15-251

Great Theoretical Ideas in Computer Science

Randomness and Computation

Lecture 16 (October 16, 2008)

Super-simple and powerful idea

Drawing balls at random

You have a bucket with n balls there are n/100 green balls (good) the remaining are red (bad)

What is the probability of drawing a good ball if you draw a random ball from the bucket?

Now if you draw balls from the bucket at random (with replacement), how many draws until you draw a good ball?

Drawing balls at random

You have a bucket with n balls there are k green balls (good) the remaining are red (bad)

Probability of getting a good ball = k/n.

Expected number of draws until a good ball = n/k.

even simpler idea...

Repeated experiments

Suppose you run a random experiment that fails with probability 1/4 independent of the past.

What is the probability that you succeed in k steps?

= 1 - probability you fail in all k steps

$$= 1 - (\frac{1}{4})^{k}$$

If probability of failure was at most δ , then probability of success at least once in k steps is at least 1 - δ^k

the following (trivial) question

Representing numbers

Question:

Given two numbers a and b, both \approx n, how long does it take to add them together?

- a) \approx n
- b) $\approx \sqrt{n}$
- c) $\approx \log n$
- d) $\approx 2^n$

Representing the number n takes $\approx \log n$ bits

Representing numbers

Suppose I want to sell you (for \$1M) an algorithm that takes as input a number n, and factors them in $\approx \sqrt{n}$ time, should you accept my offer?

Factoring fast ⇒ breaking RSA!

Finally, remember this bit of algebra

The Fundamental theorem of Algebra

A root of a polynomial p(x) is a value r, such that p(r) = 0.

If p(x) is a polynomial of degree d, how many roots can it have?

At most d.

How to check your work...

Checking Our Work

Suppose we want to check p(x) q(x) = r(x), where p, q and r are three polynomials.

$$(x-1)(x^3+x^2+x+1) = x^4-1$$

If the polynomials have degree n, requires n² mults by elementary school algorithms

-- or can do faster with fancy techniques like the Fast Fourier transform.

Can we check if p(x) q(x) = r(x) more efficiently?

Idea: Evaluate on Random Inputs

Let f(x) = p(x) q(x) - r(x). Is f zero everywhere?

Idea: Evaluate f on a random input z.

If we get nonzero f(z), clearly f is not zero.

If we get f(z) = 0, this is (weak) evidence that f is zero everywhere.

If f(x) is a degree 2n polynomial, it can only have 2n roots. We're unlikely to guess one of these by chance!

1. Say
$$S = \{1, 2, ..., 4n\}$$

2. Select value z uniformly at random from S.

3. Evaluate
$$f(z) = p(z) q(z) - r(z)$$

4. If f(z) = 0, output "possibly equal" otherwise output "not equal"

What is the probability the algorithm outputs "not equal" when in fact f = 0?

Zero!

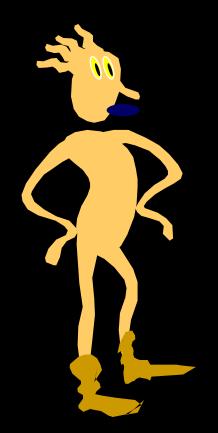
If p(x)q(x) = r(x), always correct!

What is the probability the algorithm outputs "maybe equal" when in fact f ≠ 0?

Let $A = \{z \mid z \text{ is a root of } f\}.$

Recall that $|A| \le degree of f \le 2n$.

Therefore: P(picked a root) $\leq 2n/4n = 1/2$



By repeating this procedure k times, we are "fooled" by the event

$$f(z_1) = f(z_2) = ... = f(z_k) = 0$$

when actually $f(x) \neq 0$

with probability no bigger than

P(picked root k times) $\leq (\frac{1}{2})^2$

This idea can be used for testing equality of lots of different types of "functions"!

"Random Fingerprinting"

Find a small random "fingerprint" of a large object: e.g., the value f(z) of a polynomial at a point z.

