
1

15-251
Great Theoretical Ideas
in Computer Science

What does this do?

_(__,___,____){___/__<=1?_(__,___+1,___
_):!(___%__)?_(__,___+1,0):___%__==___
/
__&&!____?(printf("%d\t",___/__),_(__,_
__+1,0)):___%__>1&&___%__<___/__?_(
__,1+
___,____+!(___/__%(___%__))):___<__*__
?_(__,___+1,____):0;}main(){_(100,0,0);}

Turing’s Legacy:
The Limits Of Computation

Anything I say
say is false!

Lecture 25 (November 18, 2007)

This lecture will change the way you
think about computer programs…

Many questions which appear easy at first
glance are impossible to solve in general

The HELLO assignment

Write a JAVA program to output the word
“HELLO” on the screen and halt.

Space and time are not an issue.

The program is for an ideal computer.

PASS for any working HELLO program, no
partial credit.

Grading Script

How exactly might such a script work?

The grading script G must be able to take any
Java program P and grade it.

G(P)=

Pass, if P prints only the word
“HELLO” and halts.

Fail, otherwise.

2

What does this do?

_(__,___,____){___/__<=1?_(__,___+1,___
_):!(___%__)?_(__,___+1,0):___%__==___
/
__&&!____?(printf("%d\t",___/__),_(__,_
__+1,0)):___%__>1&&___%__<___/__?_(
__,1+
___,____+!(___/__%(___%__))):___<__*__
?_(__,___+1,____):0;}main(){_(100,0,0);}

What kind of program
could a student who

hated his/her TA
hand in?

Nasty Program

n:=0;

while (n is not a counter-example

to the Riemann Hypothesis) {

n++;

}

print “Hello”;

The nasty program is a PASS if and only if the

Riemann Hypothesis is false.

A TA nightmare: Despite
the simplicity of the
HELLO assignment,

there is no program to
correctly grade it!

And we will prove this.

The theory of what can
and can’t be computed
by an ideal computer is

called
Computability Theory
or Recursion Theory.

From the last lecture:

The “grading function” we just described

is not computable! (We’ll see a proof soon.)

Are all reals describable?
Are all reals computable?

NO

NO

We saw that

computable ⇒ describable

but do we also have

describable ⇒ computable?

3

Computable Function

Hence: countably many computable functions!

Fix a finite set of symbols, Σ
Fix a precise programming language, e.g., Java

A program is any finite string of
characters that is syntactically valid.

A function f : Σ*→Σ* is computable if there is a

program P that when executed on an ideal
computer, computes f.
That is, for all strings x in Σ*, f(x) = P(x).

There are only
countably many Java

programs.

Hence, there are only
countably many

computable
functions.

Uncountably Many Functions

The functions f: Σ* → {0,1} are in

1-1 onto correspondence with the

subsets of Σ* (the powerset of Σ*).

Subset S of Σ* ⇔ Function fS

x in S ⇔ fS(x) = 1

x not in S ⇔ fS(x) = 0

Hence, the set of all f:Σ* → {0,1} has
the same size as the power set of Σ*,
which is uncountable.

Countably many
computable functions.

Uncountably many
functions from Σ* to {0,1}.

Thus, most functions
from Σ* to {0,1} are not

computable.

Can we explicitly
describe an uncomputable

function?

Can we describe an
interesting uncomputable

function?

Notation And Conventions

Fix a single programming language (Java)

When we write program P we are talking
about the text of the source code for P

P(x) means the output that arises from
running program P on input x, assuming
that P eventually halts.

P(x) = ⊥ means P did not halt on x

4

The meaning of P(P)

It follows from our conventions that P(P)
means the output obtained when we run
P on the text of its own source code

The Halting Set K

Definition:

K is the set of all programs P such
that P(P) halts.

K = { Java P | P(P) halts }

The Halting Problem

Is there a program HALT such that:

HALT(P) = yes, if P(P) halts

HALT(P) = no, if P(P) does not halt

THEOREM: There is no program to
solve the halting problem
(Alan Turing 1937)

Suppose a program HALT existed that
solved the halting problem.

HALT(P) = yes, if P(P) halts

HALT(P) = no, if P(P) does not halt

We will call HALT as a subroutine in a new
program called CONFUSE.

CONFUSE

Does CONFUSE(CONFUSE) halt?

CONFUSE(P)

{ if (HALT(P))

then loop forever; //i.e., we dont halt

else exit; //i.e., we halt

// text of HALT goes here

}

CONFUSE
CONFUSE(P)

{ if (HALT(P))

then loop forever; //i.e., we dont halt

else exit; //i.e., we halt

// text of HALT goes here }

Suppose CONFUSE(CONFUSE) halts:

then HALT(CONFUSE) = TRUE

⇒ CONFUSE will loop forever on input CONFUSE

Suppose CONFUSE(CONFUSE) does not halt

then HALT(CONFUSE) = FALSE

⇒ CONFUSE will halt on input CONFUSE
CONTRADICTION

5

Alan Turing (1912-1954)

Theorem: [1937]

There is no program to
solve the halting

problem

Turing’s argument is
essentially the

reincarnation of Cantor’s
Diagonalization

argument that we saw
in the previous lecture.

