A Graph Named “Gadget”

K-Coloring

We define a k-coloring of a graph:
- Each node gets colored with one color
- At most k different colors are used
 - If two nodes have an edge between them they must have different colors

A graph is called k-colorable if and only if it has a k-coloring
A 2-CRAYOLA Question!

Is Gadget 2-colorable?
No, it contains a triangle

A 2-CRAYOLA Question!

Given a graph G, how can we decide if it is 2-colorable?

Answer: Enumerate all 2^n possible colorings to look for a valid 2-color

How can we efficiently decide if G is 2-colorable?

A 2-CRAYOLA Question!

Theorem: G contains an odd cycle if and only if G is not 2-colorable

Alternate coloring algorithm:
- To 2-color a connected graph G, pick an arbitrary node v, and color it white
- Color all v’s neighbors black
- Color all their uncolored neighbors white, and so on
- If the algorithm terminates without a color conflict, output the 2-coloring
- Else, output an odd cycle

A 2-CRAYOLA Question!

Theorem: G contains an odd cycle if and only if G is not 2-colorable
A 3-CRAYOLA Question!

Is Gadget 3-colorable?
Yes!

3-Coloring Is Decidable by Brute Force

Try out all 3^n colorings until you determine if G has a 3-coloring

A 3-CRAYOLA Question!

A 3-CRAYOLA Oracle

3-Colorability Oracle
Better 3-CRAYOLA Oracle

NO, or

YES here is how: gives 3-coloring of the nodes

3-Colorability Search Oracle

Christmas Present

BUT I WANTED a SEARCH oracle for Christmas

I am really bummed out

GIVEN: 3-Colorability Decision Oracle

GIVEN: 3-Colorability Decision Oracle

3-Colorability Search Oracle

3-Colorability Decision Oracle

Christmas Present

How do I turn a mere decision oracle into a search oracle?
What if I gave the oracle partial colorings of G? For each partial coloring of G, I could pick an uncolored node and try different colors on it until the oracle says “YES”.

Rats, the oracle does not take partial colorings....

Let’s now look at two other problems:
1. K-Clique
2. K-Independent Set
K-Cliques

A K-clique is a set of K nodes with all \(K(K-1)/2 \) possible edges between them.

This graph contains a 4-clique.

A Graph Named “Gadget”

Independent Set

An independent set is a set of nodes with no edges between them.

This graph contains an independent set of size 3.
A Graph Named “Gadget”

Given: (G, k)
Question: Does G contain an independent set of size k?

BRUTE FORCE: Try out all n choose k possible locations for the k independent set

Clique / Independent Set

Two problems that are cosmetically different, but substantially the same

Complement of G

Given a graph G, let G*, the complement of G, be the graph obtained by the rule that two nodes in G* are connected if and only if the corresponding nodes of G are not connected
Let G be an n-node graph

GIVEN: Clique Oracle

BUILD: Independent Set Oracle

GIVEN: Independent Set Oracle

BUILD: Clique Oracle

Clique / Independent Set

Two problems that are cosmetically different, but substantially the same
Thus, we can quickly reduce a clique problem to an independent set problem and vice versa. There is a fast method for one if and only if there is a fast method for the other.

Let’s now look at two other problems:
1. Circuit Satisfiability
2. Graph 3-Colorability

Circuit-Satisfiability
Given a circuit with n-inputs and one output, is there a way to assign 0-1 values to the input wires so that the output value is 1 (true)?

Yes, this circuit is satisfiable: 110
Circuit-Satisfiability

Given: A circuit with n-inputs and one output, is there a way to assign 0-1 values to the input wires so that the output value is 1 (true)?

BRUTE FORCE: Try out all 2^n assignments

3-Colorability

Circuit Satisfiability

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
NOT gate!
How do we force the graph to be 3 colorable exactly when the circuit is satisfiable?

Let C be an n-input circuit

GIVEN: 3-color Oracle

BUILD: SAT Oracle

Graph composed of gadgets that mimic the gates in C

You can quickly transform a method to decide 3-coloring into a method to decide circuit satifiability!
Given an oracle for circuit SAT, how can you quickly solve 3-colorability?

Can you make a circuit that takes a description of a graph and a node coloring, and checks if it is a valid 3-coloring?

Let \(V_n \) be a circuit that takes an \(n \)-node graph \(X \) and an assignment of colors to nodes \(Y \), and verifies that \(Y \) is a valid 3 coloring of \(X \). I.e., \(V_n(X,Y) = 1 \) iff \(Y \) is a 3 coloring of \(X \)

\(X \) is expressed as an \(n \) choose 2 bit sequence. \(Y \) is expressed as a \(2n \) bit sequence

Given \(n \), we can construct \(V_n \) in time \(O(n^2) \)
Let G be an n-node graph.

GIVEN: SAT Oracle

BUILD: 3-color Oracle

$V_n(G,Y)$

Circuit-SAT / 3-Colorability

Clique / Independent Set

Circuit-SAT / 3-Colorability

Two problems that are cosmetically different, but substantially the same.

Given an oracle for circuit SAT, how can you quickly solve k-clique?
Circuit-SAT / 3-Colorability
Clique / Independent Set

FACT: No one knows a way to solve any of the 4 problems that is fast on all instances

Four problems that are cosmetically different, but substantially the same

Summary
Many problems that appear different on the surface can be efficiently reduced to each other, revealing a deeper similarity