
15-251
Great Theoretical Ideas 

in Computer Science

Grade School Revisited:
How To Multiply Two Numbers

Lecture 22, November 6, 2008

Gauss

   (a+bi)

Gauss’ Complex Puzzle

Can you do better than $4.02?

Remember how to multiply two 
complex numbers a + bi and c + di?

(a+bi)(c+di) = [ac –bd] + [ad + bc] i

Input: a,b,c,d       
Output: ac-bd, ad+bc

If  multiplying two real numbers costs $1 
and adding them costs a penny, what is 
the cheapest way to obtain the output 
from the input?



Gauss’ $3.05 Method

Input: a,b,c,d       
Output:  ac-bd, ad+bc

X1 = a + b

X2 = c + d

X3 = X1 X2   = ac + ad + bc + bd

X4 = ac

X5 = bd

X6 = X4 – X5  = ac - bd

X7 = X3 – X4 – X5  = bc + ad

c

$

$

$

c

c

cc

The Gauss optimization saves 
one multiplication out of  four. 

It requires 25% less work.

+
T(n) = amount of  time 

grade school 
addition uses to add 

two n-bit numbers

* * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * *

* * * * * * * * * * *

Time complexity of  
grade school addition

We saw that T(n) was linear

T(n) = !(n)

Time complexity of  
grade school multiplication

T(n) = The amount of  
time grade school 

multiplication uses to 
add two n-bit numbers

We saw that T(n) was quadratic

T(n) = !(n2)

X
* * * * * * * * 
* * * * * * * * 

  * * * * * * * *
  * * * * * * * *

  * * * * * * * *
  * * * * * * * *

  * * * * * * * *
  * * * * * * * *

  * * * * * * * *
  * * * * * * * *

  * * * * * * * * * * * * * * * *

n2



# of  bits in the numbers

t
i

m
e

Grade School Addition: Linear time
Grade School Multiplication: Quadratic time

No matter how dramatic the difference in the 
constants, the quadratic curve will 

eventually dominate the linear curve

Is there a sub-linear time 
method for addition?

Any addition algorithm takes !(n) 
time

Claim: Any algorithm for addition must 
read all of  the input bits

Proof: Suppose there is a mystery 
algorithm A that does not examine 
each bit

Give A a pair of  numbers. There must be 
some unexamined bit position i in one of 
the numbers

* * * * * * * * *
* * * * * * * * *

* * * * * * * * * *

A did not
read this bit
at position i

Any addition algorithm takes !(n) 
time

If  A is not correct on the inputs, we 
found a bug

If  A is correct, flip the bit at position i and 
give A the new pair of  numbers. A gives 
the same answer as before, which is now 
wrong.



Grade school addition can’t 
be improved upon by more 

than a constant factor

Grade School Addition: "(n) time.
Furthermore, it is optimal

Grade School Multiplication: !(n2) time

Is there a clever algorithm to multiply two 
numbers in linear time?

Despite years of  research, no one 
knows! If  you resolve this question, 
Carnegie Mellon will give you a PhD!

Can we even break the quadratic time barrier?

In other words, can we do something very 
different than grade school multiplication?

Divide And Conquer

An approach to faster algorithms:

DIVIDE a problem into smaller subproblems

CONQUER them recursively

GLUE the answers together so as to 
obtain the answer to the larger problem



X = 

Y = 

a b

c d

X = a 2n/2 + b     Y = c 2n/2 + d 

n/2 bitsn/2 bits

n bits

X ! Y = ac 2n + (ad + bc) 2n/2 + bd 

X

Y

Multiplication of  2 n-bit numbers

Multiplication of  2 n-bit numbers

X = 

Y = 

a b

c d

n/2 bitsn/2 bits

X ! Y = ac 2n + (ad + bc) 2n/2 + bd 

MULT(X,Y):
 If  |X| = |Y| = 1 then return XY
  else  break X into a;b and Y into c;d
   return MULT(a,c) 2n + (MULT(a,d) 
  + MULT(b,c)) 2n/2 + MULT(b,d)

Same thing for numbers in decimal!

