15-251
Great Theoretical Ideas in Computer Science
Deterministic Finite Automata

Lecture 20 (October 30, 2008)
Let me show you a machine so simple that you can understand it in less than two minutes
The machine *accepts* a string if the process ends in a double circle.
The machine **accepts** a string if the process ends in a double circle.
Anatomy of a Deterministic Finite Automaton
Anatomy of a Deterministic Finite Automaton
Anatomy of a Deterministic Finite Automaton

Start state (q_0)
Anatomy of a Deterministic Finite Automaton

- **Start state** (q_0)
- **Accept states** (F)

Transition labels:
- q_0 to q_1: 0
- q_0 to q_0: 0
- q_0 to q_3: 1
- q_1 to q_1: 1
- q_1 to q_2: 0, 1
- q_2 to q_1: 0
- q_2 to q_2: 0
- q_3 to q_3: 1
- q_3 to q_1: 1
Anatomy of a Deterministic Finite Automaton
Anatomy of a Deterministic Finite Automaton
Anatomy of a Deterministic Finite Automaton

The alphabet of a finite automaton is the set where the symbols come from:
The alphabet of a finite automaton is the set where the symbols come from: \(\{0,1\} \)
The alphabet of a finite automaton is the set where the symbols come from: \{0, 1\}

The language of a finite automaton is the set of strings that it accepts
The Language of Machine M

$L(M) =$

$0,1$

q_0
$L(M) = \text{All strings of 0s and 1s}$

The Language of Machine M
The Language of Machine M

$L(M) =$
The Language of Machine M

$L(M) = \emptyset$
$L(M) =$
L(M) = \{ w \mid w \text{ has an even number of 1s} \}
Notation
Notation

An **alphabet** Σ is a finite set (e.g., $\Sigma = \{0, 1\}$)
Notation

An alphabet Σ is a finite set (e.g., $\Sigma = \{0,1\}$)

A string over Σ is a finite-length sequence of elements of Σ. The set of all strings over Σ is denoted by Σ^*.
An alphabet Σ is a finite set (e.g., $\Sigma = \{0,1\}$)

A string over Σ is a finite-length sequence of elements of Σ. The set of all strings over Σ is denoted by Σ^*.

For x a string, $|x|$ is
An alphabet \(\Sigma \) is a finite set (e.g., \(\Sigma = \{0,1\} \))

A string over \(\Sigma \) is a finite-length sequence of elements of \(\Sigma \). The set of all strings over \(\Sigma \) is denoted by \(\Sigma^* \).

For \(x \) a string, \(|x| \) is the length of \(x \)
An alphabet Σ is a finite set (e.g., $\Sigma = \{0,1\}$)

A string over Σ is a finite-length sequence of elements of Σ. The set of all strings over Σ is denoted by Σ^*.

For x a string, $|x|$ is the length of x.

The unique string of length 0 will be denoted by ε and will be called the empty or null string.
Notation

An **alphabet** Σ is a finite set (e.g., $\Sigma = \{0,1\}$)

A string over Σ is a finite-length sequence of elements of Σ. The set of all strings over Σ is denoted by Σ^*.

For x a string, $|x|$ is the length of x

The unique string of length 0 will be denoted by ε and will be called the empty or null string

A **language** over Σ is a set of strings over Σ
A finite automaton is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$.
A finite automaton is a 5-tuple \(M = (Q, \Sigma, \delta, q_0, F) \)

\(Q \) is the set of states
A finite automaton is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$

- Q is the set of states
- Σ is the alphabet
A finite automaton is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$

Q is the set of states

Σ is the alphabet

$\delta : Q \times \Sigma \rightarrow Q$ is the transition function
A finite automaton is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$

- Q is the set of states
- Σ is the alphabet
- $\delta : Q \times \Sigma \rightarrow Q$ is the transition function
- $q_0 \in Q$ is the start state
A finite automaton is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$

- Q is the set of states
- Σ is the alphabet
- $\delta : Q \times \Sigma \rightarrow Q$ is the transition function
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of accept states
A finite automaton is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$

