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Great Theoretical Ideas
in Computer Science
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Ideas from the course

Induction

Numbers

Representation

Finite Counting and Probability

A hint of the infinite
Infinite row of dominoes

Infinite sums (formal power series)
Infinite choice trees, and infinite probability

Infinite RAM Model

Platonic Version:

One memory location for each
natural number0, 1, 2, ...

Aristotelian Version:

Whenever you run out of memory,
the computer contacts the factory.
A maintenance person is flown by
helicopter and attaches 1000 Gig of
RAM and all programs resume their
computations, as if they had never
been interrupted.

The Ideal Computer:
no bound on amount of memory
no bound on amount of time

Ideal Computer is defined as a
computer with infinite RAM.

You can run a Java program and never have
any overflow, or out of memory errors.

An Ideal Computer

It can be programmed to print out:

2: 2.0000000000000000000000...
1/3: 0.33333333333333333333...

¢:  1.6180339887498948482045...
e: 2.7182818284559045235336...
n:  3.14159265358979323846264...

Printing Out An Infinite
Sequence..

A program P prints out the infinite sequence
S05 S45 825 ++es Sks -+

if when P is executed on an ideal computer, it

outputs a sequence of symbols such that

-The kthsymbol that it outputs is s,

-For every keN, P eventually outputs the kt symbol.

l.e., the delay between symbol k and symbol k+1 is
not infinite.




Computable Real Numbers

A real number R is computable if there is a
program that prints out the decimal representation
of R from left to right.

Thus, each digit of R will eventually be output.

Are all real numbers
computable?
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Describable Numbers

A real number R is describable if it can be denoted
unambiguously by a finite piece of English text.

2- “Two ”
b “The area of a circle of radius one.” ﬁ

Are all real numbers
describable?

Is every
computable real number,
also a describable real
number?

And what about the other
way?

Computable R: some program outputs R
Describable R: some sentence denotes R

Computable = describable

Theorem:
Every computable real is also describable

Computable = describable

Theorem:
Every computable real is also describable

Proof:
Let R be a computable real that is output by a
program P. The following is an unambiguous
description of R:

“The real number output by the
following program:” P

MORAL: A computer
program can be viewed as a
description of its output.

Syntax: The text of the program
Semantics: The real number output by P




Are all reals describable?
Are all reals computable?

We saw that
computable =
~— describable,

but do we also have
describable =
cqmputable? /

Questions we will answer in this (and next) lecture...

Correspondence Definition

In fact, we can use the correspondence as
the definition:

Two finite sets are defined to have the
same size if and only if they can be placed
into 1-1 onto correspondence.

Cantor’s Definition (1874)

Two sets are defined to have
the same size if and only if they can be
placed into 1-1 onto correspondence.
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Correspondence Principle

If two finite sets can be placed into
1-1 onto correspondence, then they
have the same size.

Georg Cantor (1845-1918)

Cantor’s Definition (1874)

Two sets are defined to have
the same cardinality if and only if
they can be placed into
1-1 onto correspondence.




Do N and E have the same cardinality?

N={0,1,2,3,4,5,6,7,...}

E={0,2,4,6,8,10,12,...}
The even, natural numbers.
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@ plenty left over.

E and N do not have thh
same cardinality! E is a
proper subset of N with

The attempted

correspondence f(x)=x
does not take E onto Nj

/ E and N do have the
same cardinality!

\ f(x) = 2x is 1-1 onto.

/ Lesson:
Cantor’s definition only
requires that some 1-1
correspondence between the
two sets is onto, not that all 1-1
correspondences are onto.
This distinction never arises
\ when the sets are finite.
o

Cantor’s Definition (1874)

Two sets are defined to have
the same size if and only if they can be
placed into 1-1 onto correspondence.

You just have to get used
to this slight subtlety in
order to argue about
infinite sets!

)
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Do N and Z have the same cardinality? No way! Z is infinite in twh
ways: from 0 to positive

infinity and from 0 to
negative infinity.

Therefore, there are far
more integers than

Z={...,-2,-1,0,1,2,3, ...} naturals. )

N={0,1,2,3,4,5,6,7,...}

| Actually, no! |

ﬁ\l and Z do have the same Transitivity Lemma
cardinality!

