
15-251
Great Theoretical Ideas

in Computer Science

Deterministic
Finite Automata

Lecture 20 (October 30, 2008)

Let me show you a
machine so simple

that you can
understand it in less

than two minutes

0
0,1

00

1

1

1

0
0,1

00

1

1

1

0111

0
0,1

00

1

1

1

0111

0
0,1

00

1

1

1

111

0
0,1

00

1

1

111

0
0,1

00

1

1

1

1

0
0,1

00

1

1

1

0
0,1

00

1

1

1

The machine accepts a string if the
process ends in a double circle

0
0,1

00

1

1

1

The machine accepts a string if the
process ends in a double circle

0
0,1

00

1

1

1

Anatomy of a Deterministic Finite
Automaton

0
0,1

00

1

1

1

Anatomy of a Deterministic Finite
Automaton

states

states

q0

q1

q2

q3

0
0,1

00

1

1

1

Anatomy of a Deterministic Finite
Automaton

q0

q1

q2

q3start state (q0)

0
0,1

00

1

1

1

Anatomy of a Deterministic Finite
Automaton

q0

q1

q2

q3start state (q0)

accept states (F)

Anatomy of a Deterministic Finite
Automaton

0
0,1

00

1

1

1

q0

q1

q2

q3

Anatomy of a Deterministic Finite
Automaton

0
0,1

00

1

1

1

q0

q1

q2

q3

Anatomy of a Deterministic Finite
Automaton

0
0,1

00

1

1

1

q0

q1

q2

q3

The alphabet of a finite automaton is the set
where the symbols come from:

Anatomy of a Deterministic Finite
Automaton

0
0,1

00

1

1

1

q0

q1

q2

q3

The alphabet of a finite automaton is the set
where the symbols come from: {0,1}

Anatomy of a Deterministic Finite
Automaton

0
0,1

00

1

1

1

q0

q1

q2

q3

The alphabet of a finite automaton is the set
where the symbols come from:

The language of a finite automaton is the set
of strings that it accepts

{0,1}

0,1q0

L(M) =

The Language of Machine M

0,1q0

L(M) = All strings of 0s and 1s

The Language of Machine M

0,1q0

L(M) =

The Language of Machine M

0,1q0

L(M) = ∅

The Language of Machine M

q0 q1

0 0

1

1

L(M) =

q0 q1

0 0

1

1

L(M) = { w | w has an even number of 1s}

Notation

An alphabet Σ is a finite set (e.g., Σ = {0,1})

Notation

An alphabet Σ is a finite set (e.g., Σ = {0,1})

A string over Σ is a finite-length sequence of
elements of Σ. The set of all strings over Σ is
denoted by Σ*.

Notation

An alphabet Σ is a finite set (e.g., Σ = {0,1})

A string over Σ is a finite-length sequence of
elements of Σ. The set of all strings over Σ is
denoted by Σ*.

For x a string, |x| is

Notation

An alphabet Σ is a finite set (e.g., Σ = {0,1})

A string over Σ is a finite-length sequence of
elements of Σ. The set of all strings over Σ is
denoted by Σ*.

For x a string, |x| is the length of x

Notation

An alphabet Σ is a finite set (e.g., Σ = {0,1})

A string over Σ is a finite-length sequence of
elements of Σ. The set of all strings over Σ is
denoted by Σ*.

For x a string, |x| is the length of x

The unique string of length 0 will be denoted
by ε and will be called the empty or null string

Notation

An alphabet Σ is a finite set (e.g., Σ = {0,1})

A string over Σ is a finite-length sequence of
elements of Σ. The set of all strings over Σ is
denoted by Σ*.

For x a string, |x| is the length of x

The unique string of length 0 will be denoted
by ε and will be called the empty or null string

Notation

A language over Σ is a set of strings over Σ

A finite automaton is a 5-tuple M = (Q, Σ, δ, q0, F)

Q is the set of states

A finite automaton is a 5-tuple M = (Q, Σ, δ, q0, F)

Q is the set of states

Σ is the alphabet

A finite automaton is a 5-tuple M = (Q, Σ, δ, q0, F)

Q is the set of states

Σ is the alphabet

δ : Q × Σ → Q is the transition function

A finite automaton is a 5-tuple M = (Q, Σ, δ, q0, F)

Q is the set of states

Σ is the alphabet

δ : Q × Σ → Q is the transition function

q0 ∈ Q is the start state

A finite automaton is a 5-tuple M = (Q, Σ, δ, q0, F)

Q is the set of states

Σ is the alphabet

δ : Q × Σ → Q is the transition function

q0 ∈ Q is the start state

F ⊆ Q is the set of accept states

A finite automaton is a 5-tuple M = (Q, Σ, δ, q0, F)

