
15-251
Great Theoretical Ideas

in Computer Science

This is The Big Oh!
Lecture 21, November 4, 2008

Counting

The Power of One

Algebra

 The Power of X

Asymptotics

 The Power of O

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

+

How to add 2 n-bit numbers

*
*

*

*
*

*
*

*
*

*
*

*
*

*
*
*

*
*

*
*

*
*

*
*

+

How to add 2 n-bit numbers

*
*

*

*
*

*
*

*
*

*
*

*
*
*

*
*
*

*

*
*

*
*

*
*

*
*

+

How to add 2 n-bit numbers

*
*

*

*
*

*
*

*
*

*
*
*

*
*
*

*

*
*
*

*

*
*

*
*

*
*

*
*

+

How to add 2 n-bit numbers

*
*

*

*
*

*
*

*
*
*

*
*
*

*

*
*
*

*

*
*
*

*

*
*

*
*

*
*

*
*

+

How to add 2 n-bit numbers

*
*

*

*
*
*

*

*
*
*

*

*
*
*

*

*
*
*

*

*
*
*

*

*
*
*

*

*
*
*

*

*
*
*

*

*
*
*

*

*
*
*

 *

+
*

*

“Grade school addition”

How to add 2 n-bit numbers

+
T(n) = amount of time

grade school
addition uses to add

two n-bit numbers

* * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * *

* * * * * * * * * * *

Time complexity of
grade school addition

+
T(n) = amount of time

grade school
addition uses to add

two n-bit numbers

* * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * *

* * * * * * * * * * *

Time complexity of
grade school addition

What do we mean by “time”?

Our Goal

We want to define “time” in a way
that transcends implementation

details and allows us to make
assertions about grade school
addition in a very general yet

useful way.

A given algorithm will take different
amounts of time on the same inputs
depending on such factors as:

– Processor speed
– Instruction set
– Disk speed
– Brand of compiler

Roadblock ???

On any reasonable computer, adding 3
bits and writing down the two bit answer
can be done in constant time

On any reasonable computer, adding 3
bits and writing down the two bit answer
can be done in constant time

Pick any particular computer M and define c
to be the time it takes to perform on
that computer.

On any reasonable computer, adding 3
bits and writing down the two bit answer
can be done in constant time

Pick any particular computer M and define c
to be the time it takes to perform on
that computer.

Total time to add two n-bit numbers
using grade school addition:

On any reasonable computer, adding 3
bits and writing down the two bit answer
can be done in constant time

Pick any particular computer M and define c
to be the time it takes to perform on
that computer.

Total time to add two n-bit numbers
using grade school addition:

cn [i.e., c time for each of n columns]

On another computer M’, the time
to perform may be c’.

On another computer M’, the time
to perform may be c’.

Total time to add two n-bit numbers
using grade school addition:

On another computer M’, the time
to perform may be c’.

Total time to add two n-bit numbers
using grade school addition:

c’n [c’ time for each of n columns]

of bits in the numbers

t
i

m
e

Machine M
: c

n

Machine M’: c’n

The fact that we get a line is invariant
under changes of implementations.
Different machines result in different
slopes, but the time taken grows
linearly as input size increases.

of bits in the numbers

t
i

m
e

Machine M
: c

n

Machine M’: c’n

Thus we arrive at an
implementation-independent

insight:

Grade School Addition is a linear time
algorithm

Thus we arrive at an
implementation-independent

insight:

Grade School Addition is a linear time
algorithm

This process of abstracting away details
and determining the rate of resource
usage in terms of the problem size n is
one of the fundamental ideas in
computer science.

Time vs Input Size

For any algorithm, define
 Input Size = # of bits to specify its inputs.

Time vs Input Size

For any algorithm, define
 Input Size = # of bits to specify its inputs.

Define
 TIMEn = the worst-case amount of
 time used by the algorithm
 on inputs of size n

Time vs Input Size

For any algorithm, define
 Input Size = # of bits to specify its inputs.

Define
 TIMEn = the worst-case amount of
 time used by the algorithm
 on inputs of size n

We often ask: What is the growth rate of
Timen ?

X
* * * * * * * *
* * * * * * * *

 * * * * * * * *
 * * * * * * * *

 * * * * * * * *
 * * * * * * * *

 * * * * * * * *
 * * * * * * * *

 * * * * * * * *
 * * * * * * * *

 * * * * * * * * * * * * * * * *

How to multiply 2 n-bit numbers.