P0 P1 P2 … Pj …

P0

P1

…

Pi

…

A
ll
 P

ro
g
ra

m
s

All Programs (the input)

Programs (computable functions) are countable,

so we can put them in a (countably long) list

P0 P1 P2 … Pj …

P0

P1

…

Pi

…

A
ll
 P

ro
g
ra

m
s

All Programs (the input)

YES, if Pi(Pj) halts
No, otherwise

P0 P1 P2 … Pj …

P0 d0

P1 d1

… …

Pi di

… …

A
ll
 P

ro
g
ra

m
s

All Programs (the input)

Let di =
HALT(Pi)

CONFUSE(Pi) halts iff di = no
(The CONFUSE function is the negation of the diagonal.)

Hence CONFUSE cannot be on this list.

Is there a real
number that can be
described, but not

computed?

6

Consider the real
number R whose
binary expansion

has a 1 in the
jth position iff the jth

program halts.

Proof that R cannot be computed

MYSTERY solves the halting problem!

Suppose it is, and program FRED computes it.

then consider the following program:

MYSTERY(program text P)

for j = 0 to forever do {

if (P == Pj)

then use FRED to compute jth bit of R

return YES if (bit == 1), NO if (bit == 0)

}

From the last lecture:

Are all reals describable?
Are all reals computable?

NO

NO

We saw that

computable ⇒ describable

but do we also have

describable ⇒ computable?

Computability

A Vocabulary lesson

Computability Theory:
Vocabulary Lesson

We call a set S⊆Σ* decidable or recursive if
there is a program P such that:

P(x) = yes, if x∈S

P(x) = no, if x∉S

We already know: the halting set K is
undecidable

Decidable and Computable

Subset S of Σ* ⇔ Function fS

x in S ⇔ fS(x) = 1

x not in S ⇔ fS(x) = 0

Set S is decidable ⇔ function fS is computable

Sets are “decidable” (or undecidable), whereas

functions are “computable” (or not)

7

Oracles and Reductions

Oracle
for S

Oracle For Set S

Is x∈S?

YES/NO

Example Oracle
S = Odd Naturals

Oracle
for S

4?

No

81?

Yes

K0= the set of programs that take
no input and halt

GIVEN:

Oracle
for K0

Hey, I ordered an
oracle for the
famous halting

set K, but when I
opened the

package it was an
oracle for the

different set K0.

But you can use this oracle for K0

to build an oracle for K.

GIVEN:

Oracle
for K0

P = [input I; Q]
Does P(P) halt?

BUILD:

Oracle
for K

Does [I:=P;Q] halt?

K0= the set of programs that take
no input and halt We’ve reduced the problem

of deciding membership in
K to the problem of

deciding membership in K0.

Hence, deciding
membership for K0 must be
at least as hard as deciding

membership for K.

8

Thus if K0 were
decidable

then K would be as well.

We already know K is not
decidable, hence K0 is

not decidable.

HELLO = the set of programs that
print hello and halt

GIVEN:

HELLO
Oracle

Does P halt?

BUILD:

Oracle
for K0

Let P’ be P with all print
statements removed.

(assume there are

no side effects)

Is [P’; print HELLO]

a hello program?

Hence, the set HELLO is
not decidable.

EQUAL = All <P,Q> such that P and Q have
identical output behavior on all inputs

GIVEN:

EQUAL

Oracle

Is P in set HELLO?

BUILD:

HELLO
Oracle

Let HI = [print HELLO]

Are P and HI equal?

Halting with input, Halting
without input, HELLO, and
EQUAL are all undecidable.

Diophantine Equations

Hilbert

Does polynomial 4X2Y + XY2 + 1 = 0 have an integer
root? I.e., does it have a zero at a point where all
variables are integers?

D = {multivariate integer polynomials P | P has
a root where all variables are integers}

Famous Theorem: D is undecidable!

[This is the solution to Hilbert’s 10th

problem]

9

Resolution of Hilbert’s 10th Problem:
Dramatis Personae

Martin Davis, Julia Robinson, Yuri Matiyasevich (1982)

Polynomials can Encode
Programs

There is a computable function

F: Java programs that take no input →
Polynomials over the integers

Such that

program P halts ⇔ F(P) has an integer root

D = the set of all integer
polynomials with integer roots

GIVEN:

Oracle
for D

Does program P
halt?

BUILD:

HALTING
Oracle

F(P) has
integer root?

PHILOSOPHICAL
INTERLUDE

CHURCH-TURING THESIS

Any well-defined procedure that can
be grasped and performed by the

human mind and pencil/paper, can be
performed on a conventional digital
computer with no bound on memory.

The Church-Turing Thesis is NOT a
theorem. It is a statement of belief
concerning the universe we live in.

Your opinion will be influenced by your
religious, scientific, and philosophical
beliefs…

…mileage may vary

10

Empirical Intuition

No one has ever given a counter-
example to the Church-Turing thesis.
I.e., no one has given a concrete
example of something humans
compute in a consistent and well
defined way, but that can’t be
programmed on a computer. The
thesis is true.

Mechanical Intuition

The brain is a machine. The
components of the machine obey fixed
physical laws. In principle, an entire
brain can be simulated step by step on
a digital computer. Thus, any thoughts
of such a brain can be computed by a
simulating computer. The thesis is
true.

Quantum Intuition

The brain is a machine, but not a
classical one. It is inherently quantum
mechanical in nature and does not
reduce to simple particles in motion.
Thus, there are inherent barriers to
being simulated on a digital computer.
The thesis is false. However, the
thesis is true if we allow quantum
computers.

