
15-251
Great Theoretical Ideas

in Computer Science

Graphs II

Lecture 19, October 28, 2008

Recap

Theorem: Let G be a graph with n nodes
and e edges

The following are equivalent:

1. G is a tree (connected, acyclic)

3. G is connected and n = e + 1

4. G is acyclic and n = e + 1

5. G is acyclic and if any two non-adjacent
points are joined by a line, the resulting
graph has exactly one cycle

2. Every two nodes of G are
joined by a unique path

Cayley’s Formula

The number of labeled trees
on n nodes is nn-2

Cayley’s Formula

A graph is planar if

A graph is planar if

it can be drawn in
the plane without
crossing edges

Euler’s Formula

Euler’s Formula

If G is a connected planar graph
with n vertices, e edges and f

faces, then n – e + f = 2

Graph Coloring

A coloring of a graph is an assignment of a
color to each vertex such that no neighboring
vertices have the same color

Graph Coloring

Spanning Trees

Spanning Trees
A spanning tree of a graph G is a tree that
touches every node of G and uses only
edges from G

Spanning Trees
A spanning tree of a graph G is a tree that
touches every node of G and uses only
edges from G

Every connected graph has a spanning tree

Implementing Graphs

Adjacency Matrix

Adjacency Matrix
Suppose we have a graph G with n
vertices. The adjacency matrix is the
n x n matrix A=[aij] with:

Adjacency Matrix
Suppose we have a graph G with n
vertices. The adjacency matrix is the
n x n matrix A=[aij] with:

aij = 1 if (i,j) is an edge

aij = 0 if (i,j) is not an edge

Adjacency Matrix
Suppose we have a graph G with n
vertices. The adjacency matrix is the
n x n matrix A=[aij] with:

aij = 1 if (i,j) is an edge

aij = 0 if (i,j) is not an edge

Good for dense graphs!

Example

Example

A =

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

Counting Paths
The number of paths of length k from
node i to node j is the entry in position
(i,j) in the matrix Ak

Counting Paths
The number of paths of length k from
node i to node j is the entry in position
(i,j) in the matrix Ak

Counting Paths
The number of paths of length k from
node i to node j is the entry in position
(i,j) in the matrix Ak

A2 =

Counting Paths
The number of paths of length k from
node i to node j is the entry in position
(i,j) in the matrix Ak

A2 =

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

Counting Paths
The number of paths of length k from
node i to node j is the entry in position
(i,j) in the matrix Ak

A2 =

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

3 2 2 2
2 3 2 2
2 2 3 2
2 2 2 3

=

Adjacency List

Adjacency List
Suppose we have a graph G with n
vertices. The adjacency list is the list
that contains all the nodes that each
node is adjacent to

Adjacency List
Suppose we have a graph G with n
vertices. The adjacency list is the list
that contains all the nodes that each
node is adjacent to

Good for sparse graphs!

Example
1

2

3

4

Example
1

2

3

4

1: 2,3
2: 1,3,4
3: 1,2,4
4: 2,3

http://www.math.ucsd.edu/~fan/hear/

“Can you hear the shape of a graph?”

Graphical Muzak

http://www.math.ucsd.edu/~fan/hear/
http://www.math.ucsd.edu/~fan/hear/

Finding Optimal Trees

Finding Optimal Trees

Trees have many nice properties
(uniqueness of paths, no cycles, etc.)

Finding Optimal Trees

Trees have many nice properties
(uniqueness of paths, no cycles, etc.)

We may want to compute the “best”
tree approximation to a graph

Finding Optimal Trees

Trees have many nice properties
(uniqueness of paths, no cycles, etc.)

We may want to compute the “best”
tree approximation to a graph

If all we care about is communication, then
a tree may be enough. We want a tree with
smallest communication link costs

Finding Optimal Trees

Problem: Find a minimum spanning tree, that
is, a tree that has a node for every node in
the graph, such that the sum of the edge
weights is minimum

4

8

79

6

11

9

5

87

Tree Approximations

4

8

79

6

11

9

5

87

Tree Approximations

Kruskal’s Algorithm

A simple
algorithm for
finding a
minimum
spanning tree

Finding an MST: Kruskal’s Algorithm

Finding an MST: Kruskal’s Algorithm

Create a forest where each node is a
separate tree

Finding an MST: Kruskal’s Algorithm

Create a forest where each node is a
separate tree

Make a sorted list of edges S

Finding an MST: Kruskal’s Algorithm

Create a forest where each node is a
separate tree

Make a sorted list of edges S

While S is non-empty:

Finding an MST: Kruskal’s Algorithm

Create a forest where each node is a
separate tree

Make a sorted list of edges S

While S is non-empty:

Remove an edge with minimal weight

Finding an MST: Kruskal’s Algorithm

Create a forest where each node is a
separate tree

Make a sorted list of edges S

While S is non-empty:

Remove an edge with minimal weight

If it connects two different trees, add
the edge. Otherwise discard it.