X
* * * * * * * *
* * * * * * * *

 * * * * * * * *
 * * * * * * * *

 * * * * * * * *
 * * * * * * * *

 * * * * * * * *
 * * * * * * * *

 * * * * * * * *
 * * * * * * * *

 * * * * * * * * * * * * * * * *

n2

How to multiply 2 n-bit numbers.

X
* * * * * * * *
* * * * * * * *

 * * * * * * * *
 * * * * * * * *

 * * * * * * * *
 * * * * * * * *

 * * * * * * * *
 * * * * * * * *

 * * * * * * * *
 * * * * * * * *

 * * * * * * * * * * * * * * * *

n2

How to multiply 2 n-bit numbers.

The total time is bounded by
cn2 (abstracting away the
implementation details).

of bits in the numbers

t
i

m
e

Grade School Addition: Linear time
Grade School Multiplication: Quadratic time

of bits in the numbers

t
i

m
e

Grade School Addition: Linear time
Grade School Multiplication: Quadratic time

No matter how dramatic the difference in the
constants, the quadratic curve will

eventually dominate the linear curve

How much time does it take to
square the number n using

grade school multiplication?

Grade School Multiplication:
Quadratic time

of bits in numbers

t
i

m
e

c(log n)2 time to square the number n

Grade School Multiplication:
Quadratic time

of bits in numbers

t
i

m
e

Input size is measured in bits,
unless we say otherwise.

c(log n)2 time to square the number n

How much time does it take?

Nursery School Addition
 Input: Two n-bit numbers, a and b
 Output: a + b

How much time does it take?

Nursery School Addition
 Input: Two n-bit numbers, a and b
 Output: a + b

Start at a and increment (by 1) b times

How much time does it take?

Nursery School Addition
 Input: Two n-bit numbers, a and b
 Output: a + b

Start at a and increment (by 1) b times

T(n) = ?

How much time does it take?

Nursery School Addition
 Input: Two n-bit numbers, a and b
 Output: a + b

Start at a and increment (by 1) b times

T(n) = ?

If b = 000…0000, then NSA takes almost no time

How much time does it take?

Nursery School Addition
 Input: Two n-bit numbers, a and b
 Output: a + b

Start at a and increment (by 1) b times

T(n) = ?

If b = 000…0000, then NSA takes almost no time

If b = 1111…11111, then NSA takes cn2n time

Worst Case Time

Worst Case Time T(n) for algorithm A:

T(n) = Max[all permissible inputs X of size n]
(Running time of algorithm A on input X).

What is T(n)?

Kindergarten Multiplication
 Input: Two n-bit numbers, a and b
 Output: a * b

What is T(n)?

Kindergarten Multiplication
 Input: Two n-bit numbers, a and b
 Output: a * b

Start with a and add a, b-1 times

What is T(n)?

Kindergarten Multiplication
 Input: Two n-bit numbers, a and b
 Output: a * b

Start with a and add a, b-1 times

Remember, we always pick the WORST
CASE input for the input size n.

Thus, T(n) = cn2n

Thus, Nursery School adding and
Kindergarten multiplication are
exponential time.

They scale HORRIBLY as input size
grows.

Grade school methods scale
polynomially: just linear and quadratic.
Thus, we can add and multiply fairly
large numbers.

If T(n) is not polynomial, the algorithm
is not efficient: the run time scales too
poorly with the input size.

If T(n) is not polynomial, the algorithm
is not efficient: the run time scales too
poorly with the input size.

This will be the yardstick with which
we will measure “efficiency”.

Multiplication is efficient, what about
“reverse multiplication”?

Multiplication is efficient, what about
“reverse multiplication”?

Let’s define FACTORING(N) to be any
method to produce a non-trivial factor of
N, or to assert that N is prime.

Factoring The Number N
By Trial Division

Factoring The Number N
By Trial Division

Trial division up to √N

Factoring The Number N
By Trial Division

Trial division up to √N

for k = 2 to √ N do
 if k | N then
 return “N has a non-trivial factor k”
return “N is prime”

Factoring The Number N
By Trial Division

Trial division up to √N

for k = 2 to √ N do
 if k | N then
 return “N has a non-trivial factor k”
return “N is prime”

c √N (logN)2 time if division is c (logN)2 time

Factoring The Number N
By Trial Division

Trial division up to √N

for k = 2 to √ N do
 if k | N then
 return “N has a non-trivial factor k”
return “N is prime”

c √N (logN)2 time if division is c (logN)2 time

Is this efficient?

