What’s a tree?

A tree is a connected graph with no cycles

Upcoming Events
Review Session on Saturday
(5 pm, Wean 5409)
Test on Monday
Election Day
How Many n-Node Trees?

1: •
2: •—•
3: •••
4: •••—•
5: •••••—•

We’ll pass around a piece of paper. Draw a new 8-node tree, and put your name next to it. (There are 23 of them…)

The Shy People Party

At the shy people party, people enter one-by-one, and as a person comes in, (s)he shakes hand with only one person already at the party.

Prove that at a shy party with n people (n >= 2), at least two people have shaken hands with only one other person.
Notation
In this lecture:
n will denote the number of nodes in a graph
e will denote the number of edges in a graph

Theorem: Let G be a graph with n nodes and e edges
The following are equivalent:
1. G is a tree (connected, acyclic)
2. Every two nodes of G are joined by a unique path
3. G is connected and n = e + 1
4. G is acyclic and n = e + 1
5. G is acyclic and if any two non-adjacent points are joined by a line, the resulting graph has exactly one cycle

To prove this, it suffices to show
1 => 2 => 3 => 4 => 5 => 1

Proof: (by contradiction)
Assume G is a tree that has two nodes connected by two different paths:

Then there exists a cycle!
2. Every two nodes of G are joined by a unique path

3. G is connected and \(n = e + 1 \)

Proof: (by induction)

Assume true for every graph with \(< n \) nodes

Let \(G \) have \(n \) nodes and let \(x \) and \(y \) be adjacent

Let \(n_1, e_1 \) be number of nodes and edges in \(G_1 \)
Then \(n = n_1 + n_2 = e_1 + e_2 + 2 = e + 1 \)

3. G is connected and \(n = e + 1 \)

4. G is acyclic and \(n = e + 1 \)

Proof: (by contradiction)

Assume \(G \) is connected with \(n = e + 1 \), and \(G \) has a cycle containing \(k \) nodes

In any graph, sum of the degrees = \(2e \)

Then the total number of edges in the tree is at least \((2n-1)/2 = n - 1/2 > n - 1 \)

How many labeled trees are there with three nodes?

\[
\begin{array}{ccc}
1 & 2 & 3 \\
1 & 3 & 2 \\
2 & 1 & 3 \\
\end{array}
\]

Corollary: Every nontrivial tree has at least two endpoints (points of degree 1)

Proof:

Assume all but one of the points in the tree have degree at least 2

Number of edges in the graph will be at least \(n \)
How many labeled trees are there with four nodes?

How many labeled trees are there with five nodes?

125 labeled trees

How many labeled trees are there with n nodes?

3 labeled trees with 3 nodes
16 labeled trees with 4 nodes
125 labeled trees with 5 nodes

n^{n-2} labeled trees with n nodes

Cayley’s Formula

The number of labeled trees on n nodes is n^{n-2}
The proof will use the correspondence principle.

Each labeled tree on n nodes corresponds to
A sequence in \{1,2,...,n\}^{n-2} (that is, n-2 numbers, each in the range [1..n])

Example:

How to make a sequence from a tree?
Loop through i from 1 to n-2
Let L be the degree-1 node with the lowest label
Define the i^th element of the sequence as the label of the node adjacent to L
Delete the node L from the tree

Example:

How to reconstruct the unique tree from a sequence S:
Let I = \{1, 2, 3, ..., n\}
Loop until S is empty
Let i = smallest # in I but not in S
Let s = first label in sequence S
Add edge \{i, s\} to the tree
Delete i from I
Delete s from S
Add edge \{a,b\}, where I = \{a,b\}

Spanning Trees

A spanning tree of a graph G is a tree that touches every node of G and uses only edges from G

Every connected graph has a spanning tree
A graph is planar if it can be drawn in the plane without crossing edges.

Examples of Planar Graphs

Faces
A planar graph splits the plane into disjoint faces.

http://www.planarity.net
Euler’s Formula
If \(G \) is a connected planar graph with \(n \) vertices, \(e \) edges and \(f \) faces, then \(n - e + f = 2 \).

Rather than using induction, we’ll use the important notion of the dual graph.

Dual = put a node in every face, and an edge between every adjacent face.

Let \(G^* \) be the dual graph of \(G \).
Let \(T \) be a spanning tree of \(G \).
Let \(T^* \) be the graph where there is an edge in dual graph for each edge in \(G - T \).

Then \(T^* \) is a spanning tree for \(G^* \).

\[
\begin{align*}
n &= e_T + 1 \\
n + f &= e_T + e_{T^*} + 2 \\
f &= e_{T^*} + 1 \\
&= e + 2
\end{align*}
\]

Corollary: Let \(G \) be a simple planar graph with \(n > 2 \) vertices. Then:
1. \(G \) has a vertex of degree at most 5
2. \(G \) has at most \(3n - 6 \) edges

Proof of 1:
In any graph, (sum of degrees) = 2\(e \)
Assume all vertices have degree \(\geq 6 \)
Then \(e \geq 3n \)
Furthermore, since \(G \) is simple, \(3f \leq 2e \)
So \(3n + 3f \leq 3e \Rightarrow 3(n-e+f) \leq 0 \), contradiction.
A coloring of a graph is an assignment of a color to each vertex such that no neighboring vertices have the same color.

Graph Coloring

Arises surprisingly often in CS

Register allocation: assign temporary variables to registers for scheduling instructions. Variables that interfere, or are simultaneously active, cannot be assigned to the same register.

Theorem: Every planar graph can be 6-colored

Proof Sketch (by induction):
Assume every planar graph with less than n vertices can be 6-colored
Assume G has n vertices
Since G is planar, it has some node v with degree at most 5
Remove v and color by Induction Hypothesis
Not too difficult to give an inductive proof of 5-colorability, using same fact that some vertex has degree ≤ 5.

4-color theorem remains challenging!

Here’s What You Need to Know…

Trees
- Counting Trees
- Different Characterizations
- Cayley’s formula

Planar Graphs
- Definition
- Euler’s Theorem
- Coloring Planar Graphs