15-251

Great Theoretical Ideas
in Computer Science

What does this do?

e <=2 (L, ¥,
DN %)? (., #1,0): % ==
/

&&! 2(printf("%d\t",__ |), (_,_
+1,0) % >1&& %_<_ | 2 (
_LA+

o w®N %%)< *
2 (., +1,__):0;}main(){_(100,0,0);}

Turing’s Legacy:
The Limits Of Computation

Lecture 25 (November 18, 2007)

a1,

Ki
S
q

Anything | say
say is false!

This lecture will change the way you
think about computer programs...

Many questions which appear easy at first
glance are impossible to solve in general

The HELLO assignment

Write a JAVA program to output the word
“HELLO” on the screen and halit.

Space and time are not an issue.
The program is for an ideal computer.

PASS for any working HELLO program, no
partial credit.

Grading Script
The grading script G must be able to take any
Java program P and grade it.

Pass, if P prints only the word
G(P)= HELLO” and halts.

Fail, otherwise.

How exactly might such a script work?

What does this do?

e M <=12 (¥,
DM %)2 (., 1,0 % ==
/

&&! 2printf("%d\t”,__ 1), (_,_
+1,0) % >1&& %_<_ | 2 (
_+

TSV S L
? (., +1,):0;}main(){_(100,0,0);}

What kind of program
could a student who
hated his/her TA

hand in?

Nasty Program

n:=0;
while (n is not a counter-example
to the Riemann Hypothesis) {

n++;

}
print “Hello”;

The nasty program is a PASS if and only if the
Riemann Hypothesis is false.

A TA nightmare: Despite\
the simplicity of the
HELLO assignment,

there is no program to
correctly grade it!

And we will prove this./

The theory of what can\
and can’t be computed
by an ideal computer is
called
Computability Theory

or Recursion Theory. Yy

From the last lecture:

Are all reals describable? NO
Are all reals computable? NO

We saw that

computable = describable
but do we also have

describable = computable?

The “grading function” we just described
is not computable! (We’ll see a proof soon.)

Computable Function

Fix a finite set of symbols, X
Fix a precise programming language, e.g., Java

A program is any finite string of
characters that is syntactically valid.

A function f: Z"—>X" is computable if there is a
program P that when executed on an ideal
computer, computes f.

That is, for all strings x in Z*, f(x) = P(x).

|Hence: countably many computable functions! |

There are only \
countably many Java
programs.

Hence, there are only
countably many
computable
functions.

Uncountably Many Functions

The functions f: =* — {0,1} are in
1-1 onto correspondence with the
subsets of X" (the powerset of =*).

Subset Sof 2* <« Function fg

xin$S = fs(x)=1
xnotinS = fs(x)=0

Hence, the set of all f:X* — {0,1} has
the same size as the power set of ”,
which is uncountable.

/ Countably many \

computable functions.

Uncountably many
functions from =" to {0,1}.

oY

Thus, most functions
from X" to {0,1} are not

computable. /

4)

Can we explicitly
describe an uncomputable
function?

% Can we describe an

interesting uncomputable

function?

Notation And Conventions
Fix a single programming language (Java)

When we write program P we are talking
about the text of the source code for P

P(x) means the output that arises from
running program P on input x, assuming
that P eventually halts.

P(x) = L means P did not halt on x

The meaning of P(P)

It follows from our conventions that P(P)
means the output obtained when we run
P on the text of its own source code

The Halting Se@

Definition:
K is the set of all programs P such
that P(P) halts.

K={JavaP | P(P) halts }

The Halting Problem

Is there a program HALT such that:
. = FGK

HALT(P) = yes, if P(P) halts =—

HALT(P) = no, if P(P) does not halt

P€k

HALT(P)
HALT(P)

THEOREM: There is no program to
solve the halting problem
(Alan Turing 1937)

Suppose a program HALT existed that
solved the halting problem.

yes, if P(P) halts
no, if P(P)does not halt

We will call HALT as a subroutine in a new
program called CONFUSE.

CONFUSE

CONFUSE(P)
{ if (HALT(P))
then loop forever; lli.e., we dont halt
else exit; lli.e., we halt
I text of HALT goes here

}
' Does CONFUSE(CONFUSE) halt? |

CONFUSE

CONFUSE(P)
{ if (HALT(P)) \'IKLTme F\)S‘_c7
hen loop forever; lli.e., we dont halt
else exit; lli.e., we halt
1 text of HALT goes here }

Suppose CONFUSE(CONFUSE) halts:
then HALT(CONFUSE) = TRUE
= CONFUSE will loop forever on input CONFUSE

Suppose CONFUSE(CONFUSE) does not halt
then HALT(CONFUSE) = FALSE

— CONTRADICTION

Alan Turing (1912-1954)

Theorem: [1937]

There is no program to
solve the halting
problem

All Programs (the input)

Po | Py [Py | o | P
) Po
g P
(o]
e
o
<| P

Programs (computable functions) are countable,
so we can put them in a (countably long) list

(Turing’s argument is
essentially the
reincarnation of Cantor’s
Diagonalization
argument that we saw

\in the previous lecture.

All Programs (the input)

Po | Py | Py | oo | P
) Po
g P,
[o)]
o
a
<| P 4

YES, if Py(P)) halts
No, otherwise

All Programs (the input)

Po | Py | P | oo | P

» Po do

3

s | P, d,

<)

o

o

< | P d,
Letd;=
HALT(P)

CONFUSE(P)) halts iff d;=no
(The CONFUSE function is the negation of the diagonal.)