Factoring The Number N
By Trial Division

Trial division up to √N

for k = 2 to √ N do
 if k | N then
 return “N has a non-trivial factor k”
return “N is prime”

c √N (logN)2 time if division is c (logN)2 time

Is this efficient?

No! The input length n = log N. Hence
we’re using c 2n/2 n2 time.

Can we do better?

Can we do better?

We know of methods for FACTORING
that are sub-exponential (about 2n1/3 time)
but nothing efficient.

Notation to Discuss Growth Rates

For any monotonic function f from the
positive integers to the positive integers,
we say

“f = O(n)” or “f is O(n)”

Notation to Discuss Growth Rates

For any monotonic function f from the
positive integers to the positive integers,
we say

“f = O(n)” or “f is O(n)”

If some constant times n eventually
dominates f

Notation to Discuss Growth Rates

For any monotonic function f from the
positive integers to the positive integers,
we say

“f = O(n)” or “f is O(n)”

If some constant times n eventually
dominates f

[Formally: there exists a constant c such
that for all sufficiently large n: f(n) ≤ cn]

of bits in numbers

t
i

m
e

f = O(n) means that there is a line
that can be drawn that stays above

f from some point on

For any monotonic function f from the
positive integers to the positive integers,
we say

“f = Ω(n)” or “f is Ω(n)”

Other Useful Notation: Ω

For any monotonic function f from the
positive integers to the positive integers,
we say

“f = Ω(n)” or “f is Ω(n)”

If f eventually dominates some constant
times n

Other Useful Notation: Ω

For any monotonic function f from the
positive integers to the positive integers,
we say

“f = Ω(n)” or “f is Ω(n)”

If f eventually dominates some constant
times n

[Formally: there exists a constant c such
that for all sufficiently large n: f(n) ≥ cn]

Other Useful Notation: Ω

of bits in numbers

t
i

m
e

f = Ω(n) means that there is a line
that can be drawn that stays below

f from some point on

Yet More Useful Notation: Θ
For any monotonic function f from the
positive integers to the positive integers,
we say

“f = Θ(n)” or “f is Θ(n)”

Yet More Useful Notation: Θ
For any monotonic function f from the
positive integers to the positive integers,
we say

“f = Θ(n)” or “f is Θ(n)”

if: f = O(n) and f = Ω(n)

of bits in numbers

t
i

m
e

f = Θ(n) means that f can be
sandwiched between two lines

from some point on.

Notation to Discuss Growth Rates

For any two monotonic functions f and g
from the positive integers to the positive
integers, we say

“f = O(g)” or “f is O(g)”

Notation to Discuss Growth Rates

For any two monotonic functions f and g
from the positive integers to the positive
integers, we say

“f = O(g)” or “f is O(g)”

If some constant times g eventually
dominates f

Notation to Discuss Growth Rates

For any two monotonic functions f and g
from the positive integers to the positive
integers, we say

“f = O(g)” or “f is O(g)”

If some constant times g eventually
dominates f

[Formally: there exists a constant c such
that for all sufficiently large n: f(n) ≤ c g(n)]

of bits in numbers

t
i

m
e

f = O(g) means that there is some
constant c such that c g(n) stays
above f(n) from some point on.

f
g

1.5g

For any two monotonic functions f and g
from the positive integers to the positive
integers, we say

“f = Ω(g)” or “f is Ω(g)”

Other Useful Notation: Ω

For any two monotonic functions f and g
from the positive integers to the positive
integers, we say

“f = Ω(g)” or “f is Ω(g)”

If f eventually dominates some constant
times g

Other Useful Notation: Ω

For any two monotonic functions f and g
from the positive integers to the positive
integers, we say

“f = Ω(g)” or “f is Ω(g)”

If f eventually dominates some constant
times g

[Formally: there exists a constant c such
that for all sufficiently large n: f(n) ≥ c g(n)]

Other Useful Notation: Ω

Yet More Useful Notation: Θ
For any two monotonic functions f and g
from the positive integers to the positive
integers, we say

“f = Θ(g)” or “f is Θ(g)”

Yet More Useful Notation: Θ
For any two monotonic functions f and g
from the positive integers to the positive
integers, we say

“f = Θ(g)” or “f is Θ(g)”

If: f = O(g) and f = Ω(g)

• n = O(n2) ?

• n = O(n2) ? Yes!

• n = O(n2) ?

Take c = 1
For all n ≥ 1, it holds that n ≤ cn2

Yes!

• n = O(n2) ?

• n = O(√n) ?

