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Great Theoretical Ideas 

in Computer Science



This is The Big Oh!
Lecture 21, November 4, 2008



Counting

The Power of  One



Algebra

   The Power of  X



Asymptotics
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How to add 2 n-bit numbers
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“Grade school addition”

How to add 2 n-bit numbers



+
T(n) = amount of  time 

grade school 
addition uses to add 

two n-bit numbers

* * * * * * * * * *
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* * * * * * * * * * *

Time complexity of  
grade school addition
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T(n) = amount of  time 

grade school 
addition uses to add 

two n-bit numbers

* * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * *

* * * * * * * * * * *

Time complexity of  
grade school addition

What do we mean by “time”?



Our Goal

We want to define “time” in a way 
that transcends implementation 

details and allows us to make 
assertions about grade school 
addition in a very general yet 

useful way.



A given algorithm will take different 
amounts of  time on the same inputs 
depending on such factors as:

–  Processor speed
–  Instruction set
–  Disk speed
–  Brand of  compiler

Roadblock ???



On any reasonable computer, adding 3 
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bits and writing down the two bit answer 
can be done in constant time

Pick any particular computer M and define c 
to be the time it takes to perform          on 
that computer. 

Total time to add two n-bit numbers 
using grade school addition: 

cn   [i.e., c time for each of  n columns]
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On another computer M’, the time 
to perform        may be c’.

Total time to add two n-bit numbers 
using grade school addition: 

c’n    [c’ time for each of  n columns]
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Machine M
: c

n

Machine M’: c’n



The fact that we get a line is invariant 
under changes of  implementations. 
Different machines result in different 
slopes, but the time taken grows 
linearly as input size increases. 

# of  bits in the numbers
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Machine M
: c

n

Machine M’: c’n



Thus we arrive at an 
implementation-independent 

insight: 

Grade School Addition is a linear time 
algorithm



Thus we arrive at an 
implementation-independent 

insight: 

Grade School Addition is a linear time 
algorithm

This process of  abstracting away details 
and determining the rate of  resource 
usage in terms of  the problem size n is 
one of  the fundamental ideas in 
computer science.



Time vs Input Size

For any algorithm, define 
   Input Size = # of  bits to specify its inputs.
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Time vs Input Size

For any algorithm, define 
   Input Size = # of  bits to specify its inputs.

Define 
  TIMEn = the worst-case amount of  
 time used by the algorithm
 on inputs of  size n

We often ask: What is the growth rate of 
Timen ?
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  * * * * * * * *

  * * * * * * * * * * * * * * * *

n2

How to multiply 2 n-bit numbers.

The total time is bounded by 
cn2 (abstracting away the 
implementation details).
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Grade School Addition: Linear time
Grade School Multiplication: Quadratic time

No matter how dramatic the difference in the 
constants, the quadratic curve will 

eventually dominate the linear curve



How much time does it take to 
square the number n using 

grade school multiplication?



Grade School Multiplication:
Quadratic time

# of  bits in numbers
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c(log n)2 time to square the number n



Grade School Multiplication:
Quadratic time

# of  bits in numbers

t
i

m
e

Input size is measured in bits, 
unless we say otherwise.

c(log n)2 time to square the number n
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How much time does it take?

Nursery School Addition 
  Input: Two n-bit numbers, a and b
  Output: a + b

Start at a and increment (by 1) b times

T(n) = ?

If  b = 000…0000, then NSA takes almost no time

If  b = 1111…11111, then NSA takes cn2n time



Worst Case Time

Worst Case Time T(n) for algorithm A:

T(n) = Max[all permissible inputs X of  size n] 
(Running time of  algorithm A on input X).



What is T(n)?

Kindergarten Multiplication 
  Input: Two n-bit numbers, a and b
  Output: a * b
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What is T(n)?

Kindergarten Multiplication 
  Input: Two n-bit numbers, a and b
  Output: a * b

Start with a and add a, b-1 times

Remember, we always pick the WORST 
CASE input for the input size n. 

