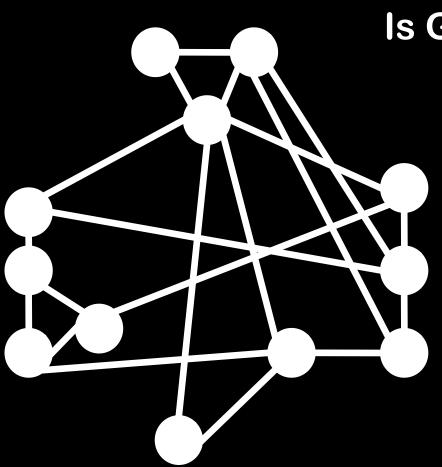
Color all v's neighbors black

Color all their uncolored neighbors white, and so on

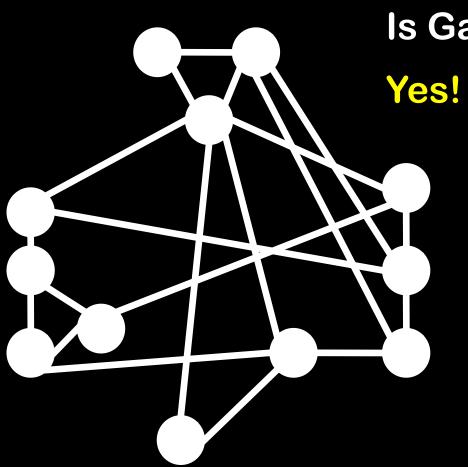
If the algorithm terminates without a color conflict, output the 2-coloring

Else, output an odd cycle

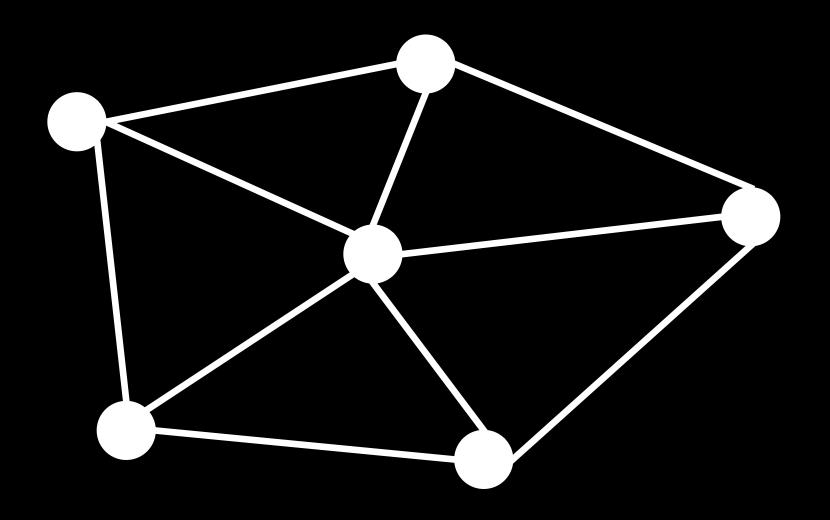
Theorem: G contains an odd cycle if and only if G is not 2-colorable



Is Gadget 3-colorable?



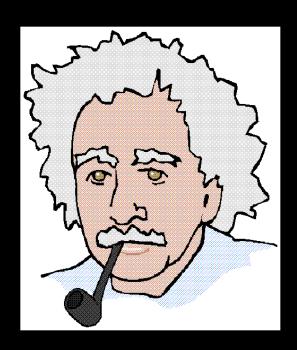
Is Gadget 3-colorable?



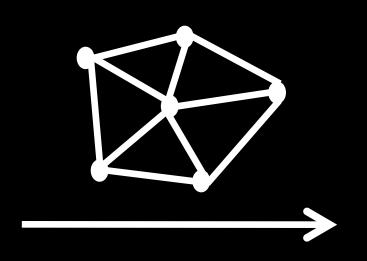
3-Coloring Is Decidable by Brute Force

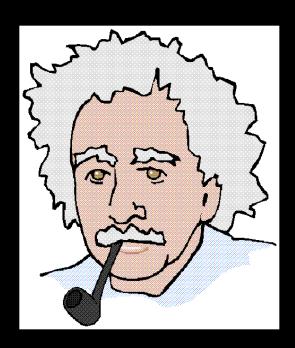
3-Coloring Is Decidable by Brute Force

Try out all 3ⁿ colorings until you determine if G has a 3-coloring

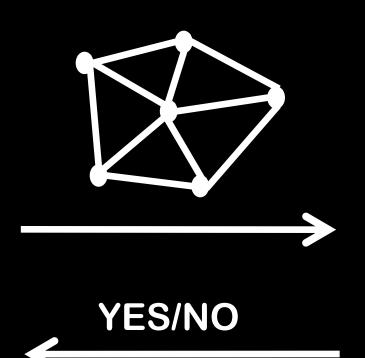


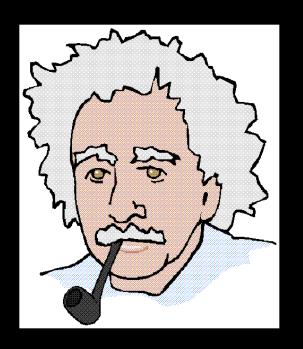
3-Colorability
Oracle



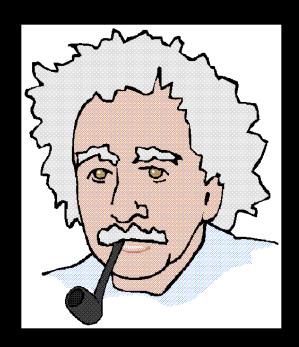


3-Colorability
Oracle

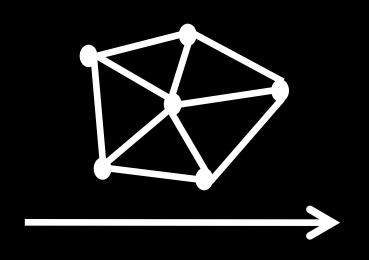


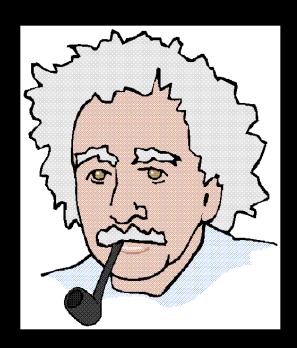


3-Colorability
Oracle

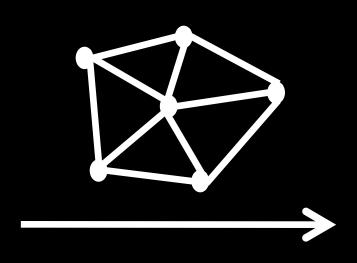


3-Colorability Search Oracle



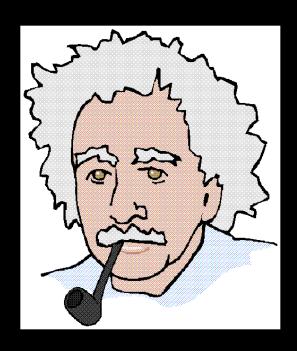


3-Colorability Search Oracle

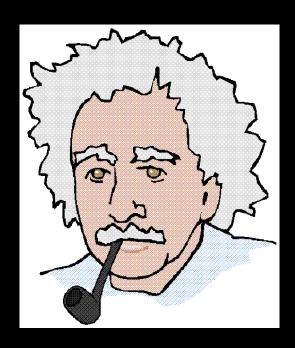


NO, or

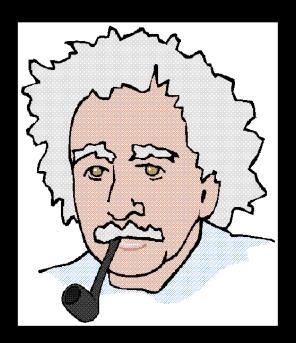
YES here is how: gives 3-coloring of the nodes