Yes!

• n = O(n2) ?

• n = O(√n) ?

Yes!

No

• n = O(n2) ?

• n = O(√n) ?

Suppose it were true that n ≤ c √n
for some constant c and large enough n

Yes!

No

• n = O(n2) ?

• n = O(√n) ?

Suppose it were true that n ≤ c √n
for some constant c and large enough n

Cancelling, we would get √n ≤ c.
Which is false for n > c2

Yes!

No

• n = O(n2) ?

• n = O(√n) ?

• 3n2 + 4n + 4 = O(n2) ?

• 3n2 + 4n + 4 = Ω(n2) ?

• n2 = Ω(n log n) ?

• n2 log n = Θ(n2) ?

Yes!

No

• n = O(n2) ?

• n = O(√n) ?

• 3n2 + 4n + 4 = O(n2) ?

• 3n2 + 4n + 4 = Ω(n2) ?

• n2 = Ω(n log n) ?

• n2 log n = Θ(n2) ?

Yes!

No

Yes!

• n = O(n2) ?

• n = O(√n) ?

• 3n2 + 4n + 4 = O(n2) ?

• 3n2 + 4n + 4 = Ω(n2) ?

• n2 = Ω(n log n) ?

• n2 log n = Θ(n2) ?

Yes!

No

Yes!

Yes!

• n = O(n2) ?

• n = O(√n) ?

• 3n2 + 4n + 4 = O(n2) ?

• 3n2 + 4n + 4 = Ω(n2) ?

• n2 = Ω(n log n) ?

• n2 log n = Θ(n2) ?

Yes!

No

Yes!

Yes!

Yes!

• n = O(n2) ?

• n = O(√n) ?

• 3n2 + 4n + 4 = O(n2) ?

• 3n2 + 4n + 4 = Ω(n2) ?

• n2 = Ω(n log n) ?

• n2 log n = Θ(n2) ?

Yes!

No

Yes!

Yes!

Yes!

No

• f = O(g) and g = O(h)
 then f = O(h) ?

• f = O(g)
 then g = Ω(f)

• f = O(g) and g = O(h)
 then f = O(h) ?

• f = O(g)
 then g = Ω(f)

Yes!

• f = O(g) and g = O(h)
 then f = O(h) ?

• f = O(g)
 then g = Ω(f)

Yes!

f(n) ≤ c g(n) for all n ≥ n0.
and g(n) ≤ c’ h(n) for all n ≥ n0’.

So f(n) ≤ (cc’) h(n) for all n ≥ max(n0, n0’)

• f = O(g) and g = O(h)
 then f = O(h) ?

• f = O(g)
 then g = Ω(f)

Yes!

f(n) ≤ c g(n) for all n ≥ n0.
and g(n) ≤ c’ h(n) for all n ≥ n0’.

So f(n) ≤ (cc’) h(n) for all n ≥ max(n0, n0’)

Yes!

Names For Some Growth Rates

Linear Time: T(n) = O(n)
Quadratic Time: T(n) = O(n2)
Cubic Time: T(n) = O(n3)

Names For Some Growth Rates

Linear Time: T(n) = O(n)
Quadratic Time: T(n) = O(n2)
Cubic Time: T(n) = O(n3)

Polynomial Time:

Names For Some Growth Rates

Linear Time: T(n) = O(n)
Quadratic Time: T(n) = O(n2)
Cubic Time: T(n) = O(n3)

for some constant k, T(n) = O(nk).
 Example: T(n) = 13n5

Polynomial Time:

Large Growth Rates

Exponential Time:

Large Growth Rates

Exponential Time:
for some constant k, T(n) = O(kn)
 Example: T(n) = n2n = O(3n)

Small Growth Rates

Logarithmic Time: T(n) = O(logn)
Example: T(n) = 15log2(n)

Small Growth Rates

Logarithmic Time: T(n) = O(logn)
Example: T(n) = 15log2(n)

Polylogarithmic Time:
for some constant k, T(n) = O(logk(n))

Small Growth Rates

Logarithmic Time: T(n) = O(logn)
Example: T(n) = 15log2(n)

Polylogarithmic Time:
for some constant k, T(n) = O(logk(n))

Note: These kind of algorithms can’t
possibly read all of their inputs.

Small Growth Rates

Logarithmic Time: T(n) = O(logn)
Example: T(n) = 15log2(n)

Polylogarithmic Time:
for some constant k, T(n) = O(logk(n))

Note: These kind of algorithms can’t
possibly read all of their inputs.