X = 

Y = 

a b

c d

X = a 10n/2 + b     Y = c 10n/2 + d 

n/2 digitsn/2 digits

n digits

X ! Y = ac 10n + (ad + bc) 10n/2 + bd 

Multiplying (Divide & Conquer style)

X = 

Y = 

X ! Y = ac 10n + (ad + bc) 10n/2 + bd 

a b

c d

1234*2139  1234*4276  5678*2139  5678*4276

12345678 * 21394276

12*21   12*39   34*21   34*39

1*2  1*1  2*2  2*1

2 1 4 2

Hence: 12*21 =   2*102 + (1 + 4)101 +  2 = 252



Multiplying (Divide & Conquer style)

X = 

Y = 

X ! Y = ac 10n + (ad + bc) 10n/2 + bd 

a b

c d

1234*2139  1234*4276  5678*2139  5678*4276

12345678 * 21394276

12*21   12*39   34*21   34*39252 468 714 1326
*104   +  *102  +  *102   +   *1 = 2639526

Multiplying (Divide & Conquer style)

X = 

Y = 

X ! Y = ac 10n + (ad + bc) 10n/2 + bd 

a b

c d

1234*2139  1234*4276  5678*2139  5678*4276

12345678 * 21394276

2639526 5276584 12145242 24279128
*108     +      *104       +        *104       +      *1

= 264126842539128

Divide, Conquer, and Glue

MULT(X,Y)

if  |X| = |Y| = 1 
then return XY, 
else…

Divide, Conquer, and Glue

MULT(X,Y):



X=a;b   Y=c;d 

Divide, Conquer, and Glue

MULT(X,Y):

Mult(a,c)
Mult(a,d) Mult(b,c)

Mult(b,d)

X=a;b   Y=c;d 

Divide, Conquer, and Glue

MULT(X,Y):

Mult(a,c)

Mult(a,d) Mult(b,c)
Mult(b,d)

X=a;b   Y=c;d 

Divide, Conquer, and Glue

MULT(X,Y):

ac

Mult(a,d) Mult(b,c)
Mult(b,d)

X=a;b   Y=c;d 

Divide, Conquer, and Glue

MULT(X,Y):

ac

Mult(a,d)

Mult(b,c)
Mult(b,d)



X=a;b   Y=c;d 

Divide, Conquer, and Glue

MULT(X,Y):

ac
ad

Mult(b,c)
Mult(b,d)

X=a;b   Y=c;d 

Divide, Conquer, and Glue

MULT(X,Y):

ac
ad

Mult(b,c)

Mult(b,d)

X=a;b   Y=c;d 

Divide, Conquer, and Glue

MULT(X,Y):

ac
ad bc

Mult(b,d)

X=a;b   Y=c;d 

Divide, Conquer, and Glue

MULT(X,Y):

ac
ad bc

Mult(b,d)



X=a;b   Y=c;d 

Divide, Conquer, and Glue

MULT(X,Y):

ac
ad bc bd

XY = ac2n 
+(ad+bc)2n/2 

+ bd

Time required by MULT

T(n) = time taken by MULT on two n-bit 
numbers

What is T(n)? What is its growth rate? 

Big Question: Is it "(n2)?

T(n) = 4 T(n/2) 

conquering 
time 

divide and 
glue

+ (k’n + k’’)

Recurrence Relation

MULT(X,Y):
 If  |X| = |Y| = 1 then return XY
  else  break X into a;b and Y into c;d
   return MULT(a,c) 2n + (MULT(a,d) 
  + MULT(b,c)) 2n/2 + MULT(b,d)

T(1) = k  for some constant k

T(n) = 4 T(n/2) + k’n + k’’ for constants k’ and k’’

Recurrence Relation

MULT(X,Y):
 If  |X| = |Y| = 1 then return XY
  else  break X into a;b and Y into c;d
   return MULT(a,c) 2n + (MULT(a,d) 
  + MULT(b,c)) 2n/2 + MULT(b,d)

T(1) = 1

T(n) = 4 T(n/2) + n



Technique: Labeled Tree Representation

T(n)              =              n + 4 T(n/2)

n

=

T(1)              =              1

1=

T(n)

T(n)

