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Lecture 20 (October 30, 2008)



Let me show you a 
machine so simple 

that you can 
understand it in less 

than two minutes
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The alphabet of  a finite automaton is the set 
where the symbols come from:

The language of  a finite automaton is the set 
of  strings that it accepts

{0,1}
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L(M) = { w | w has an even number of  1s}
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An alphabet Σ is a finite set (e.g., Σ = {0,1})

A string over Σ is a finite-length sequence of  
elements of  Σ. The set of  all strings over Σ is 
denoted by Σ*.

For x a string, |x| is the length of  x

The unique string of  length 0 will be denoted 
by ε and will be called the empty or null string

Notation

A language over Σ is a set of  strings over Σ 
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Q is the set of  states

Σ is the alphabet

δ : Q × Σ → Q  is the transition function

q0 ∈ Q is the start state

F ⊆ Q is the set of  accept states

A finite automaton is a 5-tuple M = (Q, Σ, δ, q0, F) 

L(M)  = the language of  machine M
 = set of  all strings machine M accepts
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Q  = {q0, q1, q2, q3}

Σ = {0,1}

δ : Q × Σ → Q transition function

q0 ∈ Q is start state

F  = {q1, q2} ⊆ Q accept states

M = (Q, Σ, δ, q0, F)  
where
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Build an automaton that accepts all and only 
those strings that contain 001
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L = all strings containing ababb as a 
consecutive substring
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Invariant: 
I am state s exactly when s is the longest suffix 
of  the input (so far) forming a prefix of  ababb.
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Input: Text T of  length t, string S of  length n

The “Grep” Problem

Problem: Does string S appear inside text T?

a1, a2, a3, a4, a5, …, at

Naïve method: 

Cost: Roughly nt comparisons
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Automata Solution
Build a machine M that accepts any string 
with S as a consecutive substring

Feed the text to M

Cost:

As luck would have it, the Knuth, Morris, 
Pratt algorithm builds M quickly

t comparisons + time to build M



Grep

Coke Machines

Thermostats (fridge)

Elevators

Train Track Switches

Lexical Analyzers for Parsers

Real-life Uses of  DFAs
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A language is regular if  it is 
recognized by a deterministic 

finite automaton

L = { w | w contains 001} is regular

L = { w | w has an even number of  1s} is regular
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Theorem: The union of  two regular 
languages is also a regular language

Proof  Sketch: Let 
M1 = (Q1, Σ, δ1, q0, F1)  be finite automaton for L1

 and 
M2 = (Q2, Σ, δ2, q0, F2) be finite automaton for L2

1

2



Theorem: The union of  two regular 
languages is also a regular language

Proof  Sketch: Let 
M1 = (Q1, Σ, δ1, q0, F1)  be finite automaton for L1

 and 
M2 = (Q2, Σ, δ2, q0, F2) be finite automaton for L2

We want to construct a finite automaton 
M = (Q, Σ, δ, q0, F) that recognizes L = L1 ∪ L2 

1

2
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Idea: Run both M1 and M2 at the same time!

Q = pairs of  states, one from M1 and one from M2

= { (q1, q2) | q1 ∈ Q1 and q2 ∈ Q2 }

= Q1 × Q2



Theorem: The union of  two regular 
languages is also a regular language
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Theorem: The union of  two regular 
languages is also a regular language

Corollary: Any finite language is 
regular
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The Regular Operations

Union: A ∪ B = { w | w ∈ A or w ∈ B } 

Intersection: A ∩ B = { w | w ∈ A and w ∈ B } 

Negation: ¬A = { w | w ∉ A } 

Reverse: AR = { w1 …wk | wk …w1 ∈ A }

Concatenation: A ⋅ B = { vw | v ∈ A and w ∈ B }

Star: A* = { w1 …wk | k ≥ 0 and each wi ∈ A }



Regular Languages Are 
Closed Under The 

Regular Operations

We have seen part of  the proof  for 
Union. The proof  for intersection is very 
similar. The proof  for negation is easy.



Are all 
languages 
regular?
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Consider the language L = { anbn | n > 0 }

No finite automaton accepts this language

Can you prove this?



anbn is not regular.  
No machine has 
enough states to 
keep track of  the 
number of  a’s it 
might encounter



That is a fairly weak 
argument 

Consider the following 
example…
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the pattern ab is equal to the number of  
occurrences of  the pattern ba



L = strings where the # of  occurrences of 
the pattern ab is equal to the number of  
occurrences of  the pattern ba

Can’t be regular.  No machine has 
enough states to keep track of  the 
number of  occurrences of  ab
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M accepts only the strings with an 
equal number of  ab’s and ba’s!
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Let me show you a 
professional strength 
proof  that anbn is not 

regular…
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Pigeonhole principle:

Given n boxes and m > n 
objects, at least one box 
must contain more than 
one object

Letterbox principle:
If  the average number of 
letters per box is x, then 
some box will have at 
least x letters (similarly, 
some box has at most x)
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Theorem:  L= {anbn | n > 0 } is not regular

Proof  (by contradiction):

Assume that L is regular

Then there exists a machine M with k states 
that accepts L

For each 0 ≤ i ≤ k, let Si be the state M is in 
after reading ai

∃i,j ≤ k  such that Si = Sj, but i ≠ j

M will do the same thing on aibi and ajbi 

But a valid M must reject ajbi and accept aibi



Advertisement

You can learn much more about these 
creatures in the FLAC course.

Formal Languages, Automata, and 
Computation

• There is a unique smallest 
automaton for any regular language

• It can be found by a fast algorithm.



Deterministic Finite 
Automata
• Definition
• Testing if  they accept a string
• Building automata

Regular Languages
• Definition
• Closed Under Union,
   Intersection, Negation
• Using Pigeonhole Principle to
   show language not regular

Here’s What 
You Need to 

Know…