A very common example of logarithmic
time is looking up a word in a sorted
dictionary (binary search)

Some Big Ones

Doubly Exponential Time means
that for some constant k

Some Big Ones

T(n) = 22
kn

Doubly Exponential Time means
that for some constant k

Some Big Ones

T(n) = 22
kn

Doubly Exponential Time means
that for some constant k

Triply Exponential

Some Big Ones

T(n) = 22
kn

T(n) = 22
2kn

Doubly Exponential Time means
that for some constant k

Triply Exponential

Faster and Faster: 2STACK

2STACK(0) = 1
2STACK(n) = 22STACK(n-1)

Faster and Faster: 2STACK

2STACK(0) = 1
2STACK(n) = 22STACK(n-1)

2STACK(1) = 2

Faster and Faster: 2STACK

2STACK(0) = 1
2STACK(n) = 22STACK(n-1)

2STACK(1) = 2

2STACK(2) = 4

Faster and Faster: 2STACK

2STACK(0) = 1
2STACK(n) = 22STACK(n-1)

2STACK(1) = 2

2STACK(2) = 4

2STACK(3) = 16

Faster and Faster: 2STACK

2STACK(0) = 1
2STACK(n) = 22STACK(n-1)

2STACK(1) = 2

2STACK(2) = 4

2STACK(3) = 16

2STACK(4) = 65536

Faster and Faster: 2STACK

2STACK(0) = 1
2STACK(n) = 22STACK(n-1)

2STACK(1) = 2

2STACK(2) = 4

2STACK(3) = 16

2STACK(4) = 65536

2STACK(5) ≥ 1080

Faster and Faster: 2STACK

2STACK(0) = 1
2STACK(n) = 22STACK(n-1)

2STACK(1) = 2

2STACK(2) = 4

2STACK(3) = 16

2STACK(4) = 65536

2STACK(5) ≥ 1080

= atoms in universe

222
2: : :

2

“tower of n 2’s”

2STACK(n) =

Faster and Faster: 2STACK

2STACK(0) = 1
2STACK(n) = 22STACK(n-1)

2STACK(1) = 2

2STACK(2) = 4

2STACK(3) = 16

2STACK(4) = 65536

2STACK(5) ≥ 1080

= atoms in universe

2STACK(0) = 1
2STACK(n) = 22STACK(n-1)

2STACK(1) = 2

2STACK(2) = 4

2STACK(3) = 16

2STACK(4) = 65536

2STACK(5) ≥ 1080

= atoms in universe

And the inverse of 2STACK: log*

2STACK(0) = 1
2STACK(n) = 22STACK(n-1)

2STACK(1) = 2

2STACK(2) = 4

2STACK(3) = 16

2STACK(4) = 65536

2STACK(5) ≥ 1080

= atoms in universe

log*(n) = # of times you have to apply the log
function to n to make it ≤ 1

And the inverse of 2STACK: log*

2STACK(0) = 1
2STACK(n) = 22STACK(n-1)

2STACK(1) = 2

2STACK(2) = 4

2STACK(3) = 16

2STACK(4) = 65536

2STACK(5) ≥ 1080

= atoms in universe

log*(n) = # of times you have to apply the log
function to n to make it ≤ 1

And the inverse of 2STACK: log*

log*(2) = 1

2STACK(0) = 1
2STACK(n) = 22STACK(n-1)

2STACK(1) = 2

2STACK(2) = 4

2STACK(3) = 16

2STACK(4) = 65536

2STACK(5) ≥ 1080

= atoms in universe

log*(n) = # of times you have to apply the log
function to n to make it ≤ 1

And the inverse of 2STACK: log*

log*(2) = 1

log*(4) = 2

2STACK(0) = 1
2STACK(n) = 22STACK(n-1)

2STACK(1) = 2

2STACK(2) = 4

2STACK(3) = 16

2STACK(4) = 65536

2STACK(5) ≥ 1080

= atoms in universe

log*(n) = # of times you have to apply the log
function to n to make it ≤ 1

And the inverse of 2STACK: log*

log*(2) = 1

log*(4) = 2

log*(16) = 3

2STACK(0) = 1
2STACK(n) = 22STACK(n-1)

2STACK(1) = 2

2STACK(2) = 4

2STACK(3) = 16

2STACK(4) = 65536

2STACK(5) ≥ 1080

= atoms in universe

log*(n) = # of times you have to apply the log
function to n to make it ≤ 1

And the inverse of 2STACK: log*

log*(2) = 1

log*(4) = 2

log*(16) = 3

log*(65536) = 4

2STACK(0) = 1
2STACK(n) = 22STACK(n-1)

2STACK(1) = 2

2STACK(2) = 4

2STACK(3) = 16

2STACK(4) = 65536

2STACK(5) ≥ 1080

= atoms in universe

log*(n) = # of times you have to apply the log
function to n to make it ≤ 1

And the inverse of 2STACK: log*

log*(2) = 1

log*(4) = 2

log*(16) = 3

log*(65536) = 4

log*(atoms) = 5

So an algorithm that can be shown to
run in O(n log*n) Time is Linear Time
for all practical purposes!!

