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Recap



Theorem:  Let G be a graph with n nodes 
and e edges

The following are equivalent:

1. G is a tree (connected, acyclic)

3. G is connected and n = e + 1 

4. G is acyclic and n = e + 1

5. G is acyclic and if  any two non-adjacent 
points are joined by a line, the resulting 
graph has exactly one cycle

2. Every two nodes of  G are 
joined by a unique path



Cayley’s Formula



The number of  labeled trees 
on n nodes is nn-2

Cayley’s Formula



A graph is planar if

 



A graph is planar if

 

it can be drawn in 
the plane without 
crossing edges



Euler’s Formula



Euler’s Formula

If  G is a connected planar graph 
with n vertices, e edges and f  

faces, then  n – e + f  = 2



Graph Coloring



A coloring of  a graph is an assignment of  a 
color to each vertex such that no neighboring 
vertices have the same color

Graph Coloring
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Spanning Trees
A spanning tree of  a graph G is a tree that 
touches every node of  G and uses only 
edges from G



Spanning Trees
A spanning tree of  a graph G is a tree that 
touches every node of  G and uses only 
edges from G

Every connected graph has a spanning tree
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Adjacency Matrix
Suppose we have a graph G with n 
vertices. The adjacency matrix is the 
n x n matrix A=[aij] with:

aij  = 1  if  (i,j) is an edge

aij  = 0  if  (i,j) is not an edge

Good for dense graphs!
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Example

A =

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0
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Counting Paths
The number of  paths of  length k from 
node i to node j is the entry in position 
(i,j) in the matrix Ak

A2 =

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

3 2 2 2
2 3 2 2
2 2 3 2
2 2 2 3

=
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Adjacency List
Suppose we have a graph G with n 
vertices. The adjacency list is the list 
that contains all the nodes that each 
node is adjacent to

Good for sparse graphs!
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4



Example
1

2

3

4

1: 2,3
2: 1,3,4
3: 1,2,4
4: 2,3



http://www.math.ucsd.edu/~fan/hear/

“Can you hear the shape of  a graph?”

Graphical Muzak

http://www.math.ucsd.edu/~fan/hear/
http://www.math.ucsd.edu/~fan/hear/
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Finding Optimal Trees

Trees have many nice properties 
(uniqueness of  paths, no cycles, etc.)

We may want to compute the “best” 
tree approximation to a graph

If  all we care about is communication, then 
a tree may be enough.  We want a tree with 
smallest communication link costs



Finding Optimal Trees

Problem:  Find a minimum spanning tree, that 
is, a tree that has a node for every node in 
the graph, such that the sum of  the edge 
weights is minimum
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Kruskal’s Algorithm

A simple 
algorithm for 
finding a 
minimum 
spanning tree
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Finding an MST: Kruskal’s Algorithm

Create a forest where each node is a 
separate tree

Make a sorted list of  edges S

While S is non-empty:

Remove an edge with minimal weight

If  it connects two different trees, add 
the edge.  Otherwise discard it.
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The algorithm outputs a spanning tree T.  
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not in T.



Analyzing the Algorithm

The algorithm outputs a spanning tree T.  

Let M be a minimum spanning tree.

Let e be the first edge chosen by the 
algorithm that is not in M. 

N = M+e-f  is another spanning tree.

Suppose that it’s not minimal. (For simplicity, 
assume all edge weights in graph are distinct)

If  we add e to M, it creates a cycle.  Since this 
cycle isn’t fully contained in T, it has an edge f  
not in T.
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algorithm, but not added, because adding it 
would have formed a cycle.



Analyzing the Algorithm

N = M+e-f  is another spanning tree.

Claim: e < f, and therefore N < M

Suppose not:  e > f

Then f  would have been visited before e by the 
algorithm, but not added, because adding it 
would have formed a cycle.

But all of  these cycle edges are also edges of  
M, since e was the first edge not in M.  This 
contradicts the assumption M is a tree.
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Greed is Good  (In this case…)

The greedy algorithm, by adding the least 
costly edges in each stage, succeeds in 
finding an MST

But — in math and life — if  pushed too far, 
the greedy approach can lead to bad results. 
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TSP: Traveling Salesman Problem

Given a number of  cities and the costs of  
traveling from any city to any other city, 
what is the cheapest round-trip route that 
visits each city exactly once and then 
returns to the starting city? 
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TSP from Trees

We can use an MST to derive a TSP tour that is 
no more expensive than twice the optimal tour.

Idea: walk “around” the MST and take 
shortcuts if  a node has already been visited.