3-Colorability Search Oracle

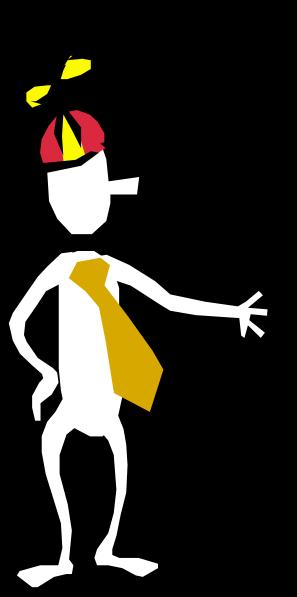


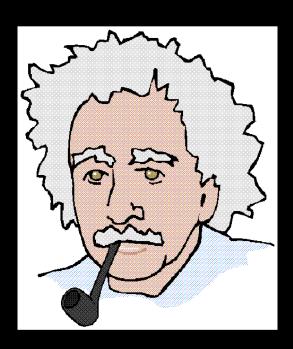
3-Colorability Search Oracle



3-Colorability Decision Oracle

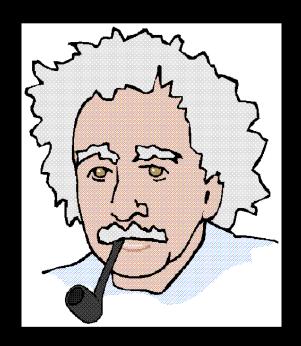
Christmas Present





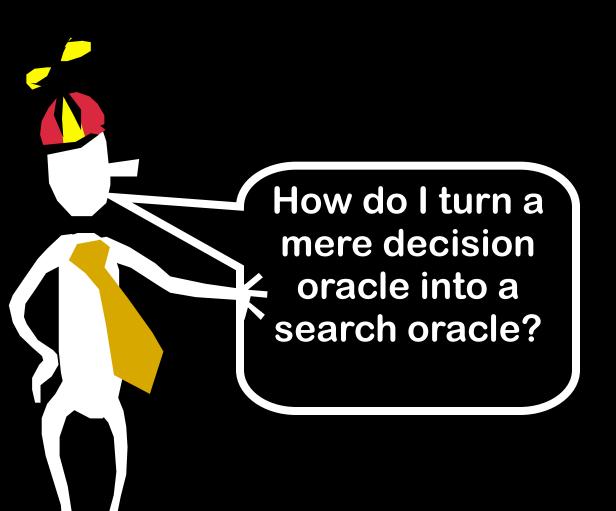
GIVEN: 3-Colorability Decision Oracle

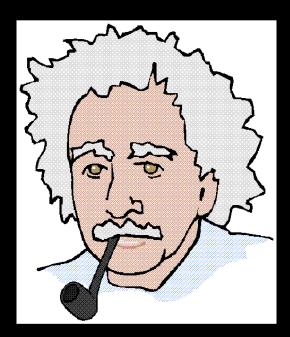
Christmas Present



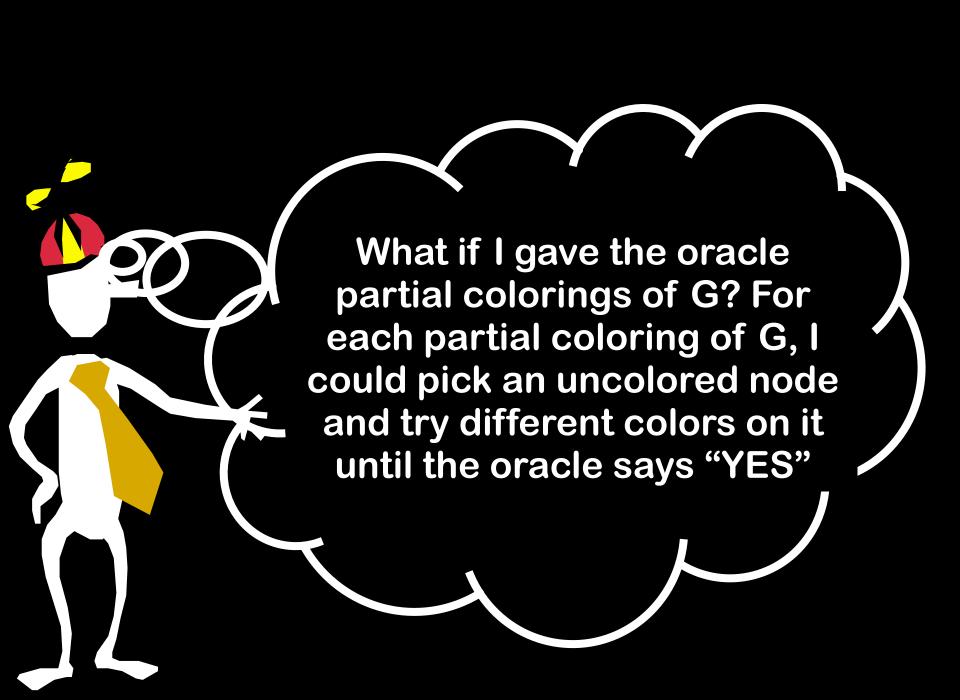
GIVEN: 3-Colorability Decision Oracle

Christmas Present

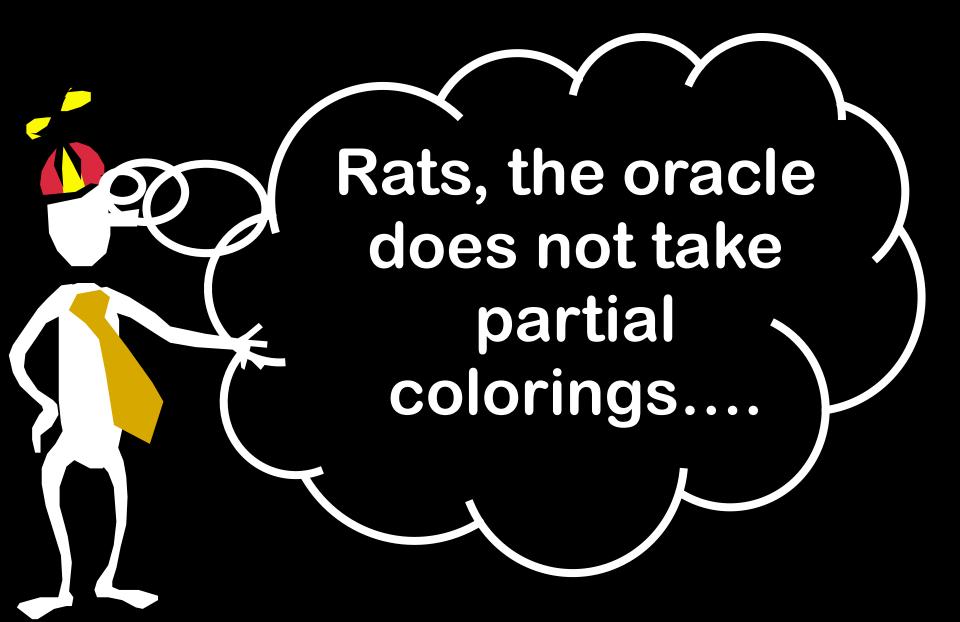




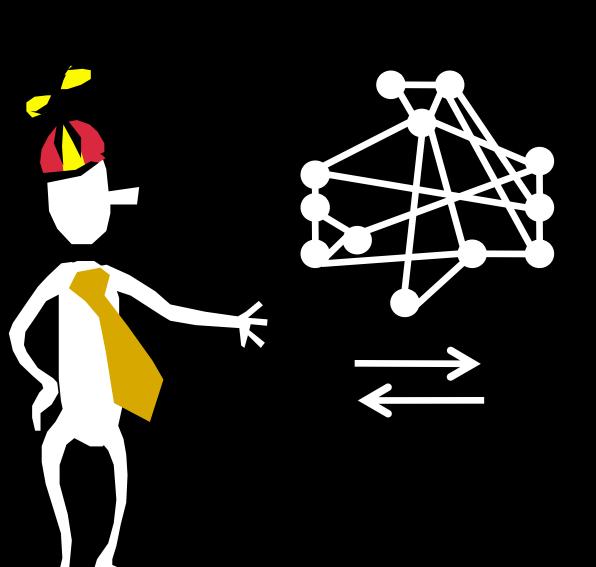
GIVEN: 3-Colorability Decision Oracle

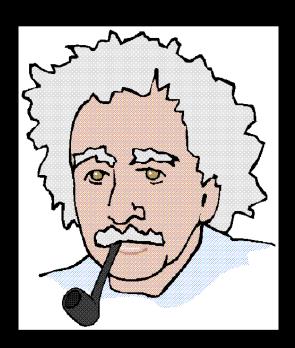


Beanie's Flawed Idea



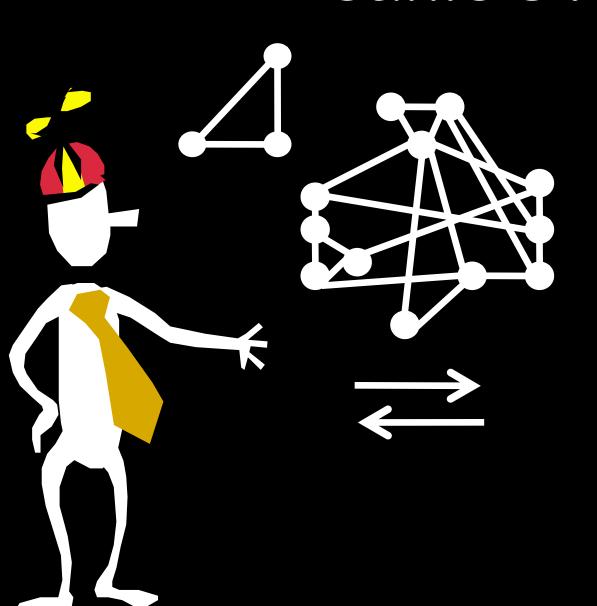
Beanie's Fix

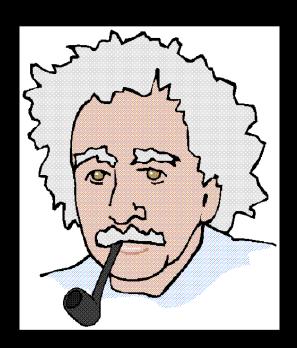




GIVEN: 3-Colorability Decision Oracle

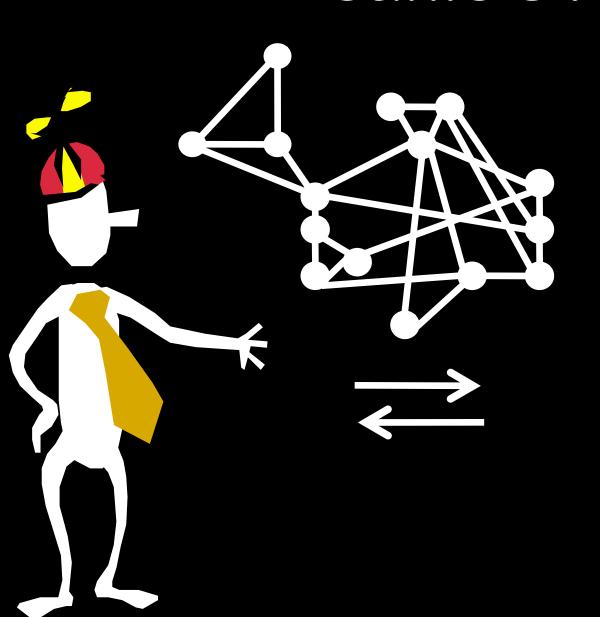
Beanie's Fix





GIVEN: 3-Colorability Decision Oracle

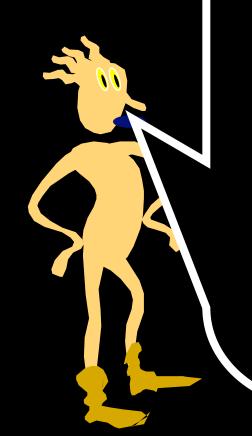
Beanie's Fix





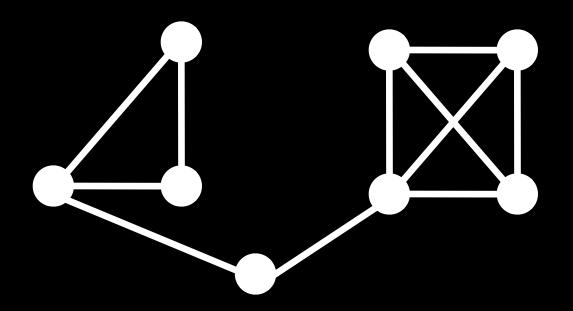
GIVEN: 3-Colorability Decision Oracle

- 1. K-Clique
- 2. K-Independent Set

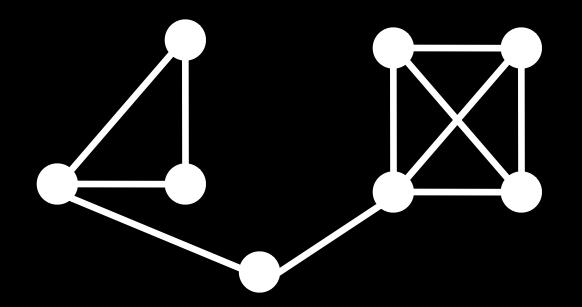


A K-clique is a set of K nodes with all K(K-1)/2 possible edges between them

A K-clique is a set of K nodes with all K(K-1)/2 possible edges between them

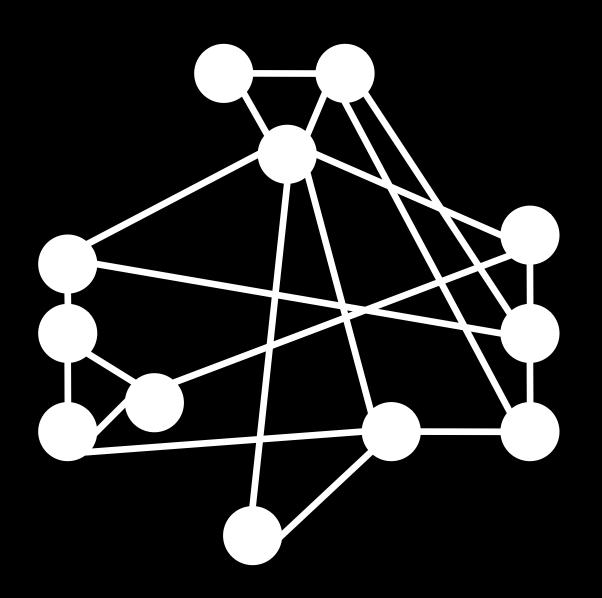


A K-clique is a set of K nodes with all K(K-1)/2 possible edges between them



This graph contains a 4-clique

A Graph Named "Gadget"



Given: (G, k)

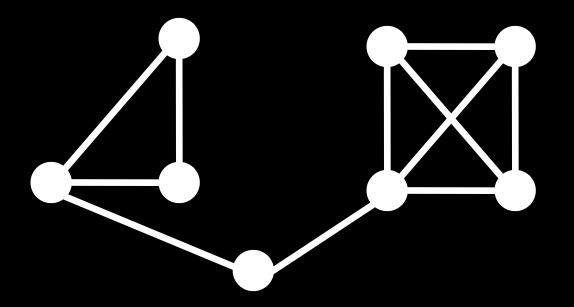
Question: Does G contain a k-clique?

Given: (G, k)
Question: Does G contain a k-clique?

