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Let me show you a
machine so simple
that you can
understanditin less
than two minutes
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The alphabet of a finite automaton is the set
where the symbols come from: {0,1}

The language of a finite automaton is the set
of strings that it accepts
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L(M) = { w | w has an even humber of 1s}
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Notation

An alphabet 2 is a finite set (e.g., 2 = {0,1})

A string over 2 is a finite-length sequence of

elements of 2. The set of all strings over 2 is
denoted by >*.

For x a string, |x| is the length of x

The unique string of length 0 will be denoted
by € and will be called the empty or null string

A language over 2 is a set of strings over 2
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A finite automaton is a 5-tuple M = (Q, 2, 9, q,, F)
Q is the set of states
2 is the alphabet
0:Qx2— Q is the transition function
do, € Qis the start state
F C Qis the set of accept states

L(M) = the language of machine M
= set of all strings machine M accepts






M = (Qs Z, 6! qO! F)
where



M=(Q,Z, 09, q F) Q ={qy, 94, Ay, 93}
where



M = (Qs Z, 6! qO! F)
where

Q = {qO! q1, q2! q3}
T ={0,1}



M = (Qs Z, 6! qO! F)
where
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M - (Q, Zy 6! qu F)
where

Q = {CIoa d4; Ao, q3}
2 ={0,1}
qo € Q is start state

F ={q,, q,} € Q accept states



M=(Q 2,5 0q,F)  Q ={qay a5}
h
where 5 = {0,1)
qo € Q is start state

F ={q,, q,} € Q accept states

d:Q x 2 — Q transition function
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“ABA” The Automaton

Input String Result
aba Accept
aabb Reject
aabba Accept
€ Accept
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L = any string ending witha b
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What is the language accepted by
this machine?
b b a,b

Nn.oa LA
~-O0—0—0

L(M) = any string with at least two a’s
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What machine accepts this
language?

L = strings with an even number of ab pairs



What machine accepts this
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L = strings with an even number of ab pairs
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those strings that contain 001



Build an automaton that accepts all and only
those strings that contain 001
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L = all strings containing ababb as a
consecutive substring



L = all strings containing ababb as a
consecutive substring
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L = all strings containing ababb as a
consecutive substring

b a
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L = all strings containing ababb as a
consecutive substring

b a a,b

a b
~@Q>@* -+

Invariant:
| am state s exactly when s is the longest suffix
of the input (so far) forming a prefix of ababb.
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The “Grep” Problem

Input: Text T of length t, string S of length n
Problem: Does string S appear inside text T?

Naive method:

Cost: Roughly nt comparisons
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Automata Solution

Build a machine M that accepts any string
with S as a consecutive substring

Feed the textto M

Cost: t comparisons + time to build M

As luck would have it, the Knuth, Morris,
Pratt algorithm builds M quickly



Real-life Uses of DFASs

Grep

Coke Machines
Thermostats (fridge)
Elevators

Train Track Switches

Lexical Analyzers for Parsers



A language is regular if it is
recognized by a deterministic
finite automaton
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A language is regular if it is
recognized by a deterministic
finite automaton

L={w|wcontains 001} is regular

L ={w| whas an even number of 1s} is regular
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Theorem: The union of two regular
languages is also a regular language

Proof Sketch: Let
M, =(Q,, Z,3,, q), F,) be finite automaton for L,

and
2
M, =(Q,, , d,, q,, F,) be finite automaton for L,

We want to construct a finite automaton
M=(Q, 2,9, q,, F) that recognizesL=L, UL,



Idea: Run both M, and M,, at the same time!



Idea: Run both M, and M,, at the same time!

Q = pairs of states, one from M, and one from M,

={(@,9,) |9, EQ,and q, €EQ, }
=Q xQ,



Theorem: The union of two regular
languages is also a regular language
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Automaton for Union
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Automaton for Intersection
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Theorem: The union of two regular
languages is also a regular language



Theorem: The union of two regular
languages is also a regular language

Corollary: Any finite language is
regular
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The Regular Operations

UniontAUB={w|wceAorwecB}
Intersectiont ANB={w|weAandwe&B}
Reverse: AR={w,..w, |w,..w,EA}
Negation: —-A={w|wW&ZA}

Concatenationt: A-B={vw|veEAandwe&cB}

Star: A*={w,..w, | k>0and eachw,€ A}



Regular Languages Are
Closed Under The
Regular Operations

We have seen part of the proof for
Union. The proof for intersection is very
similar. The proof for negation is easy.



Are all
languages
regular?
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Consider the languageL={a"b"|n>0}

i.e., a bunch of a’s followed by an
equal number of b’s

No finite automaton accepts this language

Can you prove this?



a"b" is not regular.
No machine has
enough states to
keep track of the
number of a’s it
might encounter



That is a fairly weak
argument

Consider the following
example...



L = strings where the # of occurrences of
the pattern ab is equal to the number of
occurrences of the pattern ba



L = strings where the # of occurrences of
the pattern ab is equal to the number of
occurrences of the pattern ba

Can’t be regular. No machine has
enough states to keep track of the

number of occurrences of ab







M accepts only the strings with an
equal number of ab’s and ba’s!



Let me show you a
professional strength
proof that a"b" is not
regular...



Pigeonhole principle:
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Pigeonhole principle:

Given n boxes and m>n
objects, at least one box
must contain more than
one object

r R TITY CTWY Letterbox principle:
| h.ﬁ imﬂ ]ﬂﬂ“p If the average number of

letters per box is x, then

‘//rl 0 T some box will have at
T least x letters (similarly,

ar \‘U ?—‘mwlj* some box has at most x)
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Theorem: L={a"b" | n>0}is not regular
Proof (by contradiction):
Assume that L is regular

Then there exists a machine M with k states
that accepts L

Foreach O <i=<Kk,letS, be the state Mis in
after reading a'

Jdi,j <k suchthatS;=S§;, buti=)
M will do the same thing on a'b' and alb!

But a valid M must reject alb' and accept a'b'



Advertisement

You can learn much more about these
creatures in the FLAC course.

Formal Languages, Automata, and
Computation

e There is a uniqgue smallest
automaton for any regular language

* |t can be found by a fast algorithm.



Deterministic Finite

Automata
. * Definition
\ ° Testing if they accept a string

‘ o Buildi ng automata

Regular Languages

* Definition

e Closed Under Union,

Here’s What Intersection, Negation

You Needto . Using Pigeonhole Principle to
Know... show language not regular