This fingerprint captures the essential information about the larger object: if two large objects are different, their fingerprints are usually different!

Earth has huge file X that she transferred to Moon. Moon gets Y.

Did you get that file ok? Was the transmission accurate? Uh, yeah.... I guess.... Earth: X

How do we quickly check for accuracy? More soon...

Moon: Y

How do you pick a random 1000-bit prime?

Picking A Random Prime

"Pick a random 1000-bit prime."

Strategy:

- 1) Generate random 1000-bit number
- 2) Test each one for primality
 [more on this later in the lecture]
- 3) Repeat until you find a prime.

How many retries until we succeed?

Recall the balls-from-bucket experiment?

If $n = number of 1000-bit numbers = 2^{1000}$

and $k = number of primes in 0 ... 2^{1000}-1$

then E[number of rounds] = n/k.

Question:

How many primes are there between 1 and n?

(approximately...)

Legendre

Let $\pi(n)$ be the number of primes between 1 and n.

I wonder how fast π (n) grows?

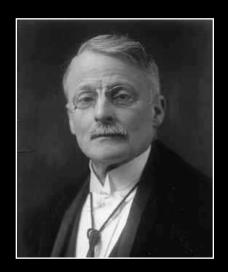
Conjecture [1790s]:

$$\lim_{n\to\infty}\frac{\pi(n)}{n/\ln n}=1$$

Gauss

Their estimates

X	pi(<i>x</i>)	Gauss' Li	Legendre	$x/(\log x - 1)$
1000	168	178	172	169
10000	1229	1246	1231	1218
100000	9592	9630	9588	9512
1000000	78498	78628	78534	78030
1000000	664579	664918	665138	661459
10000000	5761455	5762209	5769341	5740304
100000000	50847534	50849235	50917519	50701542
1000000000	455052511	455055614	455743004	454011971



De la Vallée Poussin

J-S Hadamard

Two independent proofs of the Prime Density Theorem [1896]:

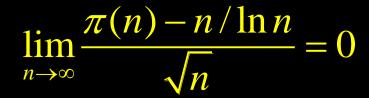
$$\lim_{n\to\infty} \frac{\pi(n)}{n/\ln n} = 1$$

The Prime Density Theorem

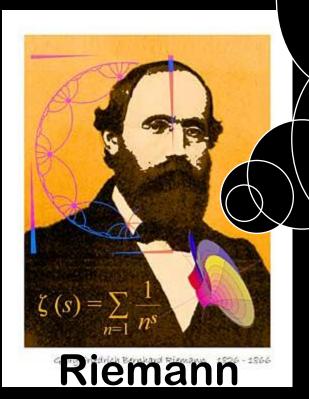
This theorem remains one of the celebrated achievements of number theory.

In fact, an <u>even sharper conjecture</u> remains one of the great open problems of mathematics!

The Riemann Hypothesis [1859]:

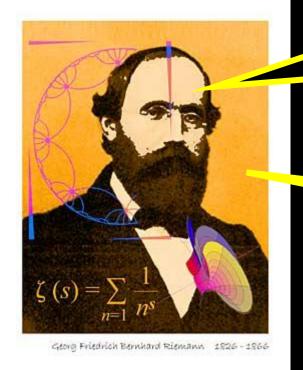


still unproven!



The Prime Density Theorem

$$\lim_{n\to\infty}\frac{\pi(n)}{n/\ln n}=1$$



Slightly easier to show $\pi(n)/n \ge 1/(2 \log n)$.

In other words, at least (1/2B) of all B-bit numbers are prime

So, for this algo...

"Pick a random 1000-bit prime."

Strategy:

- 1) Generate random 1000-bit number
- 2) Test each one for primality

[more on this later in the lecture]

3) Repeat until you find a prime.

the facts are these:

If we're picking 1000-bit numbers,

number of numbers is $n = 2^{1000}$

number of primes is $k \ge n/(2 \log n)$

Hence, expected number of trials before we get a prime number = $n/k \le 2 \log n$.