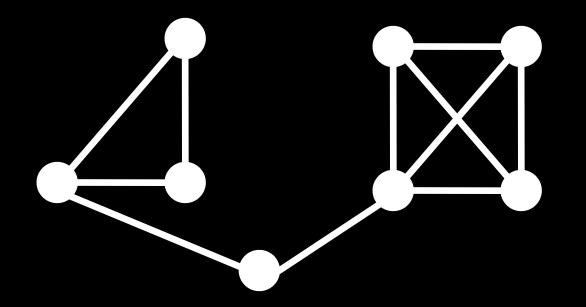
BRUTE FORCE: Try out all n choose k possible locations for the k clique

An independent set is a set of nodes with no edges between them

An independent set is a set of nodes with no edges between them

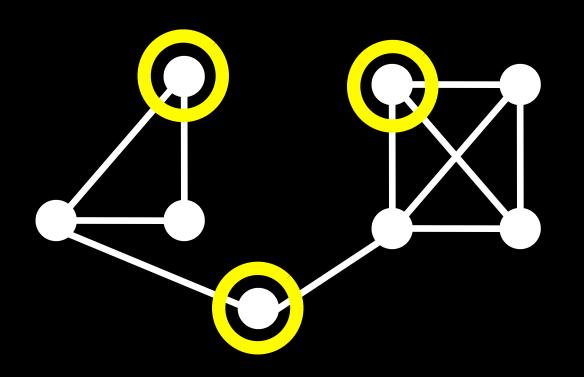


An independent set is a set of nodes with no edges between them



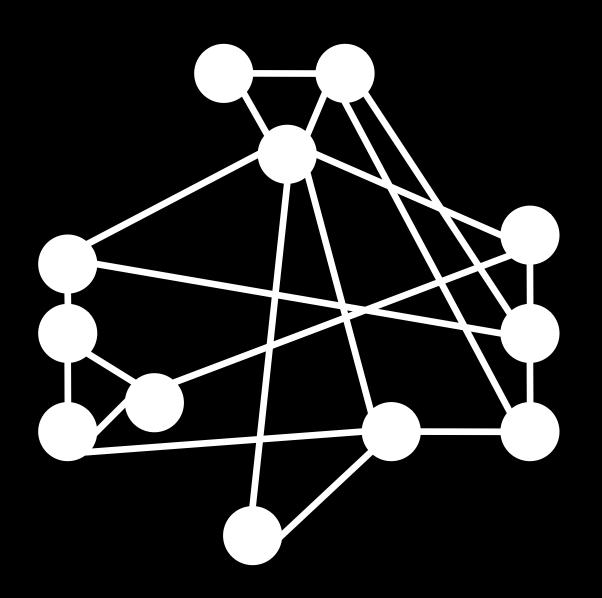
This graph contains an independent set of size 3

An independent set is a set of nodes with no edges between them



This graph contains an independent set of size 3

A Graph Named "Gadget"



Given: (G, k)
Question: Does G contain an independent set of size k?

Given: (G, k)
Question: Does G contain an independent set of size k?

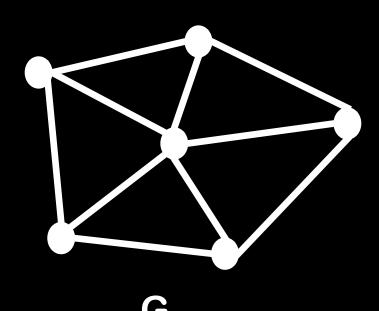
BRUTE FORCE: Try out all n choose k possible locations for the k independent set

Clique / Independent Set

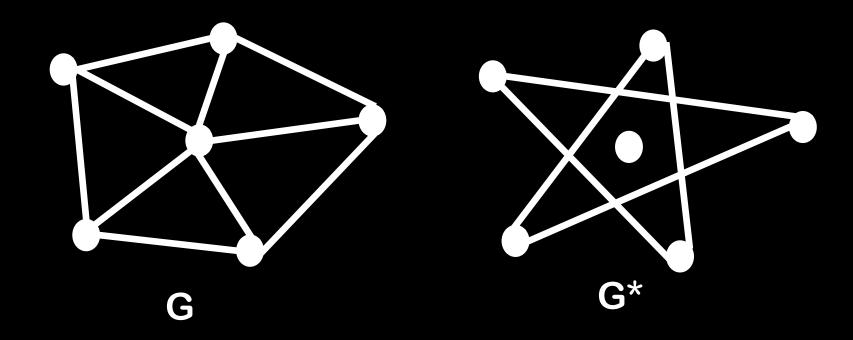
Two problems that are cosmetically different, but substantially the same

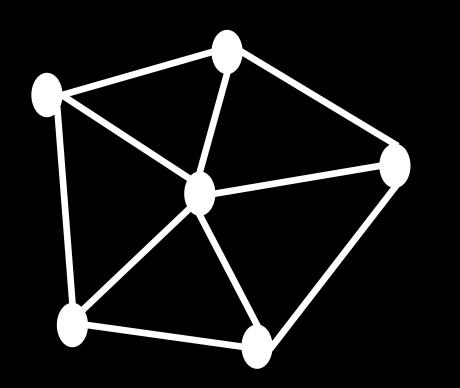
Given a graph G, let G*, the complement of G, be the graph obtained by the rule that two nodes in G* are connected if and only if the corresponding nodes of G are not connected

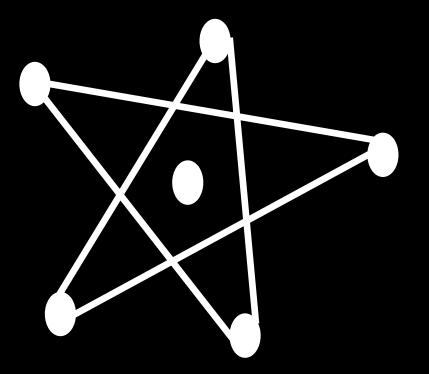
Given a graph G, let G*, the complement of G, be the graph obtained by the rule that two nodes in G* are connected if and only if the corresponding nodes of G are not connected



Given a graph G, let G*, the complement of G, be the graph obtained by the rule that two nodes in G* are connected if and only if the corresponding nodes of G are not connected