Q is the set of states

Σ is the alphabet

δ : Q × Σ → Q is the transition function

q0 ∈ Q is the start state

F ⊆ Q is the set of accept states

A finite automaton is a 5-tuple M = (Q, Σ, δ, q0, F)

L(M) = the language of machine M
 = set of all strings machine M accepts

q2

0
0,1

00

1

1

1

q0

q1

q3

M

M = (Q, Σ, δ, q0, F)
where

q2

0
0,1

00

1

1

1

q0

q1

q3

M

Q = {q0, q1, q2, q3}M = (Q, Σ, δ, q0, F)
where

q2

0
0,1

00

1

1

1

q0

q1

q3

M

Q = {q0, q1, q2, q3}

Σ = {0,1}

M = (Q, Σ, δ, q0, F)
where

q2

0
0,1

00

1

1

1

q0

q1

q3

M

Q = {q0, q1, q2, q3}

Σ = {0,1}
q0 ∈ Q is start state

M = (Q, Σ, δ, q0, F)
where

q2

0
0,1

00

1

1

1

q0

q1

q3

M

Q = {q0, q1, q2, q3}

Σ = {0,1}
q0 ∈ Q is start state

F = {q1, q2} ⊆ Q accept states

M = (Q, Σ, δ, q0, F)
where

q2

0
0,1

00

1

1

1

q0

q1

q3

M

Q = {q0, q1, q2, q3}

Σ = {0,1}

δ : Q × Σ → Q transition function

q0 ∈ Q is start state

F = {q1, q2} ⊆ Q accept states

M = (Q, Σ, δ, q0, F)
where

δ 0 1
q0 q0 q1

q1 q2 q2

q2 q3 q2

q3 q0 q2

q2

0
0,1

00

1

1

1

q0

q1

q3

M

Input String Result

aba

aabb

aabba
ε

b

b ab
a

a

a
b

a

b

“ABA” The Automaton

Input String Result

aba

aabb

aabba
ε

b

b ab
a

a

a
b

a

b

Accept

“ABA” The Automaton

Input String Result

aba

aabb

aabba
ε

b

b ab
a

a

a
b

a

b

Accept
Reject

“ABA” The Automaton

Input String Result

aba

aabb

aabba
ε

b

b ab
a

a

a
b

a

b

Accept
Reject
Accept

“ABA” The Automaton

Input String Result

aba

aabb

aabba
ε

b

b ab
a

a

a
b

a

b

Accept
Reject
Accept
Accept

“ABA” The Automaton

What machine accepts this
language?

L = all strings in {a,b}* that
 contain at least one a

What machine accepts this
language?

L = all strings in {a,b}* that
 contain at least one a

b a,b

a

What machine accepts this
language?

L = strings with an odd number of b’s
and any number of a’s

What machine accepts this
language?

L = strings with an odd number of b’s
and any number of a’s

a a

b

b

What is the language accepted by
this machine?

a b

b

a

What is the language accepted by
this machine?

L = any string ending with a b

a b

b

a

What is the language accepted by
this machine?

b a,b

a

b

a

What is the language accepted by
this machine?

b a,b

a

b

a

L(M) = any string with at least two a’s

What machine accepts this
language?

L = any string with an a and a b

What machine accepts this
language?

L = any string with an a and a b
a

b

b

a

a

a,b

b

What machine accepts this
language?

L = strings with an even number of ab pairs

What machine accepts this
language?

L = strings with an even number of ab pairs
a

b

b

a

a

b

a

b

Build an automaton that accepts all and only
those strings that contain 001

q q00

1 0

1
q0 q001

0 0 1

0,1

Build an automaton that accepts all and only
those strings that contain 001

L = all strings containing ababb as a
consecutive substring

L = all strings containing ababb as a
consecutive substring

b

b

a b a

a

b b

a,b

aa

L = all strings containing ababb as a
consecutive substring

q qab

b

b

qa qaba

a b a

a

qabab
b qababb

b

a,b

aa

L = all strings containing ababb as a
consecutive substring

q qab

b

b

qa qaba

a b a

a

qabab
b qababb

b

a,b

aa

Invariant:
I am state s exactly when s is the longest suffix
of the input (so far) forming a prefix of ababb.

The “Grep” Problem

Input: Text T of length t, string S of length n

The “Grep” Problem

Input: Text T of length t, string S of length n

The “Grep” Problem

Problem: Does string S appear inside text T?

Input: Text T of length t, string S of length n

The “Grep” Problem

Problem: Does string S appear inside text T?

