15-251

Great Theoretical Ideas in Computer Science

A Graph Named "Gadget"

Complexity Theory:

Efficient Reductions Between Computational Problems

Lecture 27 (November 25, 2008)

K-Coloring

We define a k-coloring of a graph:

Each node gets colored with one color

At most k different colors are used

If two nodes have an edge between them they must have different colors

A graph is called k-colorable if and only if it has a k-coloring

A 2-CRAYOLA Question!

Theorem: G contains an odd cycle if and only if G is not 2-colorable

Alternate coloring algorithm:

To 2-color a connected graph G, pick an arbitrary node v, and color it white

Color all v's neighbors black

Color all their uncolored neighbors white, and so on

If the algorithm terminates without a color conflict, output the 2-coloring

Else, output an odd cycle

A 2-CRAYOLA Question!

Given a graph G, how can we decide if it is 2-colorable?

Answer: Enumerate all 2ⁿ possible colorings to look for a valid 2-color

How can we efficiently decide if G is 2-colorable?

A 2-CRAYOLA Question!

Theorem: G contains an odd cycle if and only if G is not 2-colorable

A 3-CRAYOLA Question! Is Gadget 3-colorable? Yes!

3-Coloring Is Decidable by Brute Force

Try out all 3ⁿ colorings until you determine if G has a 3-coloring

Better 3-CRAYOLA Oracle

YES here is how: gives 3-coloring of the nodes

3-Colorability Search Oracle

Christmas Present

BUT I WANTED a SEARCH oracle for Christmas

I am really bummed out

GIVEN: 3-Colorability Decision Oracle

3-Colorability Search Oracle

3-Colorability **Decision Oracle**

Christmas Present

How do I turn a mere decision oracle into a search oracle?

GIVEN: 3-Colorability Decision Oracle

K-Cliques

A K-clique is a set of K nodes with all K(K-1)/2 possible edges between them

This graph contains a 4-clique

Given: (G, k)

Question: Does G contain a k-clique?

BRUTE FORCE: Try out all n choose k possible locations for the k clique

A Graph Named "Gadget"

Independent Set

An independent set is a set of nodes with no edges between them

This graph contains an independent set of size 3

A Graph Named "Gadget"

Clique / Independent Set

Two problems that are cosmetically different, but substantially the same

Given: (G, k)

Question: Does G contain an independent set of size k?

BRUTE FORCE: Try out all n choose k possible locations for the k independent set

Complement of G

Given a graph G, let G*, the complement of G, be the graph obtained by the rule that two nodes in G* are connected if and only if the corresponding nodes of G are not connected

Clique / Independent Set

Two problems that are cosmetically different, but substantially the same

Circuit-Satisfiability Given a circuit with n-inputs and one output, is there a way to assign 0-1 values to the input wires so that the output value is 1 (true)? 1 1 0 Ves. this circuit is

AND

satisfiable: 110

Circuit-Satisfiability

Given: A circuit with n-inputs and one output, is there a way to assign 0-1 values to the input wires so that the output value is 1 (true)?

BRUTE FORCE: Try out all 2ⁿ assignments

You can quickly transform a method to decide 3-coloring into a method to decide circuit satifiability!

Given an oracle for circuit SAT, how can you quickly solve 3-colorability?

Can you make a circuit that takes a description of a graph and a node coloring, and checks if it is a valid 3-coloring?

 $V_n(X,Y)$

Let V_n be a circuit that takes an n-node graph X and an assignment of colors to nodes Y, and verifies that Y is a valid 3 coloring of X. I.e., $V_n(X,Y) = 1$ iff Y is a 3 coloring of X

X is expressed as an n choose 2 bit sequence. Y is expressed as a 2n bit sequence

Given n, we can construct V_n in time $O(n^2)$

Circuit-SAT / 3-Colorability

Two problems that are cosmetically different, but substantially the same

FACT: No one knows a way to solve any of the 4 problems that is fast on all instances

Four problems that are cosmetically different, but substantially the same

Summary

Many problems that appear different on the surface can be efficiently reduced to each other, revealing a deeper similarity