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What’s a tree?



A tree is a connected 
graph with no cycles
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2:

3:

4:

5:



We’ll pass around a piece of  
paper.  Draw a new 8-node tree, 
and put your name next to it.  
(There are 23 of  them…)



At the shy people party, people 
enter one-by-one, and as a person 
comes in, (s)he shakes hand with 
only one person already at the party.  

The Shy People Party



At the shy people party, people 
enter one-by-one, and as a person 
comes in, (s)he shakes hand with 
only one person already at the party.  

Prove that at a shy party with n people 
(n >= 2), at least two people have shaken 
hands with only one other person.

The Shy People Party
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Theorem:  Let G be a graph with n nodes 
and e edges

The following are equivalent:

1. G is a tree (connected, acyclic)

3. G is connected and n = e + 1 

4. G is acyclic and n = e + 1

5. G is acyclic and if  any two non-adjacent 
points are joined by a line, the resulting 
graph has exactly one cycle

2. Every two nodes of  G are 
joined by a unique path



To prove this, it suffices to show
 1 => 2 => 3 => 4 => 5 => 1
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 1 => 2 1. G is a tree (connected, acyclic)

2. Every two nodes of  G are 
joined by a unique path

Proof: (by contradiction)

Assume G is a tree that has two nodes 
connected by two different paths:

Then there exists a cycle!
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joined by a unique path

Proof: (by induction)

Assume true for every graph with < n nodes

3. G is connected and n = e + 1 

Let G have n nodes and let x and y be adjacent

x y
G1 G2



 2 => 3 2. Every two nodes of  G are 
joined by a unique path

Proof: (by induction)

Assume true for every graph with < n nodes

3. G is connected and n = e + 1 

Let G have n nodes and let x and y be adjacent

Let n1,e1 be number of  nodes and edges in G1

x y
G1 G2



 2 => 3 2. Every two nodes of  G are 
joined by a unique path

Proof: (by induction)

Assume true for every graph with < n nodes

3. G is connected and n = e + 1 

Let G have n nodes and let x and y be adjacent

Let n1,e1 be number of  nodes and edges in G1

Then n = n1 + n2 = e1 + e2 + 2 = e + 1 

x y
G1 G2
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 3 => 4 

Proof: (by contradiction)

Assume G is connected with n = e + 1, 
and G has a cycle containing k nodes

3. G is connected and n = e + 1 

4. G is acyclic and n = e + 1

k nodes

Note that the cycle has k nodes and k edges

Start adding nodes and edges until you 
cover the whole graph



 3 => 4 

Proof: (by contradiction)

Assume G is connected with n = e + 1, 
and G has a cycle containing k nodes

3. G is connected and n = e + 1 

4. G is acyclic and n = e + 1

k nodes

Note that the cycle has k nodes and k edges

Start adding nodes and edges until you 
cover the whole graph

Number of  edges in the graph will be at least n
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Corollary:  Every nontrivial tree has at least 
two endpoints (points of  degree 1)

Proof:

Assume all but one of  the points in the 
tree have degree at least 2

Then the total number of  edges in the tree 
is at least (2n-1)/2 = n - 1/2 > n - 1

In any graph, sum of  the degrees = 2e
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2 1 3



How many labeled trees are 
there with four nodes?

a

b

c

d
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How many labeled trees are 
there with five nodes?

5 
labelings

5 x     x4 3 5!/ 2

125 labeled trees

labelings labelings
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How many labeled trees are 
there with n nodes?

16 labeled trees with 4 nodes

3 labeled trees with 3 nodes

125 labeled trees with 5 nodes

nn-2 labeled trees with n nodes



The number of  labeled trees 
on n nodes is nn-2

Cayley’s Formula
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The proof  will use the correspondence principle

Each labeled tree on n nodes

corresponds to

A sequence in {1,2,…,n}n-2 (that is, n-2 
numbers, each in the range [1..n])
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Let L be the degree-1 node with 
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7
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Let L be the degree-1 node with 
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Define the ith element of  the sequence 
as the label of  the node adjacent to L

Delete the node L from the tree
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How to make a sequence from a tree?