Naïve method:

Input: Text T of length t, string S of length n

The “Grep” Problem

Problem: Does string S appear inside text T?

a1, a2, a3, a4, a5, …, at

Naïve method:

Input: Text T of length t, string S of length n

The “Grep” Problem

Problem: Does string S appear inside text T?

a1, a2, a3, a4, a5, …, at

Naïve method:

Input: Text T of length t, string S of length n

The “Grep” Problem

Problem: Does string S appear inside text T?

a1, a2, a3, a4, a5, …, at

Naïve method:

Input: Text T of length t, string S of length n

The “Grep” Problem

Problem: Does string S appear inside text T?

a1, a2, a3, a4, a5, …, at

Naïve method:

Input: Text T of length t, string S of length n

The “Grep” Problem

Problem: Does string S appear inside text T?

a1, a2, a3, a4, a5, …, at

Naïve method:

Cost:

Input: Text T of length t, string S of length n

The “Grep” Problem

Problem: Does string S appear inside text T?

a1, a2, a3, a4, a5, …, at

Naïve method:

Cost: Roughly nt comparisons

Automata Solution

Automata Solution
Build a machine M that accepts any string
with S as a consecutive substring

Automata Solution
Build a machine M that accepts any string
with S as a consecutive substring

Feed the text to M

Automata Solution
Build a machine M that accepts any string
with S as a consecutive substring

Feed the text to M

Cost:

Automata Solution
Build a machine M that accepts any string
with S as a consecutive substring

Feed the text to M

Cost: t comparisons + time to build M

Automata Solution
Build a machine M that accepts any string
with S as a consecutive substring

Feed the text to M

Cost:

As luck would have it, the Knuth, Morris,
Pratt algorithm builds M quickly

t comparisons + time to build M

Grep

Coke Machines

Thermostats (fridge)

Elevators

Train Track Switches

Lexical Analyzers for Parsers

Real-life Uses of DFAs

A language is regular if it is
recognized by a deterministic

finite automaton

A language is regular if it is
recognized by a deterministic

finite automaton

L = { w | w contains 001} is regular

A language is regular if it is
recognized by a deterministic

finite automaton

L = { w | w contains 001} is regular

L = { w | w has an even number of 1s} is regular

Union Theorem

Union Theorem
Given two languages, L1 and L2, define
the union of L1 and L2 as

L1 ∪ L2 = { w | w ∈ L1 or w ∈ L2 }

Union Theorem
Given two languages, L1 and L2, define
the union of L1 and L2 as

L1 ∪ L2 = { w | w ∈ L1 or w ∈ L2 }

Theorem: The union of two regular
languages is also a regular language

Theorem: The union of two regular
languages is also a regular language

Theorem: The union of two regular
languages is also a regular language

Theorem: The union of two regular
languages is also a regular language

Proof Sketch: Let
M1 = (Q1, Σ, δ1, q0, F1) be finite automaton for L1

 and
M2 = (Q2, Σ, δ2, q0, F2) be finite automaton for L2

1

2

Theorem: The union of two regular
languages is also a regular language

Proof Sketch: Let
M1 = (Q1, Σ, δ1, q0, F1) be finite automaton for L1

 and
M2 = (Q2, Σ, δ2, q0, F2) be finite automaton for L2

We want to construct a finite automaton
M = (Q, Σ, δ, q0, F) that recognizes L = L1 ∪ L2

1

2

Idea: Run both M1 and M2 at the same time!

Idea: Run both M1 and M2 at the same time!