Thus, T(n) = cn2n



Thus, Nursery School adding and 
Kindergarten multiplication are 
exponential time. 

They scale HORRIBLY as input size 
grows.

Grade school methods scale 
polynomially: just linear and quadratic. 
Thus, we can add and multiply fairly 
large numbers.



If  T(n) is not polynomial, the algorithm 
is not efficient: the run time scales too 
poorly with the input size.



If  T(n) is not polynomial, the algorithm 
is not efficient: the run time scales too 
poorly with the input size.

This will be the yardstick with which 
we will measure “efficiency”.



Multiplication is efficient, what about 
“reverse multiplication”?



Multiplication is efficient, what about 
“reverse multiplication”?

Let’s define FACTORING(N) to be any 
method to produce a non-trivial factor of 
N, or to assert that N is prime.
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Factoring The Number N 
By Trial Division

Trial division up to √N

for k = 2 to √ N do
 if  k | N  then
 return “N  has a non-trivial factor k”
return “N  is prime”

c √N (logN)2 time if  division is c (logN)2 time

Is this efficient?

No! The input length n = log N. Hence 
we’re using c 2n/2 n2 time.



Can we do better?



Can we do better?

We know of  methods for FACTORING 
that are sub-exponential (about 2n1/3 time) 
but nothing efficient. 



Notation to Discuss Growth Rates

For any monotonic function f  from the 
positive integers to the positive integers, 
we say 

“f  = O(n)” or “f  is O(n)”



Notation to Discuss Growth Rates

For any monotonic function f  from the 
positive integers to the positive integers, 
we say 

“f  = O(n)” or “f  is O(n)”

If  some constant times n eventually 
dominates f



Notation to Discuss Growth Rates

For any monotonic function f  from the 
positive integers to the positive integers, 
we say 

“f  = O(n)” or “f  is O(n)”

If  some constant times n eventually 
dominates f

[Formally: there exists a constant c such 
that for all sufficiently large n:  f(n) ≤ cn ]



# of  bits in numbers

t
i

m
e

f  = O(n) means that there is a line 
that can be drawn that stays above 

f  from some point on



For any monotonic function f  from the 
positive integers to the positive integers, 
we say 

“f  = Ω(n)” or “f  is Ω(n)”

Other Useful Notation: Ω



For any monotonic function f  from the 
positive integers to the positive integers, 
we say 

“f  = Ω(n)” or “f  is Ω(n)”

If  f  eventually dominates some constant 
times n

Other Useful Notation: Ω



For any monotonic function f  from the 
positive integers to the positive integers, 
we say 

“f  = Ω(n)” or “f  is Ω(n)”

If  f  eventually dominates some constant 
times n

[Formally: there exists a constant c such 
that for all sufficiently large n:  f(n) ≥ cn ]

Other Useful Notation: Ω



# of  bits in numbers

t
i

m
e

f  = Ω(n) means that there is a line 
that can be drawn that stays below 

f  from some point on



Yet More Useful Notation: Θ
For any monotonic function f  from the 
positive integers to the positive integers, 
we say 

“f  = Θ(n)” or “f  is Θ(n)”



Yet More Useful Notation: Θ
For any monotonic function f  from the 
positive integers to the positive integers, 
we say 

“f  = Θ(n)” or “f  is Θ(n)”

if: f  = O(n)   and   f  = Ω(n)



# of  bits in numbers
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f  = Θ(n) means that f  can be 
sandwiched between two lines

from some point on.
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Notation to Discuss Growth Rates

For any two monotonic functions f  and g 
from the positive integers to the positive 
integers, we say

“f  = O(g)” or “f  is O(g)”

If  some constant times g eventually 
dominates f

[Formally: there exists a constant c such 
that for all sufficiently large n:  f(n) ≤ c g(n) ]
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f  = O(g) means that there is some 
constant c such that c g(n) stays 
above f(n) from some point on.

f
g

1.5g
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Yet More Useful Notation: Θ
For any two monotonic functions f  and g 
from the positive integers to the positive 
integers, we say

“f  = Θ(g)” or “f  is Θ(g)”

If: f  = O(g)   and   f  = Ω(g)
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• n = O(n2) ?