Moral of the story

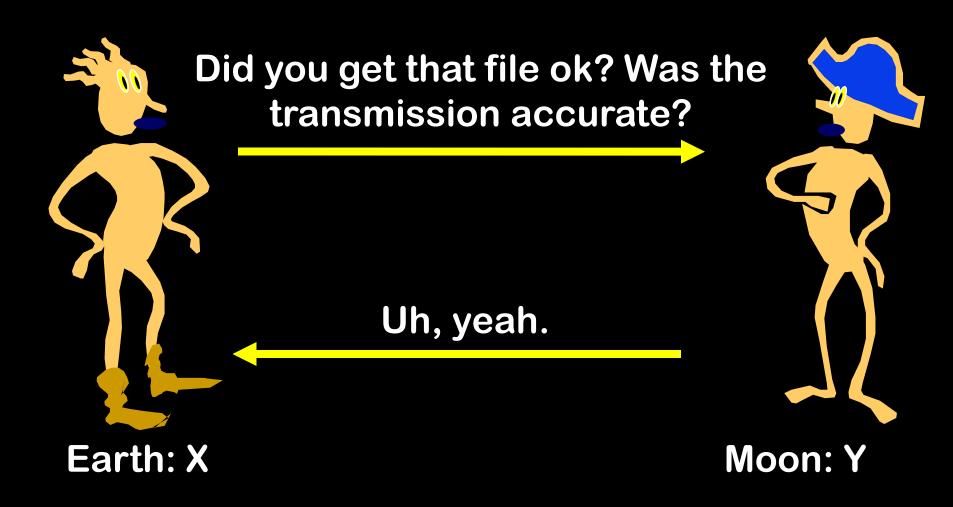
Picking a random B-bit prime is "almost as easy as"* picking a random B-bit number.

Need to try at most 2 log B times, in expectation.

(*Provided we can check for primality.

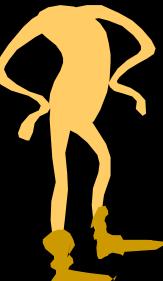
More on this later.)

Earth has huge file X that she transferred to Moon. Moon gets Y.



Are X and Y the same N-bit numbers?

p = random 2logN-bit prime
Send (p, X mod p)



Answer to "X ≡ Y mod p?"

Why is this any good?

Easy case:

If X = Y, then $X \equiv Y \pmod{p}$

Why is this any good?

Harder case:

What if $X \neq Y$? We mess up if $p \mid (X-Y)$.

Define Z = (X-Y). To mess up, p must divide Z.

Z is an N-bit number.

 \Rightarrow Z is at most 2^N.

But each prime ≥ 2.

Hence Z has at most N prime divisors.

Almost there...

Z = (X-Y) has at most N prime divisors.

How many 2logN-bit primes?

A random B-bit number has at least a 1/2B chance of being prime.

at least $2^{2\log N}/(2*2\log N) = N^2/(4\log N) >> 2N$ primes.

Only (at most) half of them divide Z.

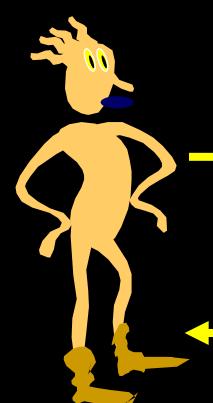
Theorem: et X and Y be distinc

Let X and Y be distinct N-bit numbers. Let p be a random 2logN-bit prime.

Then
Prob [X = Y mod p] < 1/2

Earth-Moon protocol makes mistake with probability at most 1/2!

Boosting the success probability



Pick t random 2logN-bit primes: P_1 , P_2 , ..., P_t Send (X mod P_i) for $1 \le i \le t$

k answers to " $X = Y \mod P_i$?"

EARTH: X

MOON: Y

Exponentially smaller error probability

If X=Y, always accept.

If $X \neq Y$, Prob [X = Y mod P_i for all i] $\leq (1/2)^t$

Picking A Random Prime

"Pick a random B-bit prime."