Is there a real
number that can be

@ described, but not
computed?

Hence CONFUSE cannot be on this list.

(Consider the real
number R whose
binary expansion

has a1 in the

jth position iff the jth

program halts.

Proof that R cannot be computed

Suppose it is, and program FRED computes it.
then consider the following program:

MYSTERY(program text P)
for j=0 to forever do {
if (P==P))
then use FRED to compute jt" bit of R
return YES if (bit == 1), NO if (bit == 0)
}

MYSTERY solves the halting problem!

From the last lecture:

Are all reals describable? NO
Are all reals computable? NO

We saw that

computable = describable
but do we also have

describable = computable?

Computability

A Vocabulary lesson

Computability Theory:
Vocabulary Lesson

We call a set Sc>" decidable or recursive if
there is a program P such that:

P(x) = yes, if xeS
P(x) = no, if x¢S

We already know: the halting set K is
undecidable

Decidable and Computable

Subset Sof 2* <« Function fg

xinS = fs(x)=1
xnotin S = fs(x)=0

Set S is decidable < function fg is computable

Sets are “decidable” (or undecidable), whereas
functions are “computable” (or not)

Oracles and Reductions

Oracle For Set S

L g

Is xeS? LE 2
> .h.ﬁ*- "_._.| 4

1l :

YES/NO Oracle

L

Example Oracle
S = Odd Naturals

8 ©__,
< > peh™
< \' |
No . l:_-l,l'll“Iﬁ.'..' 4
hJ| r o
81? é
P - Oracle
- Yes for S

Ko= the set of programs that take
no input and halt

Hey, | ordered an\ sk o
oracle for the l':_v
famous halting i 14 *‘m:'
setK, but when | = g
opened the i
package it was an GIVEN:
oracle for the
different set K,.) ?;ff(':

But you can use this oracle for K,
to build an oracle for K.

K,= the set of programs that take
no input and halt
P =[input I; Q]
Does P(P) halt?

AN

45 r?

’:

s

-
@k

i { Does [1:=P;Q] halt? | | &

_’}ﬁ > _45_; f

F

BUILD: € GIVEN
Oracle Oracle
for K for K,

me’ve reduced the problem

of deciding membership in
K to the problem of

deciding membership in K.

Hence, deciding
membership for K, must be
at least as hard as deciding

membership for K.

/ Thus if K, were
decidable
then K would be as well.

We already know K is not
decidable, hence K, is
\ not decidable.

HELLO = the set of programs that
print hello and halt

Hence, the set HELLO is
not decidable.

Does P halt?
g Let P’ be P with all print
k statements removed.
Fr (assume there are e
Y a, no side effects) [ol 1
1 4 Al
TeREy] Ry |
W s J4 Is[P’; printHELLO] | % bt
: a hello program?
BUILD < ~ | GIVEN:
Oracle HELLO
for K, Oracle
EQUAL = All <P,Q> such that P and Q have
identical output behavior on all inputs
Is P in set HELLO?
'\k’ Let HI = [print HELLO]
| gl ¥ | paktin W
k™, ook
1 = == >
‘:.'l A LR, |
e _::R-_ oy = L [,..
f__f Are P and HI equal;? - gA
BUILD: € GIVEN:
Oracle Oracle

Halting with input, Halting
without input, HELLO, and
EQUAL are all undecidable.

Diophantine Equations

Does polynomial 4X2Y + XY2+ 1 = 0 have an integer
root? l.e., does it have a zero at a point where all
variables are integers?

D = {multivariate integer polynomials P | P has
aroot where all variables are integers}

Famous Theorem: D is undecidable! ‘
[This is the solution to Hilbert’s 10th

problem] 1
ol

Hilbert

Resolution of Hilbert’s 10t Problem:
Dramatis Personae

Martin Davis, Julia Robinson, Yuri Matiyasevich (1982)

Polynomials can Encode
Programs

There is a computable function

F: Java programs that take no input —
Polynomials over the integers

Such that
program P halts < F(P) has an integer root

D = the set of all integer
polynomials with integer roots

Does program P
halt?

N

 piatiec W8

F(P) has | e L

integer root? R h II.?‘-.'-,!:I 'l

> J| I i f .-.
BUILD: € GIVEN
HALTING Oracle
Oracle forD

PHILOSOPHICAL
INTERLUDE

CHURCH-TURING THESIS

Any well-defined procedure that can
be grasped and performed by the
human mind and pencil/paper, can be
performed on a conventional digital
computer with no bound on memory.

The Church-Turing Thesis is NOT a
theorem. It is a statement of belief
concerning the universe we live in.

Your opinion will be influenced by your
religious, scientific, and philosophical
beliefs...

...mileage may vary

Empirical Intuition

No one has ever given a counter-
example to the Church-Turing thesis.
l.e., no one has given a concrete
example of something humans
compute in a consistent and well
defined way, but that can’t be
programmed on a computer. The
thesis is true.

Mechanical Intuition

The brain is a machine. The
components of the machine obey fixed
physical laws. In principle, an entire
brain can be simulated step by step on
a digital computer. Thus, any thoughts
of such a brain can be computed by a
simulating computer. The thesis is
true.

Quantum Intuition

The brain is a machine, but not a
classical one. It is inherently quantum
mechanical in nature and does not
reduce to simple particles in motion.
Thus, there are inherent barriers to

being simulated on a digital computer.

The thesis is false. However, the
thesis is true if we allow quantum
computers.

10