- Q is the set of states
- Σ is the alphabet
- $\delta : Q \times \Sigma \rightarrow Q$ is the transition function
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of accept states

$L(M) =$ the language of machine M

$= \text{set of all strings machine } M \text{ accepts}$
\[M = (Q, \Sigma, \delta, q_0, F) \]

where
$M = (Q, \Sigma, \delta, q_0, F)$

where $Q = \{q_0, q_1, q_2, q_3\}$
\[M = (Q, \Sigma, \delta, q_0, F) \]

where

\[Q = \{q_0, q_1, q_2, q_3\} \]

\[\Sigma = \{0,1\} \]
$M = (Q, \Sigma, \delta, q_0, F)$ where

- $Q = \{q_0, q_1, q_2, q_3\}$
- $\Sigma = \{0, 1\}$
- $q_0 \in Q$ is the start state
M = (Q, Σ, δ, q₀, F)

where

Q = \{q₀, q₁, q₂, q₃\}

Σ = \{0, 1\}

q₀ ∈ Q is start state

F = \{q₁, q₂\} ⊆ Q accept states
\[M = (Q, \Sigma, \delta, q_0, F) \]
where

\[Q = \{q_0, q_1, q_2, q_3\} \]

\[\Sigma = \{0,1\} \]

\[q_0 \in Q \text{ is start state} \]

\[F = \{q_1, q_2\} \subseteq Q \text{ accept states} \]

\[\delta : Q \times \Sigma \rightarrow Q \text{ transition function} \]
“ABA” The Automaton

<table>
<thead>
<tr>
<th>Input String</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>aba</td>
<td></td>
</tr>
<tr>
<td>aabb</td>
<td></td>
</tr>
<tr>
<td>aabba</td>
<td></td>
</tr>
<tr>
<td>ε</td>
<td></td>
</tr>
</tbody>
</table>
“ABA” The Automaton

<table>
<thead>
<tr>
<th>Input String</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>aba</td>
<td>Accept</td>
</tr>
<tr>
<td>aabb</td>
<td></td>
</tr>
<tr>
<td>aabba</td>
<td></td>
</tr>
<tr>
<td>ε</td>
<td></td>
</tr>
</tbody>
</table>
"ABA" The Automaton

<table>
<thead>
<tr>
<th>Input String</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>aba</td>
<td>Accept</td>
</tr>
<tr>
<td>aabb</td>
<td>Reject</td>
</tr>
<tr>
<td>aabba</td>
<td></td>
</tr>
<tr>
<td>ε</td>
<td></td>
</tr>
</tbody>
</table>
"ABA" The Automaton

<table>
<thead>
<tr>
<th>Input String</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>aba</td>
<td>Accept</td>
</tr>
<tr>
<td>aabb</td>
<td>Reject</td>
</tr>
<tr>
<td>aabba</td>
<td>Accept</td>
</tr>
<tr>
<td>ε</td>
<td></td>
</tr>
</tbody>
</table>
“ABA” The Automaton

<table>
<thead>
<tr>
<th>Input String</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>aba</td>
<td>Accept</td>
</tr>
<tr>
<td>aabb</td>
<td>Reject</td>
</tr>
<tr>
<td>aabba</td>
<td>Accept</td>
</tr>
<tr>
<td>ε</td>
<td>Accept</td>
</tr>
</tbody>
</table>
What machine accepts this language?

\[L = \text{all strings in } \{a, b\}^* \text{ that contain at least one } a \]
What machine accepts this language?

$L = \text{all strings in } \{a, b\}^* \text{ that contain at least one } a$
What machine accepts this language?

$L =$ strings with an odd number of b’s and any number of a’s
What machine accepts this language?

$L = \text{strings with an odd number of } b \text{'s and any number of } a \text{'s}$
What is the language accepted by this machine?
What is the language accepted by this machine?

$L = \text{any string ending with a} \ a \ b$
What is the language accepted by this machine?
What is the language accepted by this machine?

\[L(M) = \text{any string with at least two } a \text{'s} \]
What machine accepts this language?

$L = \text{any string with an } a \text{ and a } b$
What machine accepts this language?

