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Upcoming Events

Review Session on Saturday
(5 pm, Wean 5409)

Test on Monday
Election Day



Graphs

Lecture 18, October 23, 2008
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What’s a tree?

A tree is a connected
graph with no cycles
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How Many n-Node Trees?
1: O

2. OO

3: 00O

5:O—O—O—O—OO—i—O—OX



We’ll pass around a piece of
paper. Draw a new 8-node tree,
and put your name next to it.
(There are 23 of them...)
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At the shy people party, people
enter one-by-one, and as a person
comes in, (s)he shakes hand with
only one person already at the party.



The Shy People Party

At the shy people party, people
enter one-by-one, and as a person
comes in, (s)he shakes hand with
only one person already at the party.

Prove that at a shy party with n people
(n >=2), at least two people have shaken
hands with only one other person.
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Theorem: Let G be a graph with n nodes
and e edges

The following are equivalent:
1. Gis a tree (connected, acyclic)

2. Every two nodes of G are
joined by a unique path

3. Gisconnectedandn=e + 1
4. Gisacyclicandn=e + 1

5. G is acyclic and if any two non-adjacent
points are joined by a line, the resulting
graph has exactly one cycle



To prove this, it suffices to show
|=>2=>3=>4=>5=>1
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1=>2 1.Gisatree (connected, acyclic)

2. Every two nodes of G are
joined by a unique path

Proof: (by contradiction)

Assume G is a tree that has two nodes
connected by two different paths:

Then there exists a cycle!
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2 =>3 2.Everytwo nodes of G are
joined by a unique path
3.Gisconnectedandn=e + 1
Proof: (by induction)
Assume true for every graph with < n nodes
Let G have n nodes and let x and y be adjacent

Let n,,e, be number of nodes and edges in G,

Thenn=n,+n,=e;+e,+2=e+1
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3=>4 3.Gisconnectedandn=e + 1

4. Gisacyclicandn=e +1
Proof: (by contradiction)

Assume G is connected withn=e + 1,
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S

Note that the cycle has k nodes and k edges

Start adding nodes and edges until you
cover the whole graph



3=>4 3.Gisconnectedandn=e + 1

4. Gisacyclicandn=e +1
Proof: (by contradiction)

Assume G is connected withn=e + 1,
and G has a cycle containing k nodes

O
Note that the cycle has k nodes and k edges

Start adding nodes and edges until you
cover the whole graph

Number of edges in the graph will be at least n
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Corollary: Every nontrivial tree has at least
two endpoints (points of degree 1)

Proof:

Assume all but one of the points in the
tree have degree at least 2

In any graph, sum of the degrees = 2e

Then the total number of edges in the tree
is at least (2n-1)/12=n-1/2>n-1
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How many labeled trees are
there with n nodes?

3 labeled trees with 3 nodes
16 labeled trees with 4 nodes

125 labeled trees with 5 nodes

n"2 |abeled trees with n nodes



Cayley’s Formula

The number of labeled trees
on n nodes is n"-2




The proof will use the correspondence principle



The proof will use the correspondence principle

Each labeled tree on n nodes
corresponds to

A sequence in {1,2,...,n}"2 (that is, n-2
numbers, each in the range [1..n])



How to make a sequence from a tree?



How to make a sequence from a tree?
Loop through i from 1 to n-2



How to make a sequence from a tree?
Loop through i from 1 to n-2

Let L be the degree-1 node with
the lowest label



How to make a sequence from a tree?
Loop through i from 1 to n-2

Let L be the degree-1 node with
the lowest label

Define the ith element of the sequence
as the label of the node adjacentto L



How to make a sequence from a tree?
Loop through i from 1 to n-2

Let L be the degree-1 node with
the lowest label

Define the ith element of the sequence
as the label of the node adjacentto L

Delete the node L from the tree



How to make a sequence from a tree?
Loop through i from 1 to n-2

Let L be the degree-1 node with
the lowest label

Define the ith element of the sequence
as the label of the node adjacentto L

Delete the node L from the tree

Example: 8
5> SN
U 5 6/ 7



How to make a sequence from a tree?
Loop through i from 1 to n-2

Let L be the degree-1 node with
the lowest label

Define the ith element of the sequence
as the label of the node adjacentto L

Delete the node L from the tree

Example: 8
5> SN
U 5 6/ 7

1
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Loop through i from 1 to n-2
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Example: N . 4/8
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How to make a sequence from a tree?
Loop through i from 1 to n-2

Let L be the degree-1 node with
the lowest label

Define the ith element of the sequence
as the label of the node adjacentto L

Delete the node L from the tree
Example: 8
4
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How to make a sequence from a tree?
Loop through i from 1 to n-2

Let L be the degree-1 node with
the lowest label

Define the ith element of the sequence
as the label of the node adjacentto L

Delete the node L from the tree
Example: 8
4
/ 7
6

173344
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How to make a sequence from a tree?
Loop through i from 1 to n-2