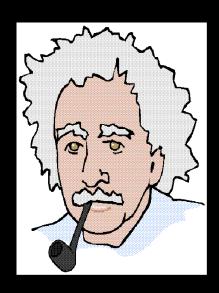




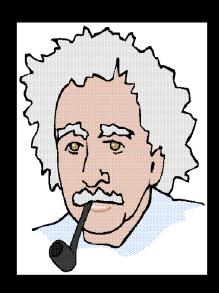


G has a k-clique

G* has an independent set of size k

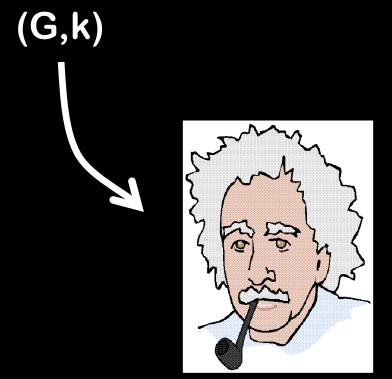


GIVEN: Clique Oracle



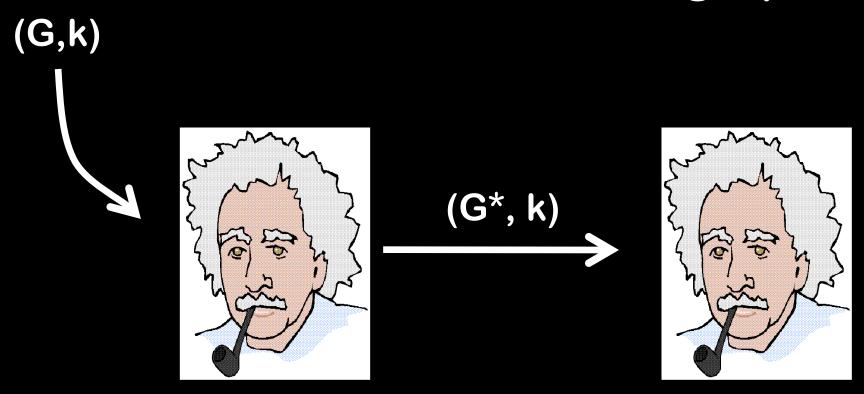
BUILD: Independent Set Oracle

GIVEN: Clique Oracle

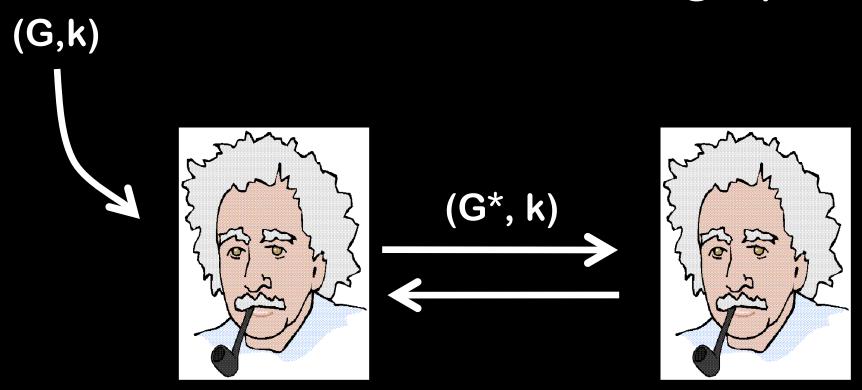


BUILD: Independent Set Oracle

GIVEN: Clique Oracle

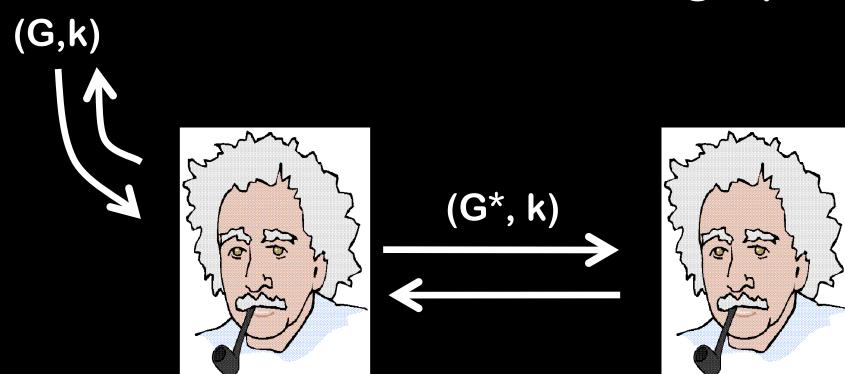


BUILD: Independent Set Oracle GIVEN: Clique Oracle



BUILD: Independent Set Oracle

GIVEN: Clique Oracle



BUILD: Independent Set Oracle GIVEN: Clique Oracle

GIVEN: Independent Set Oracle

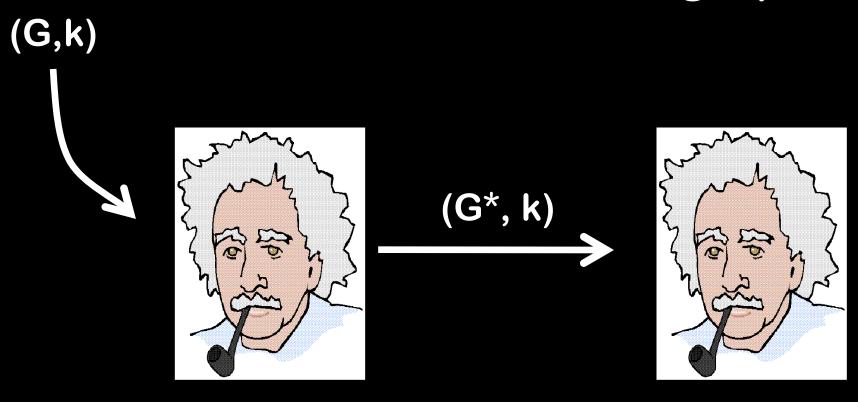
BUILD: Clique Oracle

GIVEN: Independent Set Oracle

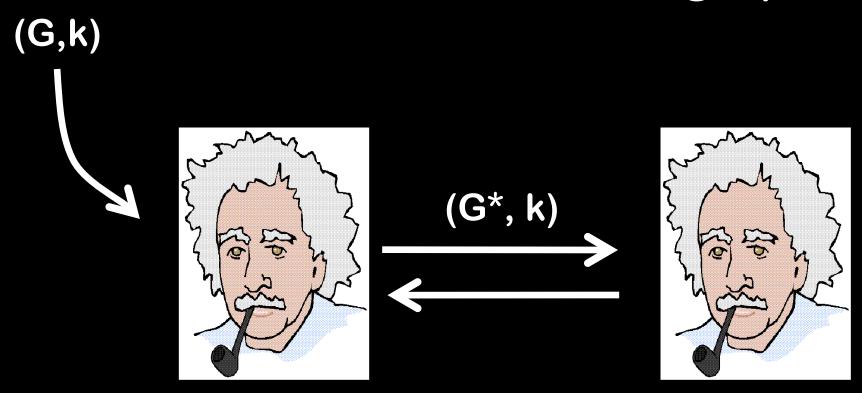
(G,k)

BUILD: Clique Oracle

GIVEN: Independent Set Oracle

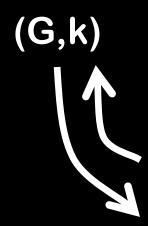


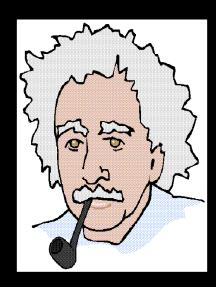
BUILD: Clique Oracle GIVEN: Independent Set Oracle