$L = \text{any string with an } a \text{ and a } b$
What machine accepts this language?

\[L = \text{strings with an even number of } ab \text{ pairs} \]
What machine accepts this language?

$L =$ strings with an even number of ab pairs
Build an automaton that accepts all and only those strings that contain 001
Build an automaton that accepts all and only those strings that contain 001.
\[L = \text{all strings containing } ababb \text{ as a consecutive substring} \]
$L = \text{all strings containing } ababb \text{ as a consecutive substring}$
$L =$ all strings containing $ababb$ as a consecutive substring
$L =$ all strings containing $ababb$ as a consecutive substring

Invariant:
I am state s exactly when s is the longest suffix of the input (so far) forming a prefix of $ababb$.
The “Grep” Problem
The “Grep” Problem

Input: Text T of length t, string S of length n
The “Grep” Problem

Input: Text T of length t, string S of length n

Problem: Does string S appear inside text T?
The “Grep” Problem

Input: Text T of length t, string S of length n

Problem: Does string S appear inside text T?

Naïve method:
The “Grep” Problem

Input: Text T of length t, string S of length n

Problem: Does string S appear inside text T?

Naïve method:

$$a_1, a_2, a_3, a_4, a_5, \ldots, a_t$$
The “Grep” Problem

Input: Text T of length t, string S of length n

Problem: Does string S appear inside text T?

Naïve method:

$a_1, a_2, a_3, a_4, a_5, \ldots, a_t$
The “Grep” Problem

Input: Text T of length t, string S of length n

Problem: Does string S appear inside text T?

Naïve method:

$a_1, a_2, a_3, a_4; a_5, \ldots, a_t$
The “Grep” Problem

Input: Text T of length t, string S of length n

Problem: Does string S appear inside text T?

Naïve method:

$$a_1, a_2, a_3, a_4, a_5, ..., a_t$$
The “Grep” Problem

Input: Text T of length t, string S of length n

Problem: Does string S appear inside text T?

Naïve method:

\[a_1, a_2, a_3, a_4, a_5, \ldots, a_t \]

Cost:
The “Grep” Problem

Input: Text T of length t, string S of length n

Problem: Does string S appear inside text T?

Naïve method:

$$a_1, a_2, a_3, a_4, a_5, \ldots, a_t$$

Cost: Roughly nt comparisons
Automata Solution
Automata Solution

Build a machine M that accepts any string with S as a consecutive substring.
Automata Solution

Build a machine M that accepts any string with S as a consecutive substring

Feed the text to M
Automata Solution

Build a machine M that accepts any string with S as a consecutive substring

Feed the text to M

Cost:
Automata Solution

Build a machine M that accepts any string with S as a consecutive substring

Feed the text to M

Cost: t comparisons + time to build M
Automata Solution

Build a machine M that accepts any string with S as a consecutive substring

Feed the text to M

Cost: t comparisons + time to build M

As luck would have it, the Knuth, Morris, Pratt algorithm builds M quickly
Real-life Uses of DFAs

- Grep
- Coke Machines
- Thermostats (fridge)
- Elevators
- Train Track Switches
- Lexical Analyzers for Parsers
A language is regular if it is recognized by a deterministic finite automaton.
A language is **regular** if it is recognized by a deterministic finite automaton

\[L = \{ w \mid w \text{ contains 001} \} \text{ is regular} \]
A language is **regular** if it is recognized by a deterministic finite automaton

$L = \{ \, w \mid w \text{ contains 001} \} \text{ is regular}$

$L = \{ \, w \mid w \text{ has an even number of 1s} \} \text{ is regular}$
Union Theorem
Union Theorem

Given two languages, L_1 and L_2, define the union of L_1 and L_2 as

$$L_1 \cup L_2 = \{ w \mid w \in L_1 \text{ or } w \in L_2 \}$$
Union Theorem

Given two languages, L_1 and L_2, define the **union of L_1 and L_2** as

$$L_1 \cup L_2 = \{ w \mid w \in L_1 \text{ or } w \in L_2 \}$$

Theorem: The union of two regular languages is also a regular language
Theorem: The union of two regular languages is also a regular language
Theorem: The union of two regular languages is also a regular language
Theorem: The union of two regular languages is also a regular language.