1

8

7

9

10

3

5

47

9

Applying the Algorithm

1

8

7

9

10

3

5

47

9

Applying the Algorithm

1

8

7

9

10

3

5

47

9

Applying the Algorithm

1

8

7

9

10

3

5

47

9

Applying the Algorithm

1

8

7

9

10

3

5

47

9

Applying the Algorithm

1

8

7

9

10

3

5

47

9

Applying the Algorithm

1

8

7

9

10

3

5

47

9

Applying the Algorithm

Analyzing the Algorithm

Analyzing the Algorithm

The algorithm outputs a spanning tree T.

Analyzing the Algorithm

The algorithm outputs a spanning tree T.

Suppose that it’s not minimal. (For simplicity,
assume all edge weights in graph are distinct)

Analyzing the Algorithm

The algorithm outputs a spanning tree T.

Let M be a minimum spanning tree.

Suppose that it’s not minimal. (For simplicity,
assume all edge weights in graph are distinct)

Analyzing the Algorithm

The algorithm outputs a spanning tree T.

Let M be a minimum spanning tree.

Let e be the first edge chosen by the
algorithm that is not in M.

Suppose that it’s not minimal. (For simplicity,
assume all edge weights in graph are distinct)

Analyzing the Algorithm

The algorithm outputs a spanning tree T.

Let M be a minimum spanning tree.

Let e be the first edge chosen by the
algorithm that is not in M.

Suppose that it’s not minimal. (For simplicity,
assume all edge weights in graph are distinct)

If we add e to M, it creates a cycle. Since this
cycle isn’t fully contained in T, it has an edge f
not in T.

Analyzing the Algorithm

The algorithm outputs a spanning tree T.

Let M be a minimum spanning tree.

Let e be the first edge chosen by the
algorithm that is not in M.

N = M+e-f is another spanning tree.

Suppose that it’s not minimal. (For simplicity,
assume all edge weights in graph are distinct)

If we add e to M, it creates a cycle. Since this
cycle isn’t fully contained in T, it has an edge f
not in T.

Analyzing the Algorithm

N = M+e-f is another spanning tree.

Analyzing the Algorithm

N = M+e-f is another spanning tree.

Claim: e < f, and therefore N < M

Analyzing the Algorithm

N = M+e-f is another spanning tree.

Claim: e < f, and therefore N < M

Suppose not: e > f

Analyzing the Algorithm

N = M+e-f is another spanning tree.

Claim: e < f, and therefore N < M

Suppose not: e > f

Then f would have been visited before e by the
algorithm, but not added, because adding it
would have formed a cycle.

Analyzing the Algorithm

N = M+e-f is another spanning tree.

Claim: e < f, and therefore N < M

Suppose not: e > f

Then f would have been visited before e by the
algorithm, but not added, because adding it
would have formed a cycle.

But all of these cycle edges are also edges of
M, since e was the first edge not in M. This
contradicts the assumption M is a tree.

Greed is Good (In this case…)

Greed is Good (In this case…)

The greedy algorithm, by adding the least
costly edges in each stage, succeeds in
finding an MST

Greed is Good (In this case…)

The greedy algorithm, by adding the least
costly edges in each stage, succeeds in
finding an MST

But — in math and life — if pushed too far,
the greedy approach can lead to bad results.

TSP: Traveling Salesman Problem

TSP: Traveling Salesman Problem

Given a number of cities and the costs of
traveling from any city to any other city,
what is the cheapest round-trip route that
visits each city exactly once and then
returns to the starting city?

TSP from Trees

TSP from Trees

We can use an MST to derive a TSP tour that is
no more expensive than twice the optimal tour.

TSP from Trees

We can use an MST to derive a TSP tour that is
no more expensive than twice the optimal tour.

Idea: walk “around” the MST and take
shortcuts if a node has already been visited.

TSP from Trees

We can use an MST to derive a TSP tour that is
no more expensive than twice the optimal tour.

Idea: walk “around” the MST and take
shortcuts if a node has already been visited.

We assume that all pairs of nodes are
connected, and edge weights satisfy the
triangle inequality d(x,y) ≤ d(x,z) + d(z,y)

Tours from Trees

Tours from Trees

Shortcuts only decrease the cost, so
Cost(Greedy Tour) ≤ 2 Cost(MST)
 ≤ 2 Cost(Optimal Tour)

Tours from Trees

This is a 2-competitive algorithm

Shortcuts only decrease the cost, so
Cost(Greedy Tour) ≤ 2 Cost(MST)
 ≤ 2 Cost(Optimal Tour)

Bipartite Graph

Bipartite Graph

A graph is bipartite if the nodes can be
partitioned into two sets V1 and V2 such that
all edges go only between V1 and V2 (no
edges go from V1 to V1 or from V2 to V2)

Dancing Partners

A group of 100 boys and girls attend a
dance. Every boy knows 5 girls, and every
girl knows 5 boys. Can they be matched
into dance partners so that each pair
knows each other?

