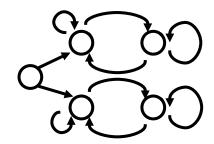
15-251

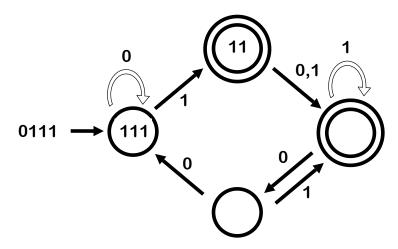
Great Theoretical Ideas in Computer Science

Let me show you a machine so simple that you can understand it in less than two minutes

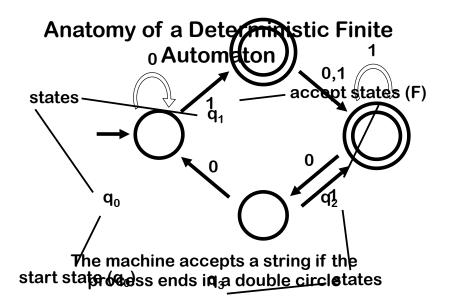
Deterministic Finite Automata

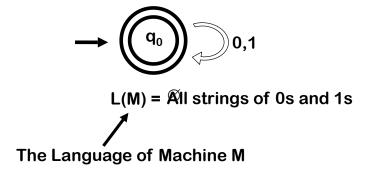
Lecture 20 (October 30, 2008)



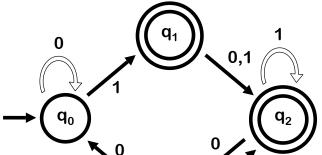


The machine accepts a string if the process ends in a double circle



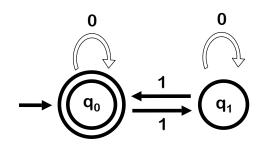


Anatomy of a Deterministic Finite Automaton



The alphabet of a finite automaton is the set where the symbols come from: {0,1}

The language of a finite automaton is the set of strings that it accepts



 $L(M) = \{ w \mid w \text{ has an even number of 1s} \}$

Notation

An alphabet Σ is a finite set (e.g., $\Sigma = \{0,1\}$)

A string over Σ is a finite-length sequence of elements of Σ . The set of all strings over Σ is denoted by Σ^* .

For x a string, |x| is the length of x

The unique string of length 0 will be denoted by ϵ and will be called the empty or null string

A language over Σ is a set of strings over Σ

A finite automaton is a 5-tuple M = (Q, Σ , δ , q₀, F)

Q is the set of states

 Σ is the alphabet

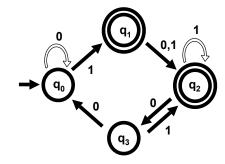
 $\delta: \mathbf{Q} \times \boldsymbol{\Sigma} \to \mathbf{Q}$ is the transition function

 $q_0 \in Q$ is the start state

 $F \subseteq Q$ is the set of accept states

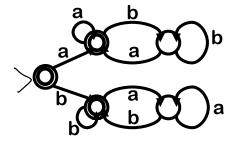
L(M) = the language of machine M = set of all strings machine M accepts

$$\begin{aligned} \mathbf{M} &= (\mathbf{Q}, \, \boldsymbol{\Sigma}, \, \boldsymbol{\delta}, \, \mathbf{q}_0, \, \mathbf{F}) & \quad \mathbf{Q} &= \{\mathbf{q}_0, \, \mathbf{q}_1, \, \mathbf{q}_2, \, \mathbf{q}_3\} \\ \mathbf{w} & \quad \boldsymbol{\Sigma} &= \{0,1\} \\ \mathbf{q}_0 &\in \mathbf{Q} \text{ is start state} \\ \mathbf{F} &= \{\mathbf{q}_1, \, \mathbf{q}_2\} \subseteq \mathbf{Q} \text{ accept states} \\ \boldsymbol{\delta} &: \, \mathbf{Q} \times \boldsymbol{\Sigma} \to \mathbf{Q} \text{ transition function} \end{aligned}$$