Take c = 1 
For all n ≥ 1, it holds that n ≤ cn2

Yes!
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• n = O(n2) ?

• n = O(√n) ?

Suppose it were true that n ≤ c √n 
for some constant c and large enough n

Cancelling, we would get √n ≤ c.
Which is false for n > c2 

Yes!

No
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• 3n2 + 4n + 4 = O(n2) ?
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• n2 = Ω(n log n) ?
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Yes!
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• f  = O(g) and g = O(h)
  then f  = O(h) ?

• f  = O(g)
  then g = Ω(f)

Yes!

f(n) ≤ c g(n)  for all n ≥ n0.
and g(n) ≤ c’ h(n)  for all n ≥ n0’.

So f(n) ≤ (cc’) h(n) for all n ≥ max(n0, n0’)

Yes!
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Names For Some Growth Rates

Linear Time:  T(n) = O(n)
Quadratic Time:  T(n) = O(n2)
Cubic Time:  T(n) = O(n3)

for some constant k, T(n) = O(nk).
 Example: T(n) = 13n5  

Polynomial Time:



Large Growth Rates
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Large Growth Rates

Exponential Time:
for some constant k, T(n) = O(kn)
 Example: T(n) = n2n = O(3n)
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Polylogarithmic Time: 
for some constant k, T(n) = O(logk(n))

Note: These kind of  algorithms can’t 
possibly read all of  their inputs.



Small Growth Rates

Logarithmic Time: T(n) = O(logn)
Example: T(n) = 15log2(n)

Polylogarithmic Time: 
for some constant k, T(n) = O(logk(n))

Note: These kind of  algorithms can’t 
possibly read all of  their inputs.

A very common example of  logarithmic 
time is looking up a word in a sorted 
dictionary (binary search)
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Some Big Ones

T(n) = 22
kn

T(n) = 22
2kn

Doubly Exponential Time means 
that for some constant k

Triply Exponential
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2STACK(0) = 1
2STACK(n) = 22STACK(n-1)

2STACK(1) = 2

2STACK(2) = 4

2STACK(3) = 16

2STACK(4) = 65536

2STACK(5) ≥ 1080

= atoms in universe

log*(n) = # of  times you have to apply the log 
function to n to make it ≤ 1

And the inverse of  2STACK: log*

log*(2) = 1

log*(4) = 2

log*(16) = 3

log*(65536) = 4

log*(atoms) = 5



So an algorithm that can be shown to 
run in O(n log*n) Time is Linear Time 
for all practical purposes!!
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A(4,2) > # of  particles in universe
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Ackermann’s Function

A(4,2) > # of  particles in universe

A(5,2) can’t be written out as 
decimal in this universe

A(0, n) = n + 1 for n ≥ 0 

A(m, 0) = A(m - 1, 1) for m ≥ 1

A(m, n) = A(m - 1, A(m, n - 1)) for m, n ≥ 1
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Ackermann’s Function

Define: A’(k) = A(k,k) 

Inverse Ackerman α(n) is the inverse of  A’

Practically speaking: n × α(n) ≤ 4n

A(0, n) = n + 1 for n ≥ 0 

A(m, 0) = A(m - 1, 1) for m ≥ 1

A(m, n) = A(m - 1, A(m, n - 1)) for m, n ≥ 1



The inverse Ackermann function – in 
fact, Θ(n α(n)) arises in the seminal 
paper of:

D. D. Sleator and R. E. Tarjan. A data 
structure for dynamic trees. Journal of  
Computer and System Sciences, 26(3):
362-391, 1983.



Here’s What 
You Need to 

Know…

• How is “time” measured

• Definitions of:

• O, Ω, Θ
• linear, quadratic time, etc

• log*(n)

• Ackerman Function


