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Great Theoretical Ideas 

in Computer Science



This is The Big Oh!
Lecture 21, November 4, 2008



Counting

The Power of  One



Algebra

   The Power of  X



Asymptotics
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How to add 2 n-bit numbers
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“Grade school addition”

How to add 2 n-bit numbers



+
T(n) = amount of  time 

grade school 
addition uses to add 

two n-bit numbers

* * * * * * * * * *
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Time complexity of  
grade school addition
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T(n) = amount of  time 

grade school 
addition uses to add 

two n-bit numbers

* * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * *

* * * * * * * * * * *

Time complexity of  
grade school addition

What do we mean by “time”?



Our Goal

We want to define “time” in a way 
that transcends implementation 

details and allows us to make 
assertions about grade school 
addition in a very general yet 

useful way.



A given algorithm will take different 
amounts of  time on the same inputs 
depending on such factors as:

–  Processor speed
–  Instruction set
–  Disk speed
–  Brand of  compiler

Roadblock ???



On any reasonable computer, adding 3 
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bits and writing down the two bit answer 
can be done in constant time

Pick any particular computer M and define c 
to be the time it takes to perform          on 
that computer. 

Total time to add two n-bit numbers 
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cn   [i.e., c time for each of  n columns]
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On another computer M’, the time 
to perform        may be c’.

Total time to add two n-bit numbers 
using grade school addition: 

c’n    [c’ time for each of  n columns]



# of  bits in the numbers
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Machine M
: c

n

Machine M’: c’n



The fact that we get a line is invariant 
under changes of  implementations. 
Different machines result in different 
slopes, but the time taken grows 
linearly as input size increases. 

# of  bits in the numbers
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Machine M
: c

n

Machine M’: c’n



Thus we arrive at an 
implementation-independent 

insight: 

Grade School Addition is a linear time 
algorithm



Thus we arrive at an 
implementation-independent 

insight: 

Grade School Addition is a linear time 
algorithm

This process of  abstracting away details 
and determining the rate of  resource 
usage in terms of  the problem size n is 
one of  the fundamental ideas in 
computer science.



Time vs Input Size

For any algorithm, define 
   Input Size = # of  bits to specify its inputs.
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Time vs Input Size

For any algorithm, define 
   Input Size = # of  bits to specify its inputs.

Define 
  TIMEn = the worst-case amount of  
 time used by the algorithm
 on inputs of  size n

We often ask: What is the growth rate of 
Timen ?
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  * * * * * * * *

  * * * * * * * * * * * * * * * *

n2

How to multiply 2 n-bit numbers.

The total time is bounded by 
cn2 (abstracting away the 
implementation details).
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Grade School Addition: Linear time
Grade School Multiplication: Quadratic time

No matter how dramatic the difference in the 
constants, the quadratic curve will 

eventually dominate the linear curve



How much time does it take to 
square the number n using 

grade school multiplication?



Grade School Multiplication:
Quadratic time

# of  bits in numbers
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c(log n)2 time to square the number n



Grade School Multiplication:
Quadratic time

# of  bits in numbers

t
i

m
e

Input size is measured in bits, 
unless we say otherwise.

c(log n)2 time to square the number n
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How much time does it take?

Nursery School Addition 
  Input: Two n-bit numbers, a and b
  Output: a + b

Start at a and increment (by 1) b times

T(n) = ?

If  b = 000…0000, then NSA takes almost no time

If  b = 1111…11111, then NSA takes cn2n time



Worst Case Time

Worst Case Time T(n) for algorithm A:

T(n) = Max[all permissible inputs X of  size n] 
(Running time of  algorithm A on input X).



What is T(n)?

Kindergarten Multiplication 
  Input: Two n-bit numbers, a and b
  Output: a * b
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What is T(n)?

Kindergarten Multiplication 
  Input: Two n-bit numbers, a and b
  Output: a * b

Start with a and add a, b-1 times

Remember, we always pick the WORST 
CASE input for the input size n. 