Example:
4

8

Loop through i from 1 to n-2

Let L be the degree-1 node with 
the lowest label

Define the ith element of  the sequence 
as the label of  the node adjacent to L

Delete the node L from the tree
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How to make a sequence from a tree?

Example:

Loop through i from 1 to n-2

Let L be the degree-1 node with 
the lowest label

Define the ith element of  the sequence 
as the label of  the node adjacent to L

Delete the node L from the tree

1 3 3 4 4 4
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How to reconstruct the unique tree from 
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Loop until S is empty
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 Delete i from I
 Delete s from S

Let I = {1, 2, 3, …, n} 



How to reconstruct the unique tree from 
a sequence S:
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How to reconstruct the unique tree from 
a sequence S:

Loop until S is empty
Let i = smallest # in I but not in S
Let s = first label in sequence S
 Add edge {i, s} to the tree
 Delete i from I
 Delete s from S

Let I = {1, 2, 3, …, n} 

Add edge {a,b}, where I = {a,b}

5

2
1

3

6
7

4
8

1 3 3 4 4 4
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Spanning Trees
A spanning tree of  a graph G is a tree that 
touches every node of  G and uses only 
edges from G

Every connected graph has a spanning tree



A graph is planar if  it 
can be drawn in the 

plane without crossing 
edges
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Examples of  Planar Graphs

=



http://www.planarity.net
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Faces
A planar graph splits the 
plane into disjoint faces

4 faces



Euler’s Formula

If  G is a connected planar graph 
with n vertices, e edges and f  

faces, then  n – e + f  = 2
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Rather than using induction, we’ll use 
the important notion of  the dual graph

Dual = put a node in every face, and an edge 
between every adjacent face
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Let G* be the dual 
graph of  G

Let T be a spanning 
tree of  G

Let T* be the graph where there is an edge 
in dual graph for each edge in G – T 

Then T* is a spanning tree for G* 

n = eT + 1

f  = eT* + 1

n + f  = eT + eT* + 2
= e + 2
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Corollary:  Let G be a simple planar graph 
with n > 2 vertices. Then:

1. G has a vertex of  degree at most 5

2. G has at most 3n – 6 edges

Proof  of  1:

Then e ≥ 3n

In any graph, (sum of  degrees) = 2e

Furthermore, since G is simple, 3f  ≤ 2e

Assume all vertices have degree ≥ 6

So 3n + 3f  ≤ 3e => 3(n-e+f) ≤ 0, contradiction.
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A coloring of  a graph is an assignment of  a 
color to each vertex such that no neighboring 
vertices have the same color

Graph Coloring
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Graph Coloring
Arises surprisingly often in CS

Register allocation: assign temporary 
variables to registers for scheduling 
instructions.  Variables that  interfere, or 
are simultaneously active, cannot  be 
assigned to the same register



Instructions   Live variables
      a
b = a+2
      a,b
c = b*b
      a,c
b = c+1
      a,b
return a*b

a

b c
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Theorem: Every planar graph can be 6-
colored

Proof  Sketch (by induction):

Assume every planar graph with less than n 
vertices can be 6-colored

Assume G has n vertices

Since G is planar, it has some 
node v with degree at most 5

Remove v and color by Induction Hypothesis



Not too difficult to give an inductive proof  
of  5-colorability, using same fact that some 
vertex has degree ≤ 5



Not too difficult to give an inductive proof  
of  5-colorability, using same fact that some 
vertex has degree ≤ 5

4-color theorem remains challenging!



Here’s What 
You Need to 

Know…

Trees
•  Counting Trees
•  Different Characterizations
•  Cayley’s formula

Planar Graphs
•  Definition
•  Euler’s Theorem
•  Coloring Planar Graphs


