15-251

Great Theoretical Ideas in Computer Science

Graphs

Lecture 18, October 23, 2008

Upcoming Events

Review Session on Saturday (5 pm, Wean 5409)

Test on Monday Election Day

How Many n-Node Trees?

1: 0

2: 0-0

3: 0-0-0

The Shy People Party

At the shy people party, people enter one-by-one, and as a person comes in, (s)he shakes hand with only one person already at the party.

Prove that at a shy party with n people (n >= 2), at least two people have shaken hands with only one other person.

We'll pass around a piece of paper. Draw a new 8-node tree, and put your name next to it. (There are 23 of them...)

The Shy People Party

Notation

In this lecture:

n will denote the number of nodes in a graph e will denote the number of edges in a graph To prove this, it suffices to show

$$1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 4 \Rightarrow 5 \Rightarrow 1$$

Theorem: Let G be a graph with n nodes and e edges

The following are equivalent:

- 1. G is a tree (connected, acyclic)
- 2. Every two nodes of G are joined by a unique path
- 3. G is connected and n = e + 1
- 4. G is acyclic and n = e + 1
- 5. G is acyclic and if any two non-adjacent points are joined by a line, the resulting graph has exactly one cycle

- $1 \Rightarrow 2$ 1. G is a tree (connected, acyclic)
 - 2. Every two nodes of G are joined by a unique path

Proof: (by contradiction)

Assume G is a tree that has two nodes connected by two different paths:

Then there exists a cycle!

2 => 3

2. Every two nodes of G are joined by a unique path

3. G is connected and n = e + 1

Proof: (by induction)

Assume true for every graph with < n nodes Let G have n nodes and let x and y be adjacent

Let n_1, e_1 be number of nodes and edges in G_1 Then $n = n_1 + n_2 = e_1 + e_2 + 2 = e + 1$ Corollary: Every nontrivial tree has at least two endpoints (points of degree 1)

Proof:

Assume all but one of the points in the tree have degree at least 2

In any graph, sum of the degrees = 2e

Then the total number of edges in the tree is at least (2n-1)/2 = n - 1/2 > n - 1

 $3 \Rightarrow 4$ 3. G is connected and n = e + 1

4. G is acyclic and n = e + 1

Proof: (by contradiction)

Assume G is connected with n = e + 1, and G has a cycle containing k nodes

Note that the cycle has k nodes and k edges Start adding nodes and edges until you cover the whole graph

Number of edges in the graph will be at least n

How many labeled trees are there with three nodes?

How many labeled trees are there with four nodes?

How many labeled trees are there with n nodes?

3 labeled trees with 3 nodes

16 labeled trees with 4 nodes

125 labeled trees with 5 nodes

nⁿ⁻² labeled trees with n nodes

How many labeled trees are there with five nodes?

5 labelings 5 x 4 x 3

5!/2

labelings

labelings

125 labeled trees

Cayley's Formula

The number of labeled trees on n nodes is nⁿ⁻²

The proof will use the correspondence principle

Each labeled tree on n nodes corresponds to

A sequence in {1,2,...,n}ⁿ⁻² (that is, n-2 numbers, each in the range [1..n])

How to reconstruct the unique tree from a sequence S:

Let
$$I = \{1, 2, 3, ..., n\}$$

Loop until S is empty

Let i = smallest # in I but not in S

Let s = first label in sequence S

Add edge {i, s} to the tree

Delete i from I

Delete s from S

Add edge $\{a,b\}$, where $I = \{a,b\}$

1 3 3 4 4 4

How to make a sequence from a tree?

Loop through i from 1 to n-2

Let L be the degree-1 node with the lowest label

Define the ith element of the sequence as the label of the node adjacent to L

Delete the node L from the tree

Example:

$$5 \longrightarrow 3 \longrightarrow 4 \longrightarrow 7$$

1 3 3 4 4 4

Spanning Trees

A spanning tree of a graph G is a tree that touches every node of G and uses only edges from G

Every connected graph has a spanning tree

http://www.planarity.net

Examples of Planar Graphs

Faces

A planar graph splits the plane into disjoint faces

Euler's Formula

If G is a connected planar graph with n vertices, e edges and f faces, then n - e + f = 2

Let G* be the dual graph of G

Let T be a spanning tree of G

Let T* be the graph where there is an edge in dual graph for each edge in G – T

Then T* is a spanning tree for G*

$$n = e_T + 1$$
 $n + f = e_T + e_{T^*} + 2$
 $f = e_{T^*} + 1$ $= e + 2$

Rather than using induction, we'll use the important notion of the dual graph

Dual = put a node in every face, and an edge between every adjacent face

Corollary: Let G be a simple planar graph with n > 2 vertices. Then:

- 1. G has a vertex of degree at most 5
- 2. G has at most 3n 6 edges

Proof of 1:

In any graph, (sum of degrees) = 2e

Assume all vertices have degree ≥ 6

Then $e \ge 3n$

Furthermore, since G is simple, $3f \le 2e$

So $3n + 3f \le 3e \Rightarrow 3(n-e+f) \le 0$, contradiction.

Graph Coloring

A coloring of a graph is an assignment of a color to each vertex such that no neighboring vertices have the same color

Instructions	Live variables a
b = a+2	a,b
c = b*b	a,c
b = c+1 return a*b	a,b
. Starri a b	a (

Graph Coloring

Arises surprisingly often in CS

Register allocation: assign temporary variables to registers for scheduling instructions. Variables that interfere, or are simultaneously active, cannot be assigned to the same register

Theorem: Every planar graph can be 6-colored

Proof Sketch (by induction):

Assume every planar graph with less than n vertices can be 6-colored

Assume G has n vertices

Since G is planar, it has some node v with degree at most 5

Remove v and color by Induction Hypothesis

Not too difficult to give an inductive proof of 5-colorability, using same fact that some vertex has degree ≤ 5

4-color theorem remains challenging!

Here's What You Need to Know...

Trees

- Counting Trees
- Different Characterizations
- Cayley's formula

Planar Graphs

- Definition
- Euler's Theorem
- Coloring Planar Graphs