Thus, T(n) = cn2n



Thus, Nursery School adding and 
Kindergarten multiplication are 
exponential time. 

They scale HORRIBLY as input size 
grows.

Grade school methods scale 
polynomially: just linear and quadratic. 
Thus, we can add and multiply fairly 
large numbers.



If  T(n) is not polynomial, the algorithm 
is not efficient: the run time scales too 
poorly with the input size.



If  T(n) is not polynomial, the algorithm 
is not efficient: the run time scales too 
poorly with the input size.

This will be the yardstick with which 
we will measure “efficiency”.
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“reverse multiplication”?



Multiplication is efficient, what about 
“reverse multiplication”?

Let’s define FACTORING(N) to be any 
method to produce a non-trivial factor of 
N, or to assert that N is prime.
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Factoring The Number N 
By Trial Division

Trial division up to √N

for k = 2 to √ N do
 if  k | N  then
 return “N  has a non-trivial factor k”
return “N  is prime”

c √N (logN)2 time if  division is c (logN)2 time

Is this efficient?

No! The input length n = log N. Hence 
we’re using c 2n/2 n2 time.



Can we do better?



Can we do better?

We know of  methods for FACTORING 
that are sub-exponential (about 2n1/3 time) 
but nothing efficient. 



Notation to Discuss Growth Rates

For any monotonic function f  from the 
positive integers to the positive integers, 
we say 

“f  = O(n)” or “f  is O(n)”



Notation to Discuss Growth Rates

For any monotonic function f  from the 
positive integers to the positive integers, 
we say 

“f  = O(n)” or “f  is O(n)”

If  some constant times n eventually 
dominates f



Notation to Discuss Growth Rates

For any monotonic function f  from the 
positive integers to the positive integers, 
we say 

“f  = O(n)” or “f  is O(n)”

If  some constant times n eventually 
dominates f

[Formally: there exists a constant c such 
that for all sufficiently large n:  f(n) ≤ cn ]



# of  bits in numbers

t
i

m
e

f  = O(n) means that there is a line 
that can be drawn that stays above 

f  from some point on



For any monotonic function f  from the 
positive integers to the positive integers, 
we say 

“f  = Ω(n)” or “f  is Ω(n)”

Other Useful Notation: Ω



For any monotonic function f  from the 
positive integers to the positive integers, 
we say 

“f  = Ω(n)” or “f  is Ω(n)”

If  f  eventually dominates some constant 
times n

Other Useful Notation: Ω



For any monotonic function f  from the 
positive integers to the positive integers, 
we say 

“f  = Ω(n)” or “f  is Ω(n)”

If  f  eventually dominates some constant 
times n

[Formally: there exists a constant c such 
that for all sufficiently large n:  f(n) ≥ cn ]

Other Useful Notation: Ω



# of  bits in numbers

t
i

m
e

f  = Ω(n) means that there is a line 
that can be drawn that stays below 

f  from some point on



Yet More Useful Notation: Θ
For any monotonic function f  from the 
positive integers to the positive integers, 
we say 

“f  = Θ(n)” or “f  is Θ(n)”



Yet More Useful Notation: Θ
For any monotonic function f  from the 
positive integers to the positive integers, 
we say 

“f  = Θ(n)” or “f  is Θ(n)”

if: f  = O(n)   and   f  = Ω(n)



# of  bits in numbers
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f  = Θ(n) means that f  can be 
sandwiched between two lines

from some point on.
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Notation to Discuss Growth Rates

For any two monotonic functions f  and g 
from the positive integers to the positive 
integers, we say

“f  = O(g)” or “f  is O(g)”

If  some constant times g eventually 
dominates f

[Formally: there exists a constant c such 
that for all sufficiently large n:  f(n) ≤ c g(n) ]
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f  = O(g) means that there is some 
constant c such that c g(n) stays 
above f(n) from some point on.

f
g

1.5g
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Yet More Useful Notation: Θ
For any two monotonic functions f  and g 
from the positive integers to the positive 
integers, we say

“f  = Θ(g)” or “f  is Θ(g)”

If: f  = O(g)   and   f  = Ω(g)
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• n = O(n2) ?