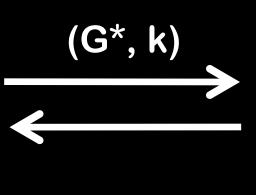


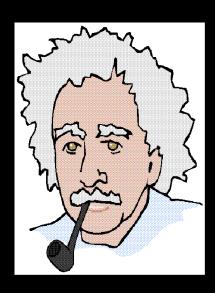
BUILD: Clique Oracle

GIVEN: Independent Set Oracle







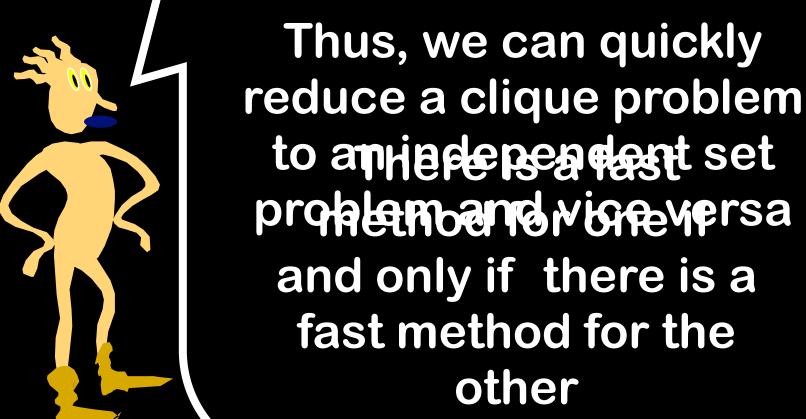


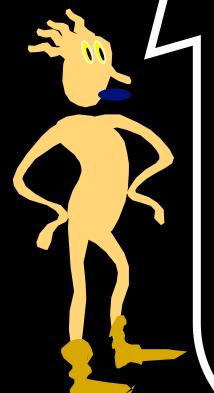
BUILD: Clique Oracle

GIVEN: Independent Set Oracle

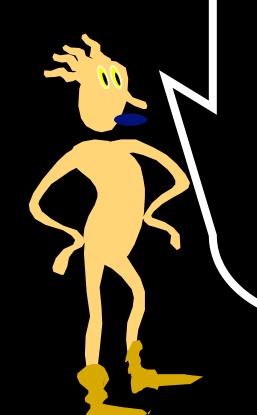
Clique / Independent Set

Two problems that are cosmetically different, but substantially the same





- 1. Circuit Satisfiability
- 2. Graph 3-Colorability



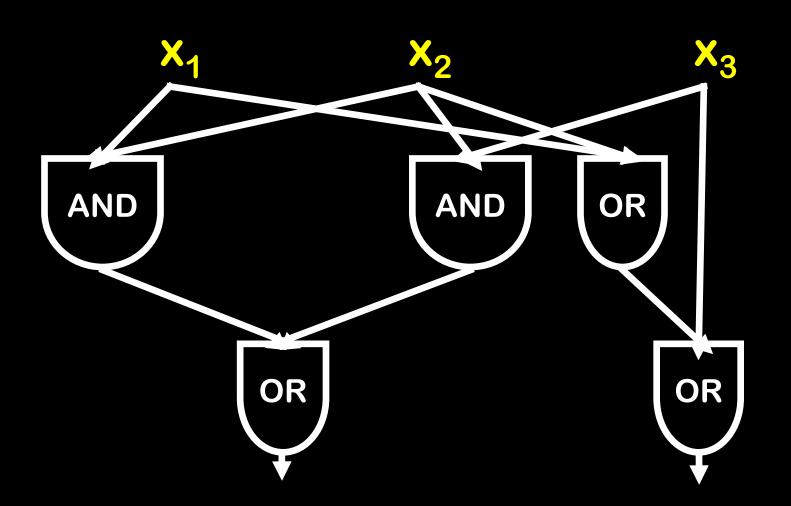
Combinatorial Circuits

Combinatorial Circuits

AND, OR, NOT, 0, 1 gates wired together with no feedback allowed

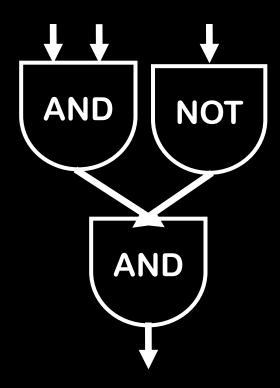
Combinatorial Circuits

AND, OR, NOT, 0, 1 gates wired together with no feedback allowed



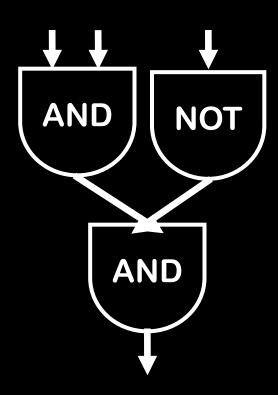
Given a circuit with n-inputs and one output, is there a way to assign 0-1 values to the input wires so that the output value is 1 (true)?

Given a circuit with n-inputs and one output, is there a way to assign 0-1 values to the input wires so that the output value is 1 (true)?



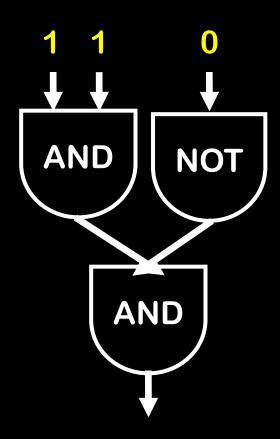
Given a circuit with n-inputs and one output, is there a way to assign 0-1 values to the input wires so that the output value is 1 (true)?

Yes, this circuit is satisfiable: 110



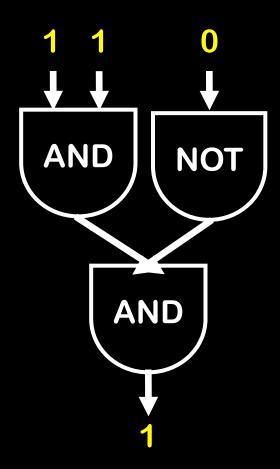
Given a circuit with n-inputs and one output, is there a way to assign 0-1 values to the input wires so that the output value is 1 (true)?

Yes, this circuit is satisfiable: 110



Given a circuit with n-inputs and one output, is there a way to assign 0-1 values to the input wires so that the output value is 1 (true)?

Yes, this circuit is satisfiable: 110

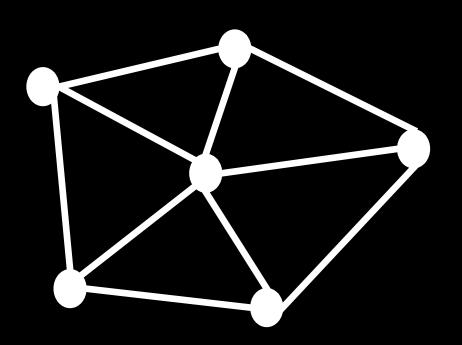


Given: A circuit with n-inputs and one output, is there a way to assign 0-1 values to the input wires so that the output value is 1 (true)?

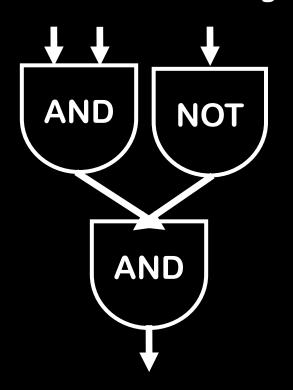
Given: A circuit with n-inputs and one output, is there a way to assign 0-1 values to the input wires so that the output value is 1 (true)?