N 0,1, 2,3, 4,5, 6...
7=0,1,-1,2,-2,3,-3, ....

f(x) = [x/2] if xis odd
\ -x/12 if xis even

@
l
Transitivity Lemma Do N and Q have the same cardinality?
Lemma\a:_l)f
f: A—>B is 1-1 onto, and
: B&—_fC is 1-1 onto -
g ) N_{0’192333495963 79"'-}

Then h(x) = g(f(x)) defines a function
h: A—C thatis 1-1 onto
~ Q = The Rational Numbers
Hence, N, E, and Z all have the same
cardinality.




No way! \

The rationals are dense:
between any two there is a
third. You can’t list them
one by one without leaving
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/Don’tjump to conclusions!

There is a clever way to list
the rationals, one at a time,
without missing a single
one!

out an infinite number of

them. /

-

-~

-

First, let’s warm up
with another
interesting example:

N can be paired with
NxN

Theorem: N and NxN have the
same cardinality

Theorem: N and NxN have the
same cardinality

° The point (x,y)
represents

the ordered
pair (x,y)

Theorem: N and NxN have the
same cardinality

° The point (x,y)
represents

the ordered
pair (x,y)




Defining 1-1 onto f: N -> NxN

leti:=0; IIwill range over N

for (sum = 0 to forever) {
ligenerate all pairs with this sum
for (x = 0 to sum) {
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Onto the Rationals!

y := sum-Xx
define f(i) := the point (x,y)
i+t+;
}
}
A
<€ >

\ 4

The point at x,y represents x/y

|

v (%9

The point at x,y represents x/y‘j

Cantor’s 1877 letter to Dedekind:

“l see it, but ! don't believe it!”

Countable Sets

We call a set countable if it can be

placed into 1-1 onto correspondence
with the natural numbers N.

Hence
N, E, Q and Z are all countable.




Do N and R have the same cardinality?

N={0,1,2,3,4,5,6,7,...}

R = The Real Numbers
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/ No way!

You will run out of
natural numbers long
before you match up

& every real.

Now hang on a minute!

You can’t be sure that

@ there isn’t some clever
correspondence that you

haven’t thought of yet.

J
/ | am sure!
Cantor proved it.
To do this, he invented a
very important technique
called
\ “Diagonalization”
S

Theorem: The set R, ,, of reals
between 0 and 1 is not countable.

Proof: (by contradiction)
Suppose Ry ; is countable.

Let f be a 1-1 onto function from N to R, 4.
- —

Make a list L as follows: N —)K.(o 3
N

ecimal expansion of f(0)

1: decimal expansion of f(1)

k: decimal expansion of f(k)

Theorem: The set R, ,, of reals
between 0 and 1 is not countable.

Proof: (by contradiction)
Suppose Ry 4; is countable.

Let f be a 1-1 onto function from N to R 4;.

Make a list L as follows:

[0: 0.33333333333333333...
1: 0.314159265657839593...

k: 0.235094385543905834...




Position after decimal point
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~— _———=digits along
" the diagonal

L]o 1 2 3 | 4

o|d,

3 d;

@ine the following real number
Confuse,=.C, C;, C, C; C, GC;..

3 ds

@ine the following real number
Confuse,=.C, C;, C, C; C, GC;...

5,if d,=6
Ck=
6, otherwise

Ck=

o c#d,Cq | C;| C3| Cy

5,if d,=6

6, otherwise




L 0 1 2 3 4 5,if d,=6
Ck= .
6, otherwise
o | dy

11 Cylezdy| Cy| C3| Cy
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Lo+ 2] 4] ] 5,if d,=6
k 6, otherwise

2 1 G| C,c#zd) C; | Cy

Diagonalized!

By design, Confuse_can’t be on the list L!

Confuse,_differs from the kt" element on the
list L in the k" position.

This contradicts the assumption that

the list L is complete; i.e., that the map
f: Nto Ry 4 is onto.

The set of reals is
uncountable!

(Even the reals between 0

and 1.)

An aside:, you can setup a
correspondence between
Rand Ry 45

Hold it! N

Why can’t the same

@ argument be used to

show that the set of
rationals Q is

uncountable?  /

/The argument is the same
for Q until the punchline.

