
15-251
Great Theoretical Ideas

in Computer Science

Complexity Theory:
Efficient Reductions Between

Computational Problems

Lecture 27 (November 25, 2008)

A Graph Named “Gadget”

K-Coloring

We define a k-coloring of a graph:

Each node gets colored with one color

At most k different colors are used

If two nodes have an edge between them
they must have different colors

A graph is called k-colorable if and only if it
has a k-coloring

A 2-CRAYOLA Question!

Is Gadget 2-colorable?

No, it contains a triangle

A 2-CRAYOLA Question!

Given a graph G, how can we decide if
it is 2-colorable?

Answer: Enumerate all 2n possible
colorings to look for a valid 2-color

How can we efficiently decide if G is
2-colorable?

Else, output an odd cycle

Alternate coloring algorithm:

To 2-color a connected graph G, pick an
arbitrary node v, and color it white

Color all v’s neighbors black

Color all their uncolored neighbors
white, and so on

If the algorithm terminates without a
color conflict, output the 2-coloring

Theorem: G contains an odd cycle if and only
if G is not 2-colorable

A 2-CRAYOLA Question!

Theorem: G contains an odd cycle if and only
if G is not 2-colorable

A 3-CRAYOLA Question!

Is Gadget 3-colorable?

Yes!

A 3-CRAYOLA Question!

3-Coloring Is Decidable
by Brute Force

Try out all 3n colorings until you
determine if G has a 3-coloring

3-Colorability
Oracle

YES/NO

A 3-CRAYOLA Oracle

3-Colorability
Search Oracle

NO, or

YES here is how:
gives 3-coloring

of the nodes

Better 3-CRAYOLA Oracle

3-Colorability
Decision Oracle

3-Colorability
Search Oracle

GIVEN:
3-Colorability

Decision Oracle

BUT I WANTED
a SEARCH
oracle for
Christmas

I am really
bummed out

Christmas Present

How do I turn a
mere decision
oracle into a

search oracle?

GIVEN:
3-Colorability

Decision Oracle

Christmas Present

What if I gave the oracle
partial colorings of G? For

each partial coloring of G, I
could pick an uncolored node
and try different colors on it
until the oracle says “YES”

Beanie’s Flawed Idea

Rats, the oracle
does not take

partial
colorings….

Beanie’s Fix

GIVEN:
3-Colorability

Decision Oracle

Let’s now look at two
other problems:

1. K-Clique
2. K-Independent

Set

K-Cliques

A K-clique is a set of K nodes with all
K(K-1)/2 possible edges between them

This graph contains a 4-clique

A Graph Named “Gadget”

Given: (G, k)
Question: Does G contain a k-clique?

BRUTE FORCE: Try out all n choose k
possible locations for the k clique

This graph
contains an
independent
set of size 3

Independent Set

An independent set is a set of nodes with
no edges between them

A Graph Named “Gadget”

Given: (G, k)
Question: Does G contain an
independent set of size k?

BRUTE FORCE: Try out all n choose k
possible locations for the k independent
set

Clique / Independent Set

Two problems that are
cosmetically different, but

substantially the same

Complement of G

Given a graph G, let G*, the complement of G,
be the graph obtained by the rule that two
nodes in G* are connected if and only if the
corresponding nodes of G are not connected

G G*

G has a k-clique
G* has an

independent
set of size k

!

Let G be an n-node graph

GIVEN:
Clique
Oracle

BUILD:
Independent

Set Oracle

(G,k)

(G*, k)

Let G be an n-node graph

GIVEN:
Independent

Set Oracle

BUILD:
Clique
Oracle

(G,k)

(G*, k)

Clique / Independent Set

Two problems that are
cosmetically different, but

substantially the same

Thus, we can quickly
reduce a clique problem

to an independent set
problem and vice versa

There is a fast
method for one if

and only if there is a
fast method for the

other

Let’s now look at two
other problems:

1. Circuit Satisfiability
2. Graph 3-Colorability

Combinatorial Circuits
AND, OR, NOT, 0, 1 gates wired
together with no feedback allowed

x3x2x1

ANDAND

OR

OR

OR

AND

AND

NOT

011

1

Yes, this circuit is
satisfiable: 110

Circuit-Satisfiability
Given a circuit with n-inputs and one output,
is there a way to assign 0-1 values to the input
wires so that the output value is 1 (true)?

BRUTE FORCE: Try out all 2n assignments

Circuit-Satisfiability

Given: A circuit with n-inputs and one
output, is there a way to assign 0-1 values to
the input wires so that the output value is 1
(true)?

3-Colorability
Circuit

Satisfiability

AND

AND

NOT

T F

X
Y

X Y

F F F

F T T

T F T

T T T

OR

T F

X NOT gate!

OR

OR

NOT

x y z

x
y

z

OR

OR

NOT

x y z

x
y

z

OR

OR

NOT

x y z

x
y

z

OR

OR

NOT

x y z

x
y

z

OR

OR

NOT

x y z

x
y

z

How do we force the
graph to be 3 colorable
exactly when the
circuit is satifiable?

Let C be an n-input circuit

GIVEN:
3-color
Oracle

BUILD:
SAT

Oracle

Graph composed of
gadgets that mimic

the gates in C

C

You can quickly transform a
method to decide 3-coloring into

a method to decide circuit
satifiability!

Given an oracle for
circuit SAT, how can

you quickly solve
3-colorability?

Can you make a circuit
that takes a description
of a graph and a node

coloring, and checks if it
is a valid 3-coloring?

X (n choose 2 bits) Y (2n bits)

Vn(X,Y)

eij ci cj

"…

…

"

Vn(X,Y)

Let Vn be a circuit that takes an n-node

graph X and an assignment of colors to
nodes Y, and verifies that Y is a valid 3
coloring of X. I.e., Vn(X,Y) = 1 iff Y is a 3

coloring of X

X is expressed as an n choose 2 bit
sequence. Y is expressed as a 2n bit
sequence

Given n, we can construct Vn in time O(n2)

Let G be an n-node graph

GIVEN:
SAT

Oracle

BUILD:
3-color
Oracle

G

Vn(G,Y)

Circuit-SAT / 3-Colorability

Two problems that are
cosmetically different, but

substantially the same

Circuit-SAT / 3-Colorability

Clique / Independent Set

Given an oracle for
circuit SAT, how can
you quickly solve k-

clique?

Circuit-SAT / 3-Colorability

Clique / Independent Set

Four problems that are
cosmetically different,

but substantially the
same

FACT: No one knows a
way to solve any of the
4 problems that is fast
on all instances

Summary

Many problems that appear
different on the surface can be

efficiently reduced to each other,
revealing a deeper similarity