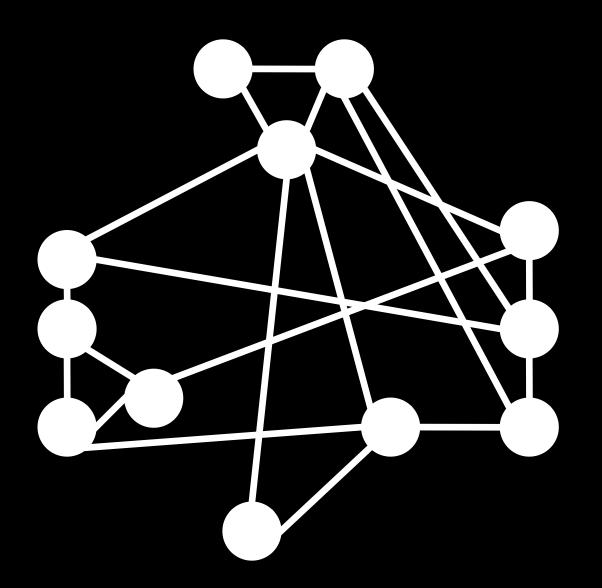
BRUTE FORCE: Try out all 2ⁿ assignments

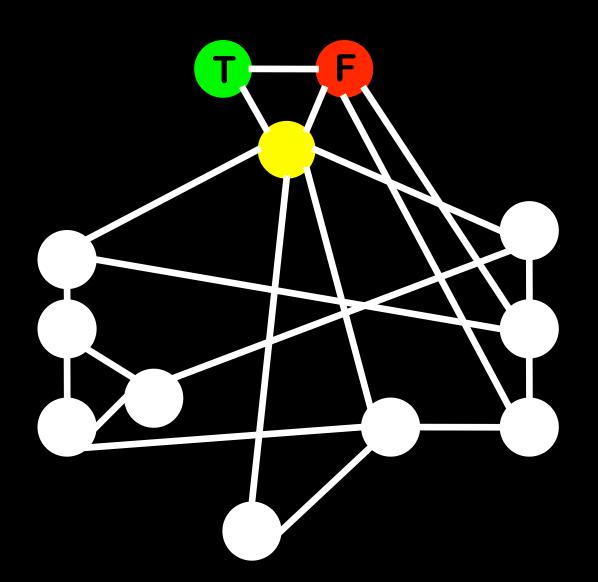
3-Colorability

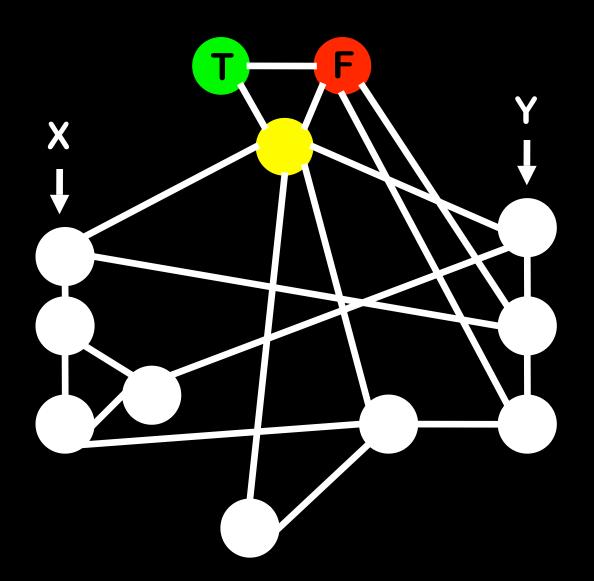


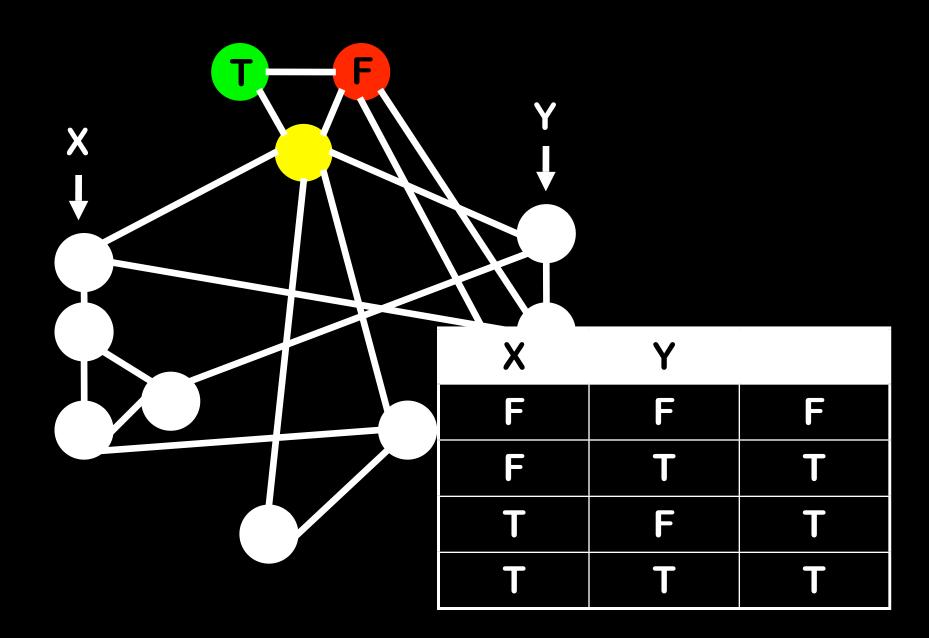
Circuit Satisfiability

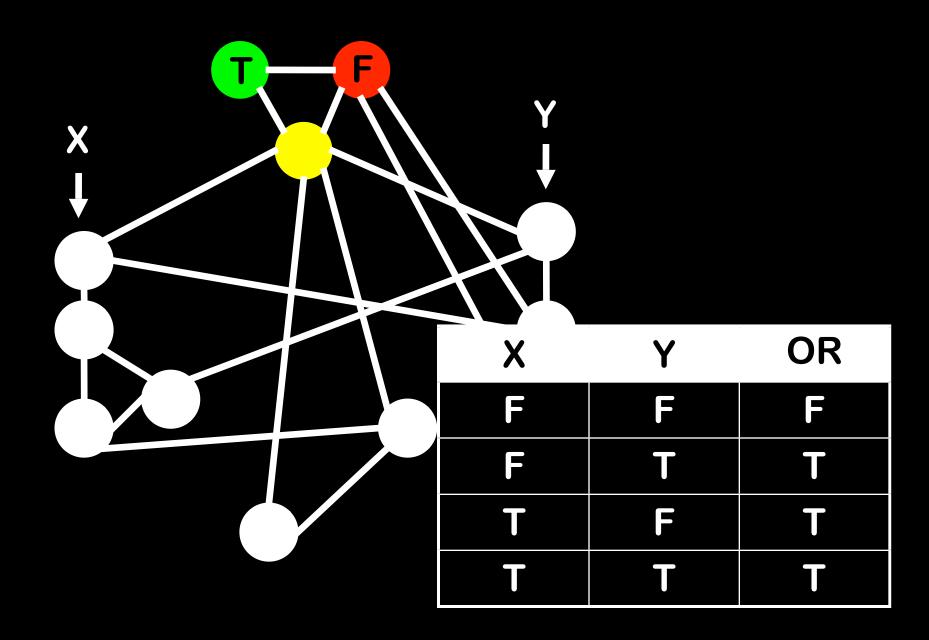


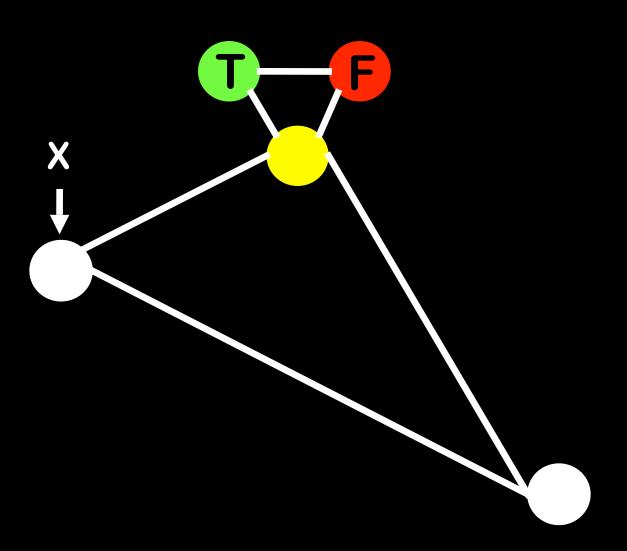


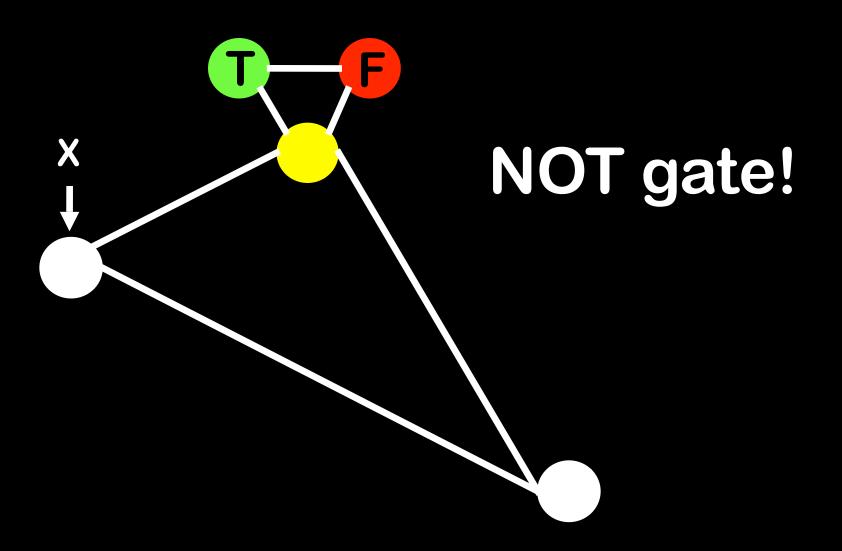


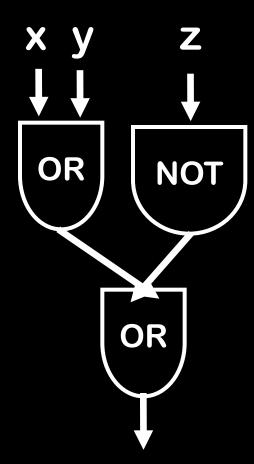


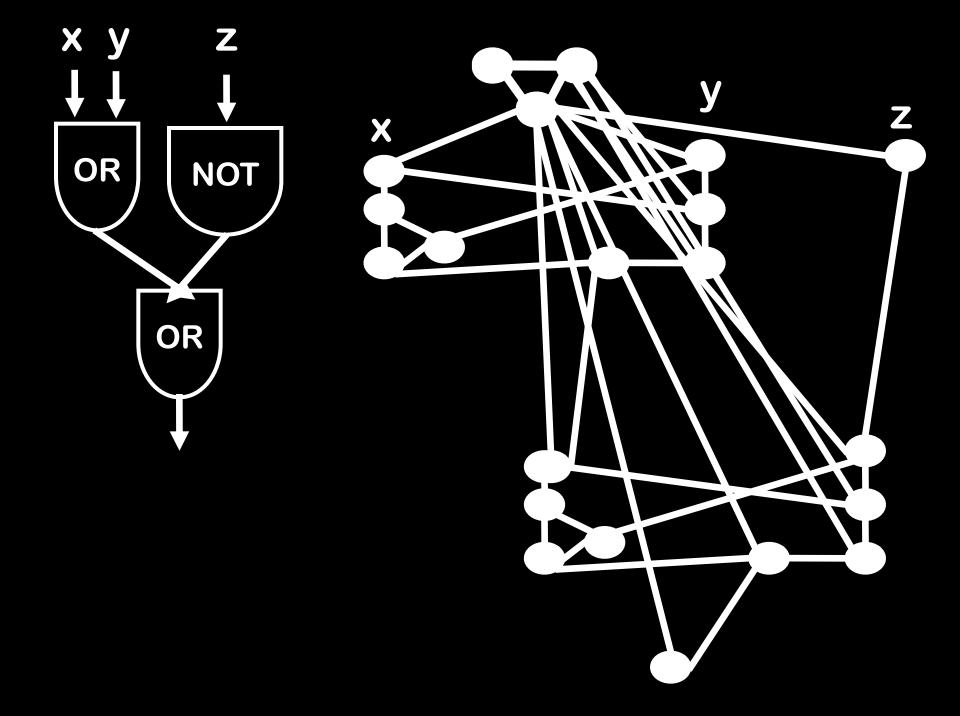


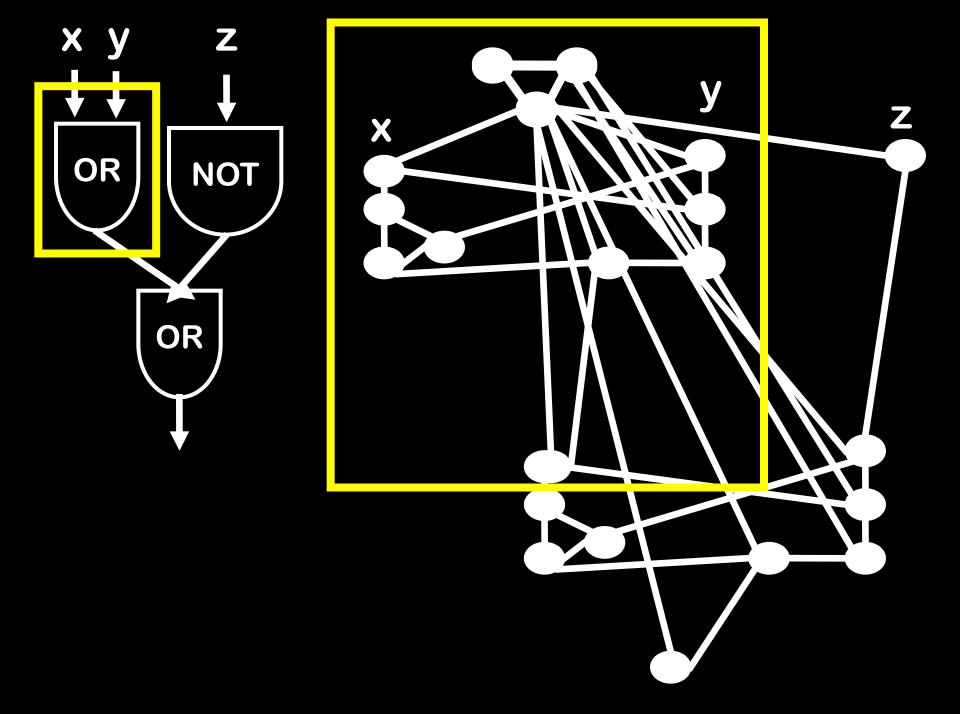


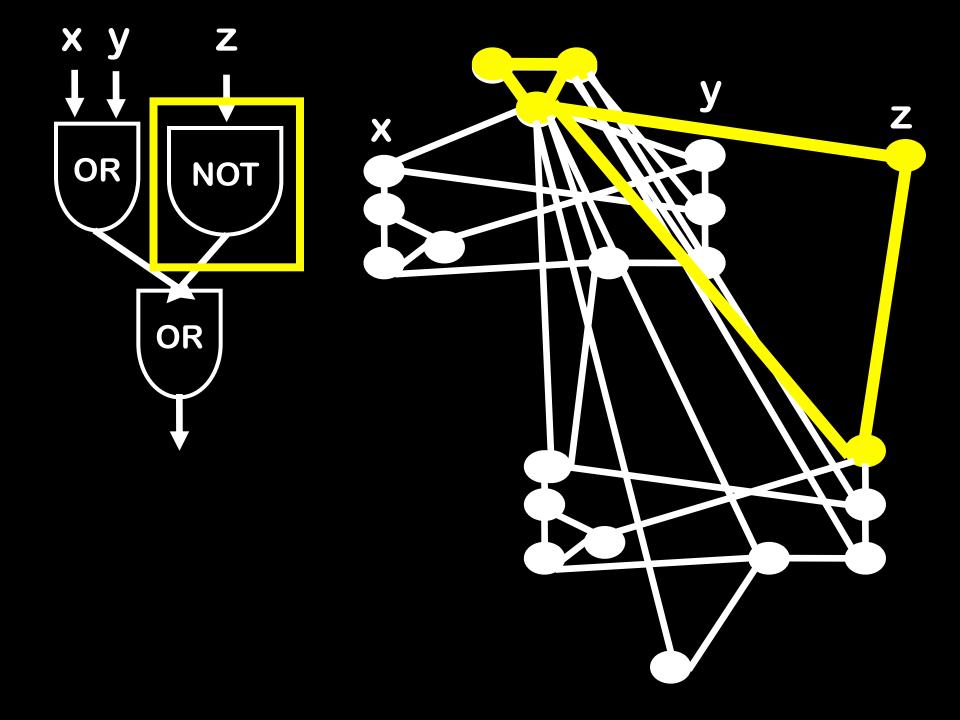


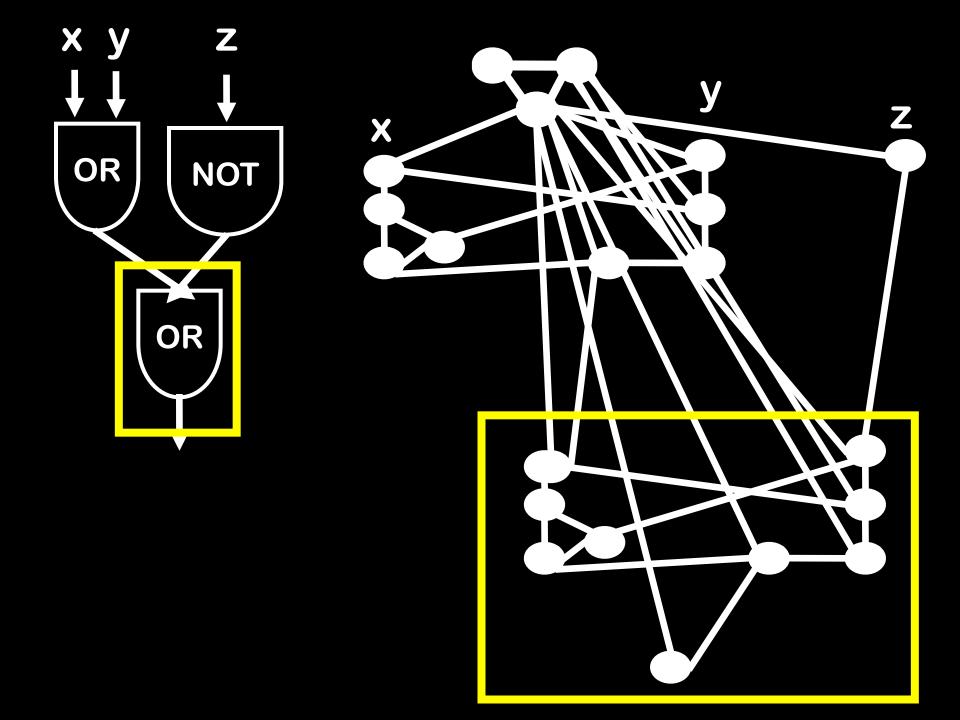