We assume that all pairs of  nodes are 
connected, and edge weights satisfy the 
triangle inequality d(x,y) ≤ d(x,z) + d(z,y) 
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Tours from Trees

Shortcuts only decrease the cost, so 
Cost(Greedy Tour)    ≤  2 Cost(MST) 
                                 ≤ 2 Cost(Optimal Tour)



Tours from Trees

This is a 2-competitive algorithm

Shortcuts only decrease the cost, so 
Cost(Greedy Tour)    ≤  2 Cost(MST) 
                                 ≤ 2 Cost(Optimal Tour)
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Bipartite Graph

A graph is bipartite if  the nodes can be 
partitioned into two sets V1 and V2 such that 
all edges go only between V1 and V2 (no 
edges go from V1 to V1 or from V2 to V2)



Dancing Partners

A group of  100 boys and girls attend a 
dance.  Every boy knows 5 girls, and every 
girl knows 5 boys.  Can they be matched 
into dance partners so that each pair 
knows each other?
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Perfect Matchings

Theorem:  If  every node in a bipartite graph 
has the same degree d ≥ 1, then the graph 
has a perfect matching.

A matching is a set of  edges, no two of  which 
share a vertex.  The matching is perfect if  it 
includes every vertex.



Perfect Matchings

Theorem:  If  every node in a bipartite graph 
has the same degree d ≥ 1, then the graph 
has a perfect matching.

Note: if  degrees are the same then |A| = |B|,  
where A is the set of  nodes “on the left” and 
B is the set of  nodes “on the right”

A matching is a set of  edges, no two of  which 
share a vertex.  The matching is perfect if  it 
includes every vertex.
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If  there are m boys, there are md edges

If  there are n girls, there are nd edges

Proof:

Claim: If  degrees are the same then |A| = |B|

A Matter of  Degree

We’ll now prove a stronger result...



The Marriage Theorem

Theorem:  A bipartite graph has a perfect 
matching if  and only if  |A| = |B| = n and for 
all k ∈ [1,n]: for any subset of  k nodes of  A 
there are at least k nodes of  B that are 
connected to at least one of  them.



The Marriage Theorem

For any subset of  (say) 
k nodes of  A there are 
at least k nodes of  B 
that are connected to 
at least one of  them



The condition fails 
for this graph

The Marriage Theorem

For any subset of  (say) 
k nodes of  A there are 
at least k nodes of  B 
that are connected to 
at least one of  them
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in B, they are connected to at least k nodes in A

The Feeling is Mutual
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k

At most n-k n-k

At least k

The condition of  the theorem still holds if  we 
swap the roles of  A and B:  If  we pick any k nodes 
in B, they are connected to at least k nodes in A

The Feeling is Mutual
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Proof  of  Marriage Theorem

Call a bipartite graph “matchable” if  it has 
the same number of  nodes on left and right, 
and any k nodes on the left are connected 
to at least k on the right

Strategy:  Break up the graph into two 
matchable parts, and recursively partition each 
of  these into two matchable parts, etc., until 
each part has only two nodes
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Proof  of  Marriage Theorem

Select two nodes a ∈ A and b ∈ B connected by 
an edge

Idea:  Take G1 = (a,b) and G2 = everything else

Problem:  G2 need not be matchable.  There 
could be a set of  k nodes that has only k-1 
neighbors.  
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The only way this 
could fail is if  one of  
the missing nodes is b 
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k

a b
The only way this 
could fail is if  one of  
the missing nodes is b 

Proof  of  Marriage Theorem

Add this in to form 
G1, and take G2 to be 
everything else.



k-1
k

a b
The only way this 
could fail is if  one of  
the missing nodes is b 

This is a matchable 
partition!

Proof  of  Marriage Theorem

Add this in to form 
G1, and take G2 to be 
everything else.
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|UTi | ≥ |T|.  Thus, any k subsets contain at 
least k elements



Generalized Marriage:  Hall’s Theorem

Let S = {S1, S2, …} be a set of  finite subsets 
that satisfies:  For any subset T = {Ti} of  S,       
|UTi | ≥ |T|.  Thus, any k subsets contain at 
least k elements

Then we can choose an element xi in Si from 
each Si so that {x1, x2, …} are all distinct
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Example



Suppose that a standard 
deck of  cards is dealt into 
13 piles of  4 cards each

Then it is possible to 
select a card from each 
pile so that the 13 chosen 
cards contain exactly one 
card of  each rank

Example



Here’s What 
You Need to 

Know…

Adjacency matrix 

Minimum Spanning Tree

 - Definition

Kruskal’s Algorithm

 - Definition

 - Proof  of  Correctness

Traveling Salesman Problem

 - Definition

 - Using MST to get an 

 approximate solution

The Marriage Theorem