Proof Sketch: Let $M_1 = (Q_1, \Sigma, \delta_1, q_0^1, F_1)$ be finite automaton for L_1 and $M_2 = (Q_2, \Sigma, \delta_2, q_0^2, F_2)$ be finite automaton for L_2.
Theorem: The union of two regular languages is also a regular language

Proof Sketch: Let

\[M_1 = (Q_1, \Sigma, \delta_1, q_0^1, F_1) \] be finite automaton for \(L_1 \)

and

\[M_2 = (Q_2, \Sigma, \delta_2, q_0^2, F_2) \] be finite automaton for \(L_2 \)

We want to construct a finite automaton

\[M = (Q, \Sigma, \delta, q_0, F) \] that recognizes \(L = L_1 \cup L_2 \)
Idea: Run both M_1 and M_2 at the same time!
Idea: Run both M_1 and M_2 at the same time!

$Q = \text{pairs of states, one from } M_1 \text{ and one from } M_2$

$= \{ (q_1, q_2) \mid q_1 \in Q_1 \text{ and } q_2 \in Q_2 \}$

$= Q_1 \times Q_2$
Theorem: The union of two regular languages is also a regular language.
Automaton for Union
Automaton for Intersection
Theorem: The union of two regular languages is also a regular language
Theorem: The union of two regular languages is also a regular language

Corollary: Any finite language is regular
The Regular Operations
The Regular Operations

Union: $A \cup B = \{ w \mid w \in A \text{ or } w \in B \}$
The Regular Operations

Union: \(A \cup B = \{ w \mid w \in A \text{ or } w \in B \} \)

Intersection: \(A \cap B = \{ w \mid w \in A \text{ and } w \in B \} \)
The Regular Operations

Union: $A \cup B = \{ w \mid w \in A \text{ or } w \in B \}$

Intersection: $A \cap B = \{ w \mid w \in A \text{ and } w \in B \}$

Reverse: $A^R = \{ w_1 \ldots w_k \mid w_k \ldots w_1 \in A \}$
The Regular Operations

Union: $A \cup B = \{ \ w \ | \ w \in A \ or \ w \in B \ \}$

Intersection: $A \cap B = \{ \ w \ | \ w \in A \ and \ w \in B \ \}$

Reverse: $A^R = \{ \ w_1 \ldots w_k \ | \ w_k \ldots w_1 \in A \ \}$

Negation: $\neg A = \{ \ w \ | \ w \notin A \ \}$
The Regular Operations

Union: \(A \cup B = \{ w \mid w \in A \text{ or } w \in B \} \)

Intersection: \(A \cap B = \{ w \mid w \in A \text{ and } w \in B \} \)

Negation: \(\neg A = \{ w \mid w \notin A \} \)

Reverse: \(A^R = \{ w_1 \ldots w_k \mid w_k \ldots w_1 \in A \} \)

Concatenation: \(A \cdot B = \{ vw \mid v \in A \text{ and } w \in B \} \)
The Regular Operations

Union: \(A \cup B = \{ w \mid w \in A \text{ or } w \in B \} \)

Intersection: \(A \cap B = \{ w \mid w \in A \text{ and } w \in B \} \)

Reverse: \(A^R = \{ w_1 \ldots w_k \mid w_k \ldots w_1 \in A \} \)

Negation: \(\neg A = \{ w \mid w \notin A \} \)

Concatenation: \(A \cdot B = \{ vw \mid v \in A \text{ and } w \in B \} \)

Star: \(A^* = \{ w_1 \ldots w_k \mid k \geq 0 \text{ and each } w_i \in A \} \)
Regular Languages Are Closed Under The Regular Operations

We have seen part of the proof for Union. The proof for intersection is very similar. The proof for negation is easy.
Are all languages regular?
Consider the language $L = \{ a^n b^n \mid n > 0 \}$
Consider the language \(L = \{ a^n b^n \mid n > 0 \} \)
i.e., a bunch of a’s followed by an equal number of b’s
Consider the language $L = \{ a^n b^n \mid n > 0 \}$
i.e., a bunch of a’s followed by an equal number of b’s