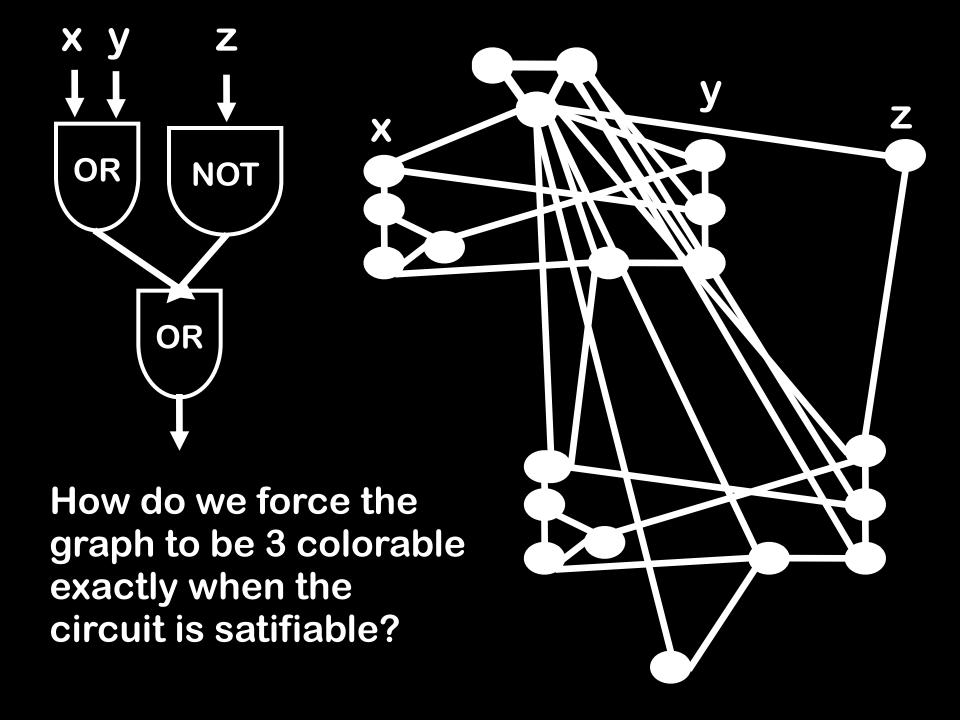


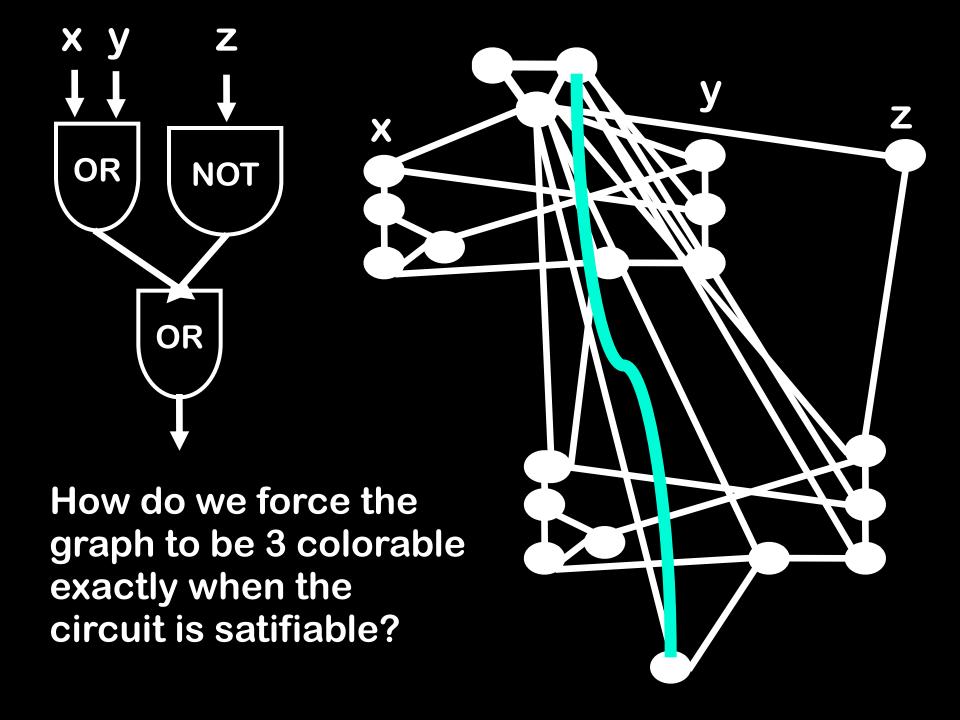




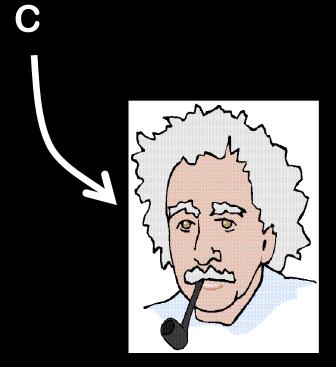






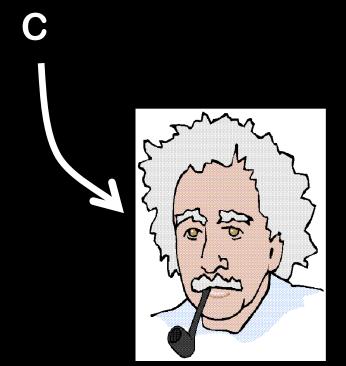


BUILD: SAT Oracle



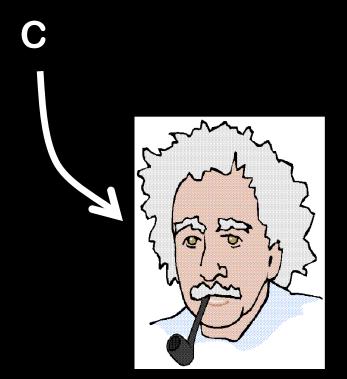
BUILD: SAT Oracle



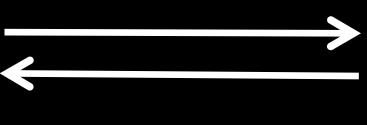


Graph composed of gadgets that mimic the gates in C

BUILD: SAT Oracle

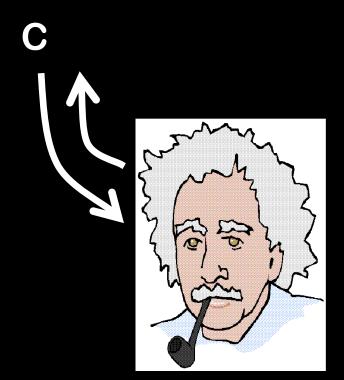


Graph composed of gadgets that mimic the gates in C





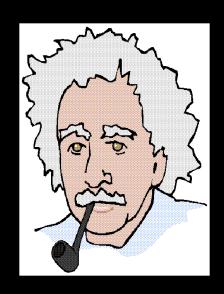
BUILD: SAT Oracle



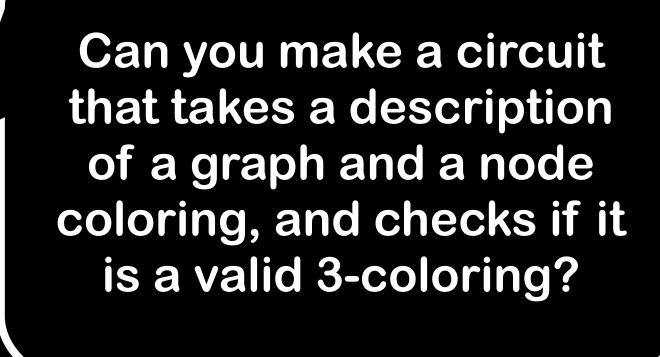
Graph composed of gadgets that mimic the gates in C