Dancing Partners

Dancing Partners

Perfect Matchings

Perfect Matchings
A matching is a set of edges, no two of which
share a vertex. The matching is perfect if it
includes every vertex.

Perfect Matchings

Theorem: If every node in a bipartite graph
has the same degree d ≥ 1, then the graph
has a perfect matching.

A matching is a set of edges, no two of which
share a vertex. The matching is perfect if it
includes every vertex.

Perfect Matchings

Theorem: If every node in a bipartite graph
has the same degree d ≥ 1, then the graph
has a perfect matching.

Note: if degrees are the same then |A| = |B|,
where A is the set of nodes “on the left” and
B is the set of nodes “on the right”

A matching is a set of edges, no two of which
share a vertex. The matching is perfect if it
includes every vertex.

Claim: If degrees are the same then |A| = |B|

A Matter of Degree

Proof:

Claim: If degrees are the same then |A| = |B|

A Matter of Degree

If there are m boys, there are md edges

Proof:

Claim: If degrees are the same then |A| = |B|

A Matter of Degree

If there are m boys, there are md edges

If there are n girls, there are nd edges

Proof:

Claim: If degrees are the same then |A| = |B|

A Matter of Degree

If there are m boys, there are md edges

If there are n girls, there are nd edges

Proof:

Claim: If degrees are the same then |A| = |B|

A Matter of Degree

We’ll now prove a stronger result...

The Marriage Theorem

Theorem: A bipartite graph has a perfect
matching if and only if |A| = |B| = n and for
all k ∈ [1,n]: for any subset of k nodes of A
there are at least k nodes of B that are
connected to at least one of them.

The Marriage Theorem

For any subset of (say)
k nodes of A there are
at least k nodes of B
that are connected to
at least one of them

The condition fails
for this graph

The Marriage Theorem

For any subset of (say)
k nodes of A there are
at least k nodes of B
that are connected to
at least one of them

k

n-k

The condition of the theorem still holds if we
swap the roles of A and B: If we pick any k nodes
in B, they are connected to at least k nodes in A

The Feeling is Mutual

k

At most n-k n-k

The condition of the theorem still holds if we
swap the roles of A and B: If we pick any k nodes
in B, they are connected to at least k nodes in A

The Feeling is Mutual

k

At most n-k n-k

At least k

The condition of the theorem still holds if we
swap the roles of A and B: If we pick any k nodes
in B, they are connected to at least k nodes in A

The Feeling is Mutual

Proof of Marriage Theorem

Proof of Marriage Theorem

Call a bipartite graph “matchable” if it has
the same number of nodes on left and right,
and any k nodes on the left are connected
to at least k on the right

Proof of Marriage Theorem

Call a bipartite graph “matchable” if it has
the same number of nodes on left and right,
and any k nodes on the left are connected
to at least k on the right

Strategy: Break up the graph into two
matchable parts, and recursively partition each
of these into two matchable parts, etc., until
each part has only two nodes

Proof of Marriage Theorem

Select two nodes a ∈ A and b ∈ B connected by
an edge

Proof of Marriage Theorem

Select two nodes a ∈ A and b ∈ B connected by
an edge

Idea: Take G1 = (a,b) and G2 = everything else

Proof of Marriage Theorem

Select two nodes a ∈ A and b ∈ B connected by
an edge

Idea: Take G1 = (a,b) and G2 = everything else

Problem: G2 need not be matchable. There
could be a set of k nodes that has only k-1
neighbors.

k-1
k

a b
The only way this
could fail is if one of
the missing nodes is b

Proof of Marriage Theorem

k-1
k

a b
The only way this
could fail is if one of
the missing nodes is b

Proof of Marriage Theorem

Add this in to form
G1, and take G2 to be
everything else.

k-1
k

a b
The only way this
could fail is if one of
the missing nodes is b

This is a matchable
partition!

Proof of Marriage Theorem

Add this in to form
G1, and take G2 to be
everything else.

Generalized Marriage: Hall’s Theorem

Let S = {S1, S2, …} be a set of finite subsets
that satisfies: For any subset T = {Ti} of S,
|UTi | ≥ |T|. Thus, any k subsets contain at
least k elements

Generalized Marriage: Hall’s Theorem

Let S = {S1, S2, …} be a set of finite subsets
that satisfies: For any subset T = {Ti} of S,
|UTi | ≥ |T|. Thus, any k subsets contain at
least k elements

Then we can choose an element xi in Si from
each Si so that {x1, x2, …} are all distinct

Suppose that a standard
deck of cards is dealt into
13 piles of 4 cards each

Example

Suppose that a standard
deck of cards is dealt into
13 piles of 4 cards each

Then it is possible to
select a card from each
pile so that the 13 chosen
cards contain exactly one
card of each rank

Example

Here’s What
You Need to

Know…

Adjacency matrix

Minimum Spanning Tree

 - Definition

Kruskal’s Algorithm

 - Definition

 - Proof of Correctness

Traveling Salesman Problem

 - Definition

 - Using MST to get an

 approximate solution

The Marriage Theorem