Take c = 1 
For all n ≥ 1, it holds that n ≤ cn2

Yes!
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• n = O(n2) ?

• n = O(√n) ?

Suppose it were true that n ≤ c √n 
for some constant c and large enough n

Cancelling, we would get √n ≤ c.
Which is false for n > c2 

Yes!

No
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• 3n2 + 4n + 4 = O(n2) ?
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• n2 = Ω(n log n) ?
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Yes!
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• f  = O(g) and g = O(h)
  then f  = O(h) ?

• f  = O(g)
  then g = Ω(f)

Yes!

f(n) ≤ c g(n)  for all n ≥ n0.
and g(n) ≤ c’ h(n)  for all n ≥ n0’.

So f(n) ≤ (cc’) h(n) for all n ≥ max(n0, n0’)

Yes!
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Names For Some Growth Rates

Linear Time:  T(n) = O(n)
Quadratic Time:  T(n) = O(n2)
Cubic Time:  T(n) = O(n3)

for some constant k, T(n) = O(nk).
 Example: T(n) = 13n5  

Polynomial Time:



Large Growth Rates
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Large Growth Rates

Exponential Time:
for some constant k, T(n) = O(kn)
 Example: T(n) = n2n = O(3n)
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Polylogarithmic Time: 
for some constant k, T(n) = O(logk(n))

Note: These kind of  algorithms can’t 
possibly read all of  their inputs.



Small Growth Rates

Logarithmic Time: T(n) = O(logn)
Example: T(n) = 15log2(n)

Polylogarithmic Time: 
for some constant k, T(n) = O(logk(n))

Note: These kind of  algorithms can’t 
possibly read all of  their inputs.

A very common example of  logarithmic 
time is looking up a word in a sorted 
dictionary (binary search)
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Some Big Ones

T(n) = 22
kn

T(n) = 22
2kn

Doubly Exponential Time means 
that for some constant k

Triply Exponential
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2STACK(0) = 1
2STACK(n) = 22STACK(n-1)

2STACK(1) = 2

2STACK(2) = 4

2STACK(3) = 16

2STACK(4) = 65536

2STACK(5) ≥ 1080

= atoms in universe

log*(n) = # of  times you have to apply the log 
function to n to make it ≤ 1

And the inverse of  2STACK: log*

log*(2) = 1

log*(4) = 2

log*(16) = 3

log*(65536) = 4

log*(atoms) = 5



So an algorithm that can be shown to 
run in O(n log*n) Time is Linear Time 
for all practical purposes!!
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A(4,2) > # of  particles in universe
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Ackermann’s Function

A(4,2) > # of  particles in universe

A(5,2) can’t be written out as 
decimal in this universe

A(0, n) = n + 1 for n ≥ 0 

A(m, 0) = A(m - 1, 1) for m ≥ 1

A(m, n) = A(m - 1, A(m, n - 1)) for m, n ≥ 1
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Ackermann’s Function

Define: A’(k) = A(k,k) 

Inverse Ackerman α(n) is the inverse of  A’

Practically speaking: n × α(n) ≤ 4n

A(0, n) = n + 1 for n ≥ 0 

A(m, 0) = A(m - 1, 1) for m ≥ 1

A(m, n) = A(m - 1, A(m, n - 1)) for m, n ≥ 1



The inverse Ackermann function – in 
fact, Θ(n α(n)) arises in the seminal 
paper of:

D. D. Sleator and R. E. Tarjan. A data 
structure for dynamic trees. Journal of  
Computer and System Sciences, 26(3):
362-391, 1983.



Here’s What 
You Need to 

Know…

• How is “time” measured

• Definitions of:

• O, Ω, Θ
• linear, quadratic time, etc

• log*(n)

• Ackerman Function