However, since Qé’_N__ﬂL’i_EL
is not necessarily rational,
so there is no contradiction

from the fact that it is
missing from the list L.

10



Another diagonalization proof

Problem from a 15-251 final:

Show that the set of real numbers in [0,1] whose
decimal expansion has the property that every digit
is a prime number (2,3,5, or 7) is uncountable.

E.g.,0.2375 and 0.55555... are in the set, but
0.145555... and 0.3030303... are not.
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Another diagonalization proof

Show that the set of real numbers in [0,1] whose
decimal expansion has the property that every digit
—t2 isa prime number (2,3,5, or 7) is uncountable.

6 — O@?’B% - - -

1— 0@y s . -
S 0235 - -
—

onse 00233

Another diagonalization proof

Show that the set of real numbers in [0,1] whose
decimal expansion has the property that every digit
is a prime number (2,3,5, or 7) is uncountable.

A)

B)

C)

Another diagonalization proof

Show that the set of real numbers in [0,1] whose
decimal expansion has the property that every digit
is a prime number (2,3,5, or 7) is uncountable.

Assume this set is countable and therefore it can be
placedin alist L. Given L, show how to define a number
called Confuse.

Show that Confuse is notin L.

Explain why Confuse not being in L implies the set is not

countable. (\e 9\0\) c"f'u th)

Back to the questions
we were asking earlier

Are all reals describable?
Are all reals computable?

We saw that
computable =
describable,
but do we also have

describable =
co\mputable?

11



Standard Notation

¥ = Any finite alphabet
Example: {a,b,c,d,e,...,z}

=* = All finite strings of symbols from X
including the empty st{:ing €

(19

Roalsb

w
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Theorem: Every infinite subset S
of ="is countable

Proof:

Sort S by first by length and then
alphabetically.

Map the first word to 0, the second
to1,andsoon....

Stringing Symbols Together

¥ = The symbols on a standard keyboard
For example:

The set of all possible Java programs is a
subset of =*

The set of all possible finite pieces of
English text is a subset of =*

/ Thus:

The set of all possible Java
programs is countable.

The set of all possible finite
length pieces of English

\ text is countable.

~

There are countably
many Java program and
uncountably many reals.

Hence,
Most reals are not
computable!

N 4

| see! \

There are countably many

@ descriptions and
uncountably many reals.

Hence:
Most real numbers are

not describable!

12
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Is there a real number

that can be described,
@ but not computed?

Are all reals describable?
Are all reals computable?

We saw that
computable =
describable,
but do we also have

describable =
co\mputable?

Wait till the
next lecture!

We know there are at Ieast\ Definition: Power Set

2 infinities. The power set of S is the set of all
(the number of naturals, subsets of S.

the number of reals.
) The power set is denoted as P(S).

Are there more? ) Proposition:

If S is finite, the power set of S has
cardinality 2IS|

Theorem: S can’t be put into bijection with P(S) /
s P This proves that there are at
least a countable number of

infinities.

The first infinity is called:
Suppose f:S - P(S) is a bijection.
Let CONFUSE; ={x|x < S, x ¢ f(x) } ib; N 0

Since f is onto, exists y € S such that f(y) = CONFUSE.. K
Isy in CONFUSE;?

YES: Definition of CONFUSE; implies no
NO: Definition of CONFUSE; implies yes

13



/
NN 1, Noyenn
Are there any
more infinities?
)
in
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NNy N

LetS={N,|keN}
P(S) is provably larger than any

K of them.

gl

/ In fact, the same
argument can be used to
show that no single
infinity is big enough to
count the number of
\_ infinities!

Ny Ngs N

Cantor wanted to
show that the number
\ of reals was N,

e

/ Cantor called his
conjecture that X, was the
number of reals the
“Continuum Hypothesis.”

However, he was unable to

/ The Continuum
Hypothesis can’t be
proved or disproved from
the standard axioms of
set theory!

prove it. This helped fuel
\ his depression.
O

\This has been proved!

=2
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Here’s What
You Need to
Know...

Cantor’s Definition:
Two sets have the same cardinality if
there exists a bijection between them.

E, N, Z and Q all have
same cardinality (and proofs)

Proof that there is no
bijection between N and R

Countable
versus Uncountable

Power sets and their properties
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