Q = pairs of states, one from M1 and one from M2

= { (q1, q2) | q1 ∈ Q1 and q2 ∈ Q2 }

= Q1 × Q2

Theorem: The union of two regular
languages is also a regular language

q0 q1

0
0

1

1

p0 p1

1
1

0

0

q0,p0 q1,p0

1

1

q0,p1 q1,p1

1

1

00
00

Automaton for Union

q0,p0 q1,p0

1

1

q0,p1 q1,p1

1

1

00
00

Automaton for Intersection

Theorem: The union of two regular
languages is also a regular language

Theorem: The union of two regular
languages is also a regular language

Corollary: Any finite language is
regular

The Regular Operations

The Regular Operations

Union: A ∪ B = { w | w ∈ A or w ∈ B }

The Regular Operations

Union: A ∪ B = { w | w ∈ A or w ∈ B }

Intersection: A ∩ B = { w | w ∈ A and w ∈ B }

The Regular Operations

Union: A ∪ B = { w | w ∈ A or w ∈ B }

Intersection: A ∩ B = { w | w ∈ A and w ∈ B }

Reverse: AR = { w1 …wk | wk …w1 ∈ A }

The Regular Operations

Union: A ∪ B = { w | w ∈ A or w ∈ B }

Intersection: A ∩ B = { w | w ∈ A and w ∈ B }

Negation: ¬A = { w | w ∉ A }

Reverse: AR = { w1 …wk | wk …w1 ∈ A }

The Regular Operations

Union: A ∪ B = { w | w ∈ A or w ∈ B }

Intersection: A ∩ B = { w | w ∈ A and w ∈ B }

Negation: ¬A = { w | w ∉ A }

Reverse: AR = { w1 …wk | wk …w1 ∈ A }

Concatenation: A ⋅ B = { vw | v ∈ A and w ∈ B }

The Regular Operations

Union: A ∪ B = { w | w ∈ A or w ∈ B }

Intersection: A ∩ B = { w | w ∈ A and w ∈ B }

Negation: ¬A = { w | w ∉ A }

Reverse: AR = { w1 …wk | wk …w1 ∈ A }

Concatenation: A ⋅ B = { vw | v ∈ A and w ∈ B }

Star: A* = { w1 …wk | k ≥ 0 and each wi ∈ A }

Regular Languages Are
Closed Under The

Regular Operations

We have seen part of the proof for
Union. The proof for intersection is very
similar. The proof for negation is easy.

Are all
languages
regular?

Consider the language L = { anbn | n > 0 }

i.e., a bunch of a’s followed by an
equal number of b’s

Consider the language L = { anbn | n > 0 }

i.e., a bunch of a’s followed by an
equal number of b’s

Consider the language L = { anbn | n > 0 }

No finite automaton accepts this language

i.e., a bunch of a’s followed by an
equal number of b’s

Consider the language L = { anbn | n > 0 }

No finite automaton accepts this language

Can you prove this?

anbn is not regular.
No machine has
enough states to
keep track of the
number of a’s it
might encounter

That is a fairly weak
argument

Consider the following
example…

L = strings where the # of occurrences of
the pattern ab is equal to the number of
occurrences of the pattern ba

L = strings where the # of occurrences of
the pattern ab is equal to the number of
occurrences of the pattern ba

Can’t be regular. No machine has
enough states to keep track of the
number of occurrences of ab

b

b a

b

a

a

a

ba

b

M accepts only the strings with an
equal number of ab’s and ba’s!

b

b a

b

a

a

a

ba

b

Let me show you a
professional strength
proof that anbn is not

regular…

Pigeonhole principle:

Pigeonhole principle:

Given n boxes and m > n
objects, at least one box
must contain more than
one object

Pigeonhole principle:

Given n boxes and m > n
objects, at least one box
must contain more than
one object

Letterbox principle:
If the average number of
letters per box is x, then
some box will have at
least x letters (similarly,
some box has at most x)

Theorem: L= {anbn | n > 0 } is not regular

Theorem: L= {anbn | n > 0 } is not regular

Proof (by contradiction):

Theorem: L= {anbn | n > 0 } is not regular

Proof (by contradiction):

Assume that L is regular

Theorem: L= {anbn | n > 0 } is not regular

Proof (by contradiction):

Assume that L is regular

Then there exists a machine M with k states
that accepts L

Theorem: L= {anbn | n > 0 } is not regular

Proof (by contradiction):

Assume that L is regular

Then there exists a machine M with k states
that accepts L

For each 0 ≤ i ≤ k, let Si be the state M is in
after reading ai

Theorem: L= {anbn | n > 0 } is not regular

Proof (by contradiction):

Assume that L is regular

Then there exists a machine M with k states
that accepts L

For each 0 ≤ i ≤ k, let Si be the state M is in
after reading ai

∃i,j ≤ k such that Si = Sj, but i ≠ j

Theorem: L= {anbn | n > 0 } is not regular

Proof (by contradiction):

Assume that L is regular

Then there exists a machine M with k states
that accepts L

For each 0 ≤ i ≤ k, let Si be the state M is in
after reading ai

∃i,j ≤ k such that Si = Sj, but i ≠ j

M will do the same thing on aibi and ajbi

Theorem: L= {anbn | n > 0 } is not regular

Proof (by contradiction):

Assume that L is regular

Then there exists a machine M with k states
that accepts L

For each 0 ≤ i ≤ k, let Si be the state M is in
after reading ai

∃i,j ≤ k such that Si = Sj, but i ≠ j

M will do the same thing on aibi and ajbi

But a valid M must reject ajbi and accept aibi

Advertisement

You can learn much more about these
creatures in the FLAC course.

Formal Languages, Automata, and
Computation

• There is a unique smallest
automaton for any regular language

• It can be found by a fast algorithm.

Deterministic Finite
Automata
• Definition
• Testing if they accept a string
• Building automata

Regular Languages
• Definition
• Closed Under Union,
 Intersection, Negation
• Using Pigeonhole Principle to
 show language not regular

Here’s What
You Need to

Know…