Let L be the degree-1 node with
the lowest label

Define the ith element of the sequence
as the label of the node adjacentto L

Delete the node L from the tree

Example: 8
4

133444



How to make a sequence from a tree?
Loop through i from 1 to n-2

Let L be the degree-1 node with
the lowest label

Define the ith element of the sequence
as the label of the node adjacentto L

Delete the node L from the tree

Example:

133444
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How to reconstruct the unique tree from
a sequence S:

Leti={1,2,3,...,,n}

Loop until S is empty
Leti=smallest#inlbutnotinS
Let s =first label in sequence S

Add edge {i, s} to the tree
Delete i from |

8
Delete s from S 5\3 _<
<, [ 7

Add edge {a,b}, where | = {a,b}
1334414
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Spanning Trees

A spanning tree of a graph G is a tree that
touches every node of G and uses only
edges from G

Every connected graph has a spanning tree



A graph is planar if it
can be drawn in the
plane without crossing
edges
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X



http:/Iwww.planarity.net
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A planar graph splits the
plane into disjoint faces



Faces

A planar graph splits the
plane into disjoint faces

4 faces



Euler’s Formula

If Gis a connected planar graph
with n vertices, e edges and f
faces,then n—-e+f=2
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Rather than using induction, we’ll use
the important notion of the dual graph

Dual = put a node in every face, and an edge
between every adjacent face
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tree of G
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Let G* be the dual
graph of G

Let T be a spanning
tree of G

Let T* be the graph where there is an edge
in dual graph for eachedge inG-T

Then T* is a spanning tree for G*

n=e;+1 hn+f=er+en+2
f=zen+1 =e+2



Corollary: Let G be a simple planar graph
with n > 2 vertices. Then:



Corollary: Let G be a simple planar graph
with n > 2 vertices. Then:

1. G has a vertex of degree at most 5



Corollary: Let G be a simple planar graph
with n > 2 vertices. Then:

1. G has a vertex of degree at most 5

2. G has at most 3n -6 edges



Corollary: Let G be a simple planar graph
with n > 2 vertices. Then:

1. G has a vertex of degree at most 5

2. G has at most 3n -6 edges
Proof of 1.



Corollary: Let G be a simple planar graph
with n > 2 vertices. Then:

1. G has a vertex of degree at most 5

2. G has at most 3n -6 edges
Proof of 1.

In any graph, (sum of degrees) = 2e



Corollary: Let G be a simple planar graph
with n > 2 vertices. Then:

1. G has a vertex of degree at most 5

2. G has at most 3n -6 edges
Proof of 1.

In any graph, (sum of degrees) = 2e

Assume all vertices have degree > 6



Corollary: Let G be a simple planar graph
with n > 2 vertices. Then:

1. G has a vertex of degree at most 5
2. G has at most 3n -6 edges

Proof of 1:
In any graph, (sum of degrees) = 2e
Assume all vertices have degree > 6

Thene >3n



Corollary: Let G be a simple planar graph
with n > 2 vertices. Then:

1. G has a vertex of degree at most 5
2. G has at most 3n -6 edges

Proof of 1:
In any graph, (sum of degrees) = 2e
Assume all vertices have degree > 6

Thene >3n

Furthermore, since G is simple, 3f < 2e



Corollary: Let G be a simple planar graph
with n > 2 vertices. Then:

1. G has a vertex of degree at most 5
2. G has at most 3n -6 edges

Proof of 1:
In any graph, (sum of degrees) = 2e
Assume all vertices have degree > 6
Thene>3n
Furthermore, since G is simple, 3f < 2e

So 3n + 3f < 3e => 3(n-e+f) <0, contradiction.
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A coloring of a graph is an assignment of a
color to each vertex such that no neighboring
vertices have the same color
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Graph Coloring

Arises surprisingly often in CS

Register allocation: assign temporary
variables to registers for scheduling
instructions. Variables that interfere, or
are simultaneously active, cannot be
assigned to the same register



Instructions Live variables

a
b=a+2

a,b
c=b*b

a,c
b=c+1

a,b
return a*b
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Theorem: Every planar graph can be 6-
colored

Proof Sketch (by induction):

Assume every planar graph with less than n
vertices can be 6-colored

Assume G has n vertices

Since G is planar, it has some
node v with degree at most 5

Remove v and color by Induction Hypothesis



Not too difficult to give an inductive proof
of 5-colorability, using same fact that some
vertex has degree <5



Not too difficult to give an inductive proof
of 5-colorability, using same fact that some

vertex has degree <5

4-color theorem remains challenging!




Trees

e Counting Trees
 Different Characterizations
 Cayley’s formula

Planar Graphs

e Definition

e Euler’s Theorem

e Coloring Planar Graphs

Here’s What
You Need to
Know...
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