δ	0	1
q_0	q ₀	q_1
q_1	q_2	q_2
q ₂	q_3	q_2
q_3	\mathbf{q}_{0}	q_2

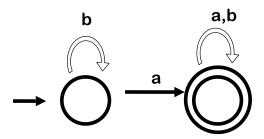
"ABA" The Automaton



Input String	Result
aba	Accept
aabb	Reject
aabba	Accept
ε	Accept

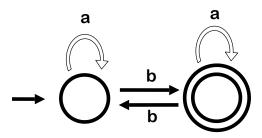
What machine accepts this language?

L =all strings in $\{a,b\}$ * that contain at least one a

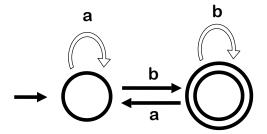


What machine accepts this language?

L = strings with an odd number of b's and any number of a's

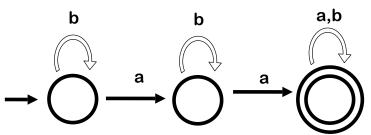


What is the language accepted by this machine?



L = any string ending with a b

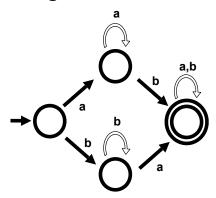
What is the language accepted by this machine?



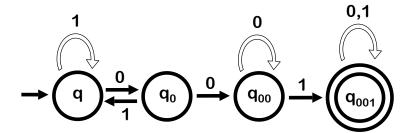
L(M) = any string with at least two a's

What machine accepts this language?

L = any string with an a and a b

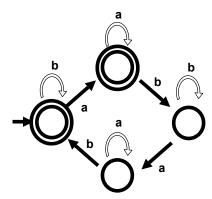


Build an automaton that accepts all and only those strings that contain 001

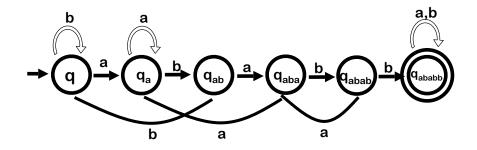


What machine accepts this language?

L = strings with an even number of ab pairs



L = all strings containing ababb as a consecutive substring



Invariant:

I am state s exactly when s is the longest suffix of the input (so far) forming a prefix of ababb.

The "Grep" Problem

Input: Text T of length t, string S of length n

Problem: Does string S appear inside text T?

Naïve method:

Cost: Roughly nt comparisons

Real-life Uses of DFAs

Grep

Coke Machines

Thermostats (fridge)

Elevators

Train Track Switches

Lexical Analyzers for Parsers

Automata Solution

Build a machine M that accepts any string with S as a consecutive substring

Feed the text to M

Cost: t comparisons + time to build M

As luck would have it, the Knuth, Morris, Pratt algorithm builds M quickly

A language is regular if it is recognized by a deterministic finite automaton

L = { w | w contains 001} is regular

L = { w | w has an even number of 1s} is regular

Union Theorem

Given two languages, L_1 and L_2 , define the union of L_1 and L_2 as

$$L_1 \cup L_2 = \{ w \mid w \in L_1 \text{ or } w \in L_2 \}$$

Theorem: The union of two regular languages is also a regular language

Idea: Run both M₁ and M₂ at the same time!

Q = pairs of states, one from M_1 and one from M_2 = { $(q_1, q_2) | q_1 \in Q_1$ and $q_2 \in Q_2$ } = $Q_1 \times Q_2$

Theorem: The union of two regular languages is also a regular language

Proof Sketch: Let

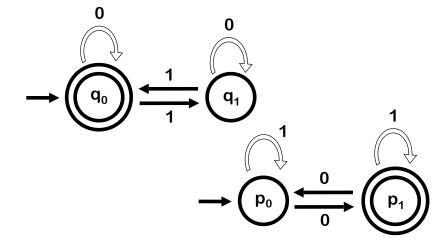
 $M_1 = (Q_1, \Sigma, \delta_1, q_0^1, F_1)$ be finite automaton for L_1

and

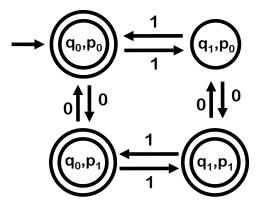
 $M_2 = (Q_2, \Sigma, \delta_2, q_0^2, F_2)$ be finite automaton for L_2