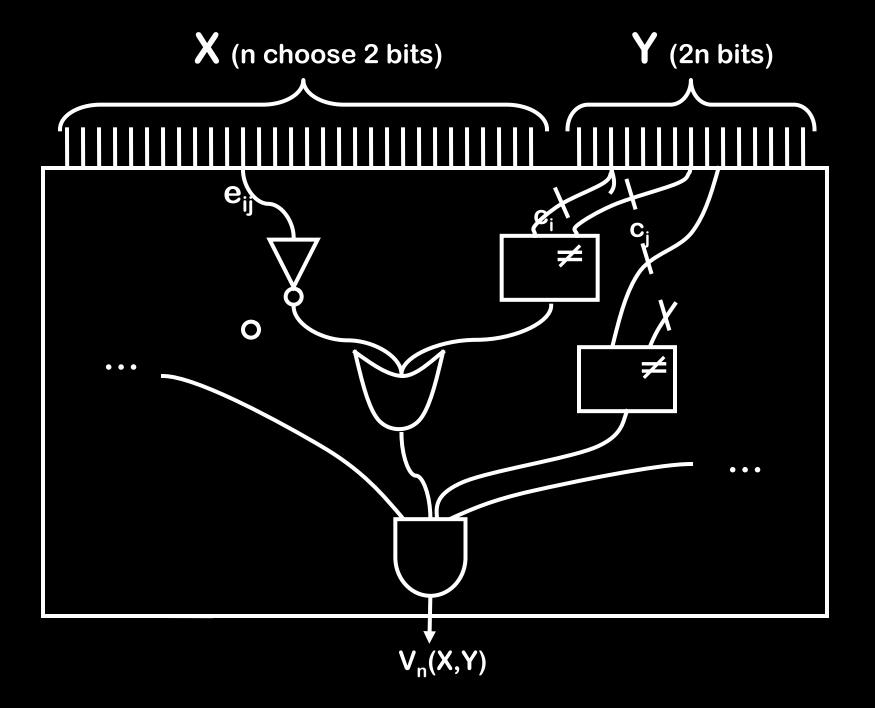
BUILD: SAT Oracle

You can quickly transform a method to decide 3-coloring into a method to decide circuit satifiability!



Given an oracle for circuit SAT, how can you quickly solve 3-colorability?





$V_n(X,Y)$

Let V_n be a circuit that takes an n-node graph X and an assignment of colors to nodes Y, and verifies that Y is a valid 3 coloring of X. I.e., $V_n(X,Y) = 1$ iff Y is a 3 coloring of X

$V_n(X,Y)$

Let V_n be a circuit that takes an n-node graph X and an assignment of colors to nodes Y, and verifies that Y is a valid 3 coloring of X. I.e., $V_n(X,Y) = 1$ iff Y is a 3 coloring of X

X is expressed as an n choose 2 bit sequence. Y is expressed as a 2n bit sequence

$V_n(X,Y)$

Let V_n be a circuit that takes an n-node graph X and an assignment of colors to nodes Y, and verifies that Y is a valid 3 coloring of X. I.e., $V_n(X,Y) = 1$ iff Y is a 3 coloring of X

X is expressed as an n choose 2 bit sequence. Y is expressed as a 2n bit sequence

Given n, we can construct V_n in time $O(n^2)$

GIVEN: SAT Oracle

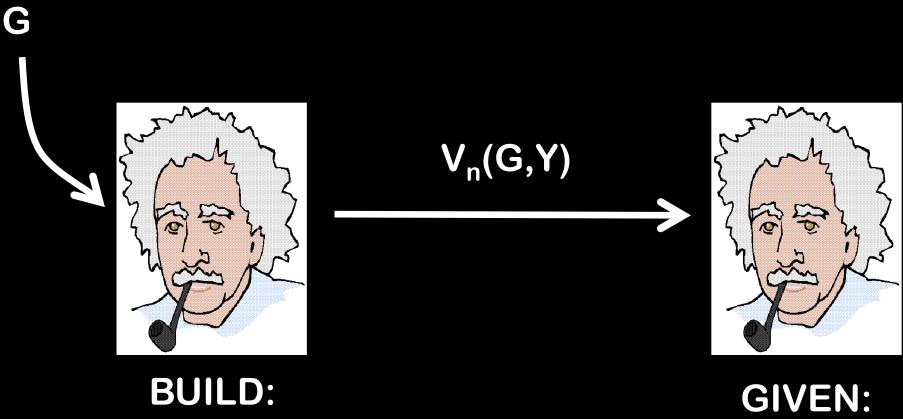
BUILD: 3-color Oracle

GIVEN: SAT Oracle

BUILD: 3-color Oracle

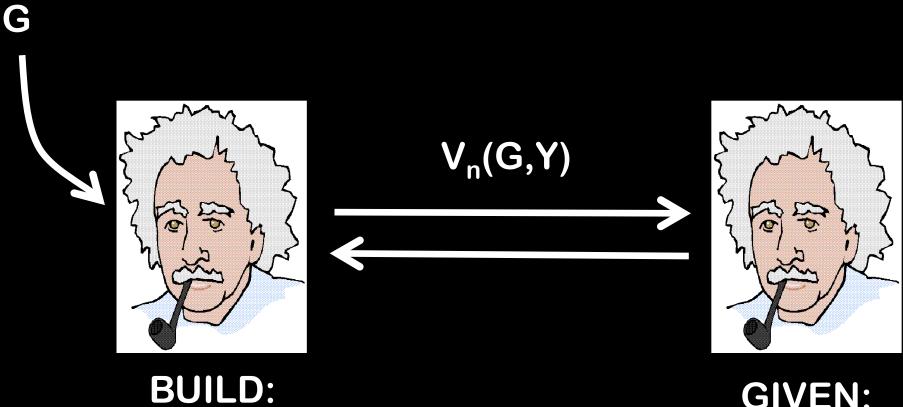


GIVEN: SAT Oracle



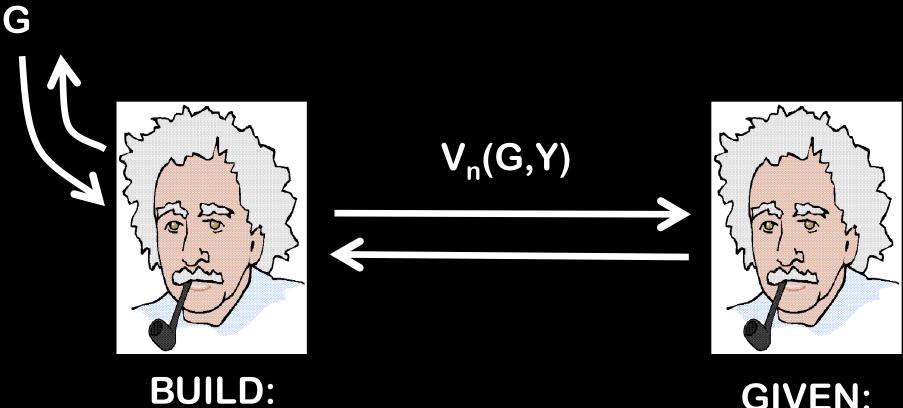
BUILD: 3-color Oracle

GIVEN: SAT Oracle



BUILD: 3-color Oracle

GIVEN: SAT Oracle



3-color Oracle

GIVEN: SAT Oracle

Circuit-SAT / 3-Colorability

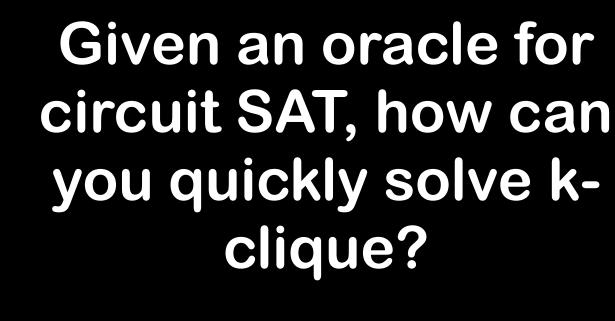
Two problems that are cosmetically different, but substantially the same

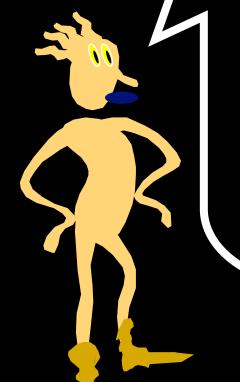
Circuit-SAT / 3-Colorability

Clique / Independent Set

Circuit-SAT / 3-Colorability

Clique / Independent Set





Circuit-SAT / 3-Colorability Clique / Independent Set

Four problems that are cosmetically different, but substantially the same

FACT: No one knows a way to solve any of the 4 problems that is fast on all instances

Summary

Many problems that appear different on the surface can be efficiently reduced to each other, revealing a deeper similarity