T(n/2) T(n/2) T(n/2) T(n/2)

ac
ad bc bd

T(n) = 4 T(n/2)  + 

conquering 
time divide and 

glue

 (k’n + k’’)

X=a;b   Y=c;d

XY = ac2n + (ad
+bc)2n/2 + bd

n=
T(n)

T(n/2) T(n/2) T(n/2) T(n/2)

n=
T(n)

T(n/2) T(n/2) T(n/2)

n/2

T
(n/4)

T
(n/4)

T
(n/4)

T
(n/4)



n=
T(n)

T(n/2) T(n/2)

n/2

T
(n/4)

T
(n/4)

T
(n/4)

T
(n/4)

n/2

T
(n/4)

T
(n/4)

T
(n/4)

T
(n/4)

n

               n/2         +        n/2        +         n/2          +         n/2

. . . . . . . . . . . . . . . . . . . . . . . . . . 

1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1

0

1

2

i

log2(n)

Level i is the sum of  4i copies of  n/2i

n

               n/2         +        n/2        +         n/2          +         n/2

Level i is the sum of  4i copies of  n/2i

. . . . . . . . . . . . . . . . . . . . . . . . . . 

1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1

2n =

4n =

2in =

(n)n =

1n =

n(1+2+4+8+ . . . +n) = n(2n-1) = 2n2-n

Divide and Conquer MULT: !(n2) time 

Grade School Multiplication: !(n2) time



MULT revisited

MULT(X,Y):
 If  |X| = |Y| = 1 then return XY
  else  break X into a;b and Y into c;d
   return MULT(a,c) 2n + (MULT(a,d) 
  + MULT(b,c)) 2n/2 + MULT(b,d)

MULT calls itself  4 times. Can you see a way 
to reduce the number of  calls?

Input: a,b,c,d       
Output:  ac-bd, ad+bc

X1 = a + b

X2 = c + d

X3 = X1 X2   = ac + ad + bc + bd

X4 = ac

X5 = bd

X6 = X4 – X5  = ac - bd

X7 = X3 – X4 – X5  = bc + ad

c

$

$

$

c

c

cc

Gauss’ optimization

Karatsuba, Anatolii Alexeevich (1937-)  

Sometime in the late 1950’s 
Karatsuba had formulated 
the first algorithm to break 
the n2 barrier! 

Gaussified MULT
(Karatsuba 1962)

T(n) = 3 T(n/2) + n

Actually: T(n) = 2 T(n/2) + T(n/2 + 1) + kn

MULT(X,Y):
 If  |X| = |Y| = 1 then return XY
  else  break X into a;b and Y into c;d

    e : = MULT(a,c)

   f   := MULT(b,d) 
 return 
 e 2n + (MULT(a+b,c+d) – e - f) 2n/2 + f



n=
T(n)

T(n/2) T(n/2) T(n/2)

n=
T(n)

T(n/2) T(n/2)

n/2

T
(n/4)

T
(n/4)

T
(n/4)

n

n/2         +        n/2        +         n/2

. . . . . . . . . . . . . . . . . . . . . . . . . . 

1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1

0

1

2

i

log2(n)

Level i is the sum of  3i copies of  n/2i

n

n/2         +        n/2        +         n/2

Level i is the sum of  3i copies of  n/2i

. . . . . . . . . . . . . . . . . . . . . . . . . . 

1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1

3/2n =

9/4n =

(3/2)in =

(3/2)log nn =

1n =

n(1+3/2+(3/2)2+ . . . + (3/2)log2 n)    =    3n1.58… – 2n



Dramatic Improvement for Large n

T(n)  = 3nlog2 3 – 2n  

 = !(nlog2 3)  

 = !(n1.58…)

A huge savings over !(n2) when n gets 
large. 

n 1.584

n2

Multiplication Algorithms

Kindergarten n2n

Grade School n2

Karatsuba n1.58…

Fastest Known n logn loglogn

n2 n 1.584

n log(n) loglog(n)

n 1.584



Here’s What 
You Need to 

Know…

• Gauss’s Multiplication Trick

• Proof  of  Lower bound for addition

• Divide and Conquer

• Solving Recurrences

• Karatsuba Multiplication