Ackermann’s Function

Ackermann’s Function

A(0, n) = n + 1 for n ≥ 0

Ackermann’s Function

A(0, n) = n + 1 for n ≥ 0

A(m, 0) = A(m - 1, 1) for m ≥ 1

Ackermann’s Function

A(0, n) = n + 1 for n ≥ 0

A(m, 0) = A(m - 1, 1) for m ≥ 1

A(m, n) = A(m - 1, A(m, n - 1)) for m, n ≥ 1

Ackermann’s Function

A(0, n) = n + 1 for n ≥ 0

A(m, 0) = A(m - 1, 1) for m ≥ 1

A(m, n) = A(m - 1, A(m, n - 1)) for m, n ≥ 1

n=0 1 2 3 4 5

m=0

1

2

3

4

5

Ackermann’s Function

Ackermann’s Function

A(0, n) = n + 1 for n ≥ 0

Ackermann’s Function

A(0, n) = n + 1 for n ≥ 0

A(m, 0) = A(m - 1, 1) for m ≥ 1

Ackermann’s Function

A(0, n) = n + 1 for n ≥ 0

A(m, 0) = A(m - 1, 1) for m ≥ 1

A(m, n) = A(m - 1, A(m, n - 1)) for m, n ≥ 1

Ackermann’s Function

A(0, n) = n + 1 for n ≥ 0

A(m, 0) = A(m - 1, 1) for m ≥ 1

A(m, n) = A(m - 1, A(m, n - 1)) for m, n ≥ 1

Ackermann’s Function

A(4,2) > # of particles in universe

A(0, n) = n + 1 for n ≥ 0

A(m, 0) = A(m - 1, 1) for m ≥ 1

A(m, n) = A(m - 1, A(m, n - 1)) for m, n ≥ 1

Ackermann’s Function

A(4,2) > # of particles in universe

A(5,2) can’t be written out as
decimal in this universe

A(0, n) = n + 1 for n ≥ 0

A(m, 0) = A(m - 1, 1) for m ≥ 1

A(m, n) = A(m - 1, A(m, n - 1)) for m, n ≥ 1

Ackermann’s Function

Ackermann’s Function

Define: A’(k) = A(k,k)

Ackermann’s Function

Define: A’(k) = A(k,k)

Inverse Ackerman α(n) is the inverse of A’

Ackermann’s Function

Define: A’(k) = A(k,k)

Inverse Ackerman α(n) is the inverse of A’

Practically speaking: n × α(n) ≤ 4n

Ackermann’s Function

Define: A’(k) = A(k,k)

Inverse Ackerman α(n) is the inverse of A’

Practically speaking: n × α(n) ≤ 4n

A(0, n) = n + 1 for n ≥ 0

Ackermann’s Function

Define: A’(k) = A(k,k)

Inverse Ackerman α(n) is the inverse of A’

Practically speaking: n × α(n) ≤ 4n

A(0, n) = n + 1 for n ≥ 0

A(m, 0) = A(m - 1, 1) for m ≥ 1

Ackermann’s Function

Define: A’(k) = A(k,k)

Inverse Ackerman α(n) is the inverse of A’

Practically speaking: n × α(n) ≤ 4n

A(0, n) = n + 1 for n ≥ 0

A(m, 0) = A(m - 1, 1) for m ≥ 1

A(m, n) = A(m - 1, A(m, n - 1)) for m, n ≥ 1

The inverse Ackermann function – in
fact, Θ(n α(n)) arises in the seminal
paper of:

D. D. Sleator and R. E. Tarjan. A data
structure for dynamic trees. Journal of
Computer and System Sciences, 26(3):
362-391, 1983.

Here’s What
You Need to

Know…

• How is “time” measured

• Definitions of:

• O, Ω, Θ
• linear, quadratic time, etc

• log*(n)

• Ackerman Function