We want to construct a finite automaton M = (Q, Σ , δ , q₀, F) that recognizes L = L₁ \cup L₂

Theorem: The union of two regular languages is also a regular language



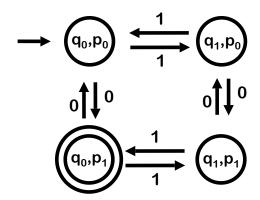
Automaton for Union



Theorem: The union of two regular languages is also a regular language

Corollary: Any finite language is regular

Automaton for Intersection



The Regular Operations

Union: $A \cup B = \{ w \mid w \in A \text{ or } w \in B \}$

Intersection: $A \cap B = \{ w \mid w \in A \text{ and } w \in B \}$

Reverse: $A^R = \{ w_1 ... w_k \mid w_k ... w_1 \in A \}$

Negation: $\neg A = \{ w \mid w \notin A \}$

Concatenation: $A \cdot B = \{ vw \mid v \in A \text{ and } w \in B \}$

Star: $A^* = \{ w_1 ... w_k \mid k \ge 0 \text{ and each } w_i \in A \}$

Regular Languages Are Closed Under The Regular Operations

We have seen part of the proof for Union. The proof for intersection is very similar. The proof for negation is easy.

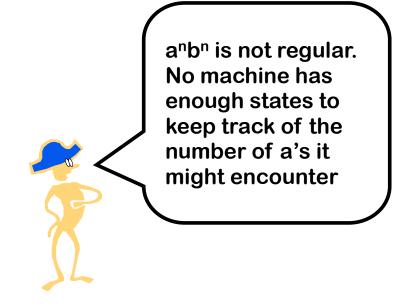
Consider the language $L = \{ a^n b^n \mid n > 0 \}$

i.e., a bunch of a's followed by an equal number of b's

No finite automaton accepts this language

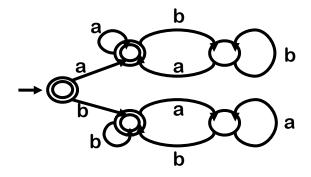
Can you prove this?





That is a fairly weak argument

Consider the following example...



M accepts only the strings with an equal number of ab's and ba's!

L = strings where the # of occurrences of the pattern ab is equal to the number of occurrences of the pattern ba

Can't be regular. No machine has enough states to keep track of the number of occurrences of ab

Let me show you a professional strength proof that anb is not regular...

Pigeonhole principle:

Given n boxes and m > n objects, at least one box must contain more than one object

Letterbox principle:

If the average number of letters per box is x, then some box will have at least x letters (similarly, some box has at most x)

Theorem: L= $\{a^nb^n \mid n > 0\}$ is not regular

Proof (by contradiction):

Assume that L is regular

Then there exists a machine M with k states that accepts L

For each $0 \le i \le k$, let S_i be the state M is in after reading a^i

 $\exists i, j \leq k \text{ such that } S_i = S_i, \text{ but } i \neq j$

M will do the same thing on aibi and aibi

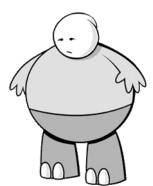
But a valid M must reject aibi and accept aibi

Advertisement

You can learn much more about these creatures in the FLAC course.

Formal Languages, Automata, and Computation

- There is a unique smallest automaton for any regular language
- It can be found by a fast algorithm.



Here's What You Need to Know...

Deterministic Finite Automata

- Definition
- Testing if they accept a string
- Building automata

Regular Languages

- Definition
- Closed Under Union, Intersection, Negation
- Using Pigeonhole Principle to show language not regular