No finite automaton accepts this language
Consider the language \(L = \{ a^n b^n \mid n > 0 \} \)

i.e., a bunch of \(a \)'s followed by an equal number of \(b \)'s

No finite automaton accepts this language

Can you prove this?
$a^n b^n$ is not regular. No machine has enough states to keep track of the number of a’s it might encounter.
That is a fairly weak argument

Consider the following example...
L = strings where the # of occurrences of the pattern \textit{ab} is equal to the number of occurrences of the pattern \textit{ba}
\[L = \text{strings where the \# of occurrences of the pattern } ab \text{ is equal to the number of occurrences of the pattern } ba \]

Can’t be regular. No machine has enough states to keep track of the number of occurrences of \text{ab}
M accepts only the strings with an equal number of \textit{ab}'s and \textit{ba}'s!
Let me show you a professional strength proof that $a^n b^n$ is not regular...
Pigeonhole principle:
Pigeonhole principle:

Given n boxes and $m > n$ objects, at least one box must contain more than one object.
Pigeonhole principle:
Given n boxes and $m > n$ objects, at least one box must contain more than one object

Letterbox principle:
If the average number of letters per box is x, then some box will have at least x letters (similarly, some box has at most x)
Theorem: \(L = \{ a^n b^n \mid n > 0 \} \) is not regular
Theorem: \(L = \{a^n b^n \mid n > 0\} \) is not regular

Proof (by contradiction):
Theorem: \(L = \{ a^n b^n | n > 0 \} \) is not regular

Proof (by contradiction):

Assume that \(L \) is regular
Theorem: $L = \{ a^n b^n \mid n > 0 \}$ is not regular

Proof (by contradiction):
Assume that L is regular
Then there exists a machine M with k states that accepts L
Theorem: $L = \{a^n b^n \mid n > 0 \}$ is not regular

Proof (by contradiction):

Assume that L is regular

Then there exists a machine M with k states that accepts L

For each $0 \leq i \leq k$, let S_i be the state M is in after reading a^i
Theorem: \(L = \{a^n b^n \mid n > 0 \} \) is not regular

Proof (by contradiction):

Assume that \(L \) is regular

Then there exists a machine \(M \) with \(k \) states that accepts \(L \)

For each \(0 \leq i \leq k \), let \(S_i \) be the state \(M \) is in after reading \(a^i \)

\[\exists i, j \leq k \text{ such that } S_i = S_j, \text{ but } i \neq j \]
Theorem: \(L = \{ a^n b^n \mid n > 0 \} \) is not regular

Proof (by contradiction):

Assume that \(L \) is regular

Then there exists a machine \(M \) with \(k \) states that accepts \(L \)

For each \(0 \leq i \leq k \), let \(S_i \) be the state \(M \) is in after reading \(a^i \)

\(\exists i, j \leq k \) such that \(S_i = S_j \), but \(i \neq j \)

\(M \) will do the same thing on \(a^i b^i \) and \(a^j b^i \)
Theorem: \(L = \{ a^n b^n \mid n > 0 \} \) is not regular

Proof (by contradiction):
Assume that \(L \) is regular
Then there exists a machine \(M \) with \(k \) states that accepts \(L \)
For each \(0 \leq i \leq k \), let \(S_i \) be the state \(M \) is in after reading \(a^i \)
\(\exists i, j \leq k \) such that \(S_i = S_j \), but \(i \neq j \)
\(M \) will do the same thing on \(a^i b^i \) and \(a^j b^i \)
But a valid \(M \) must reject \(a^j b^i \) and accept \(a^i b^i \)
You can learn much more about these creatures in the FLAC course.

Formal Languages, Automata, and Computation

• There is a unique smallest automaton for any regular language

• It can be found by a fast algorithm.
Deterministic Finite Automata
• Definition
• Testing if they accept a string
• Building automata

Regular Languages
• Definition
• Closed Under Union, Intersection, Negation
• Using Pigeonhole Principle to show language not regular

Here’s What You Need to Know...