Strategy:

- 1) Generate random B-bit numbers
- 2) Test each one for primality

How do we test if a number n is prime?

Primality Testing: Trial Division On Input n

Trial division up to \sqrt{n}

for k = 2 to \sqrt{n} do if $k \mid n$ then return "n is not prime" otherwise return "n is prime"

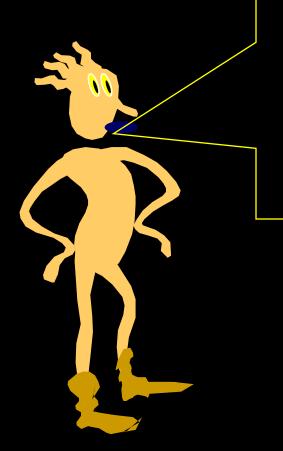
about \sqrt{n} divisions

Trial division performs \sqrt{n} divisions on input n.

Is that efficient?

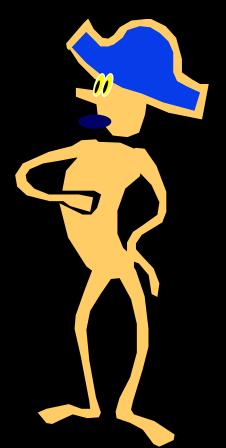
For a 1000-bit number, this will take about 2⁵⁰⁰ operations.

That's not very efficient at all!!!

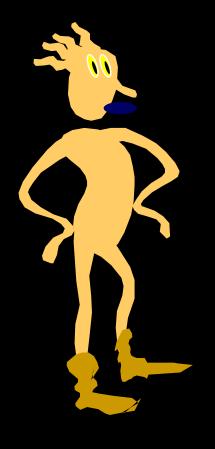


But so many cryptosystems, like RSA and PGP, use fast primality testing as part of their subroutine to generate a random n-bit prime!

What is the fast primality testing algorithm that they use?



There are fast *randomized* algorithms to do primality testing.

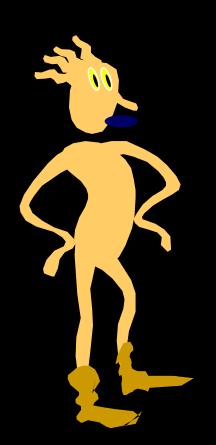


Solovay-Strassen test

If n is composite, how would you show it?

Give a non-trivial factor of n.

We will use a *different* certificate of compositeness that does not require factoring.



simple idea #1

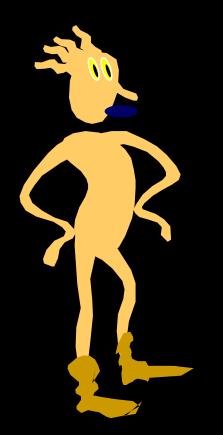
Recall that for prime p, $a \neq 0$ mod p: Fermat Little Thm: $a^{p-1} = 1$ mod p.

Hence, $a^{(p-1)/2} = \pm 1$.

So if we could find some a \neq 0 mod p such that $a^{(p-1)/2} \neq \pm 1$

 \Rightarrow p must not be prime.

Good_n = {
$$a \in Z_n^* \mid a^{(n-1)/2} \neq \pm 1$$
 }
(these prove that n is not prime)



Useless_n = { $a \in Z_n^* \mid a^{(n-1)/2} = \pm 1$ } (these don't prove anything)

Theorem:

if Good_n is not empty, then Good_n contains <u>at least half</u> of Z_n^{*}.

simple idea #2

Remember Lagrange's theorem:

If G is a group, and U is a subgroup then |U| divides |G|.

In particular, if $U \neq G$ then $|U| \leq |G|/2$.

Proof

Good_n = {
$$a \in Z_n^* \mid a^{(n-1)/2} \neq \pm 1$$
 }
Useless_n = { $a \in Z_n^* \mid a^{(n-1)/2} = \pm 1$ }

Fact 1: Useless_n is a subgroup of Z_n*

Fact 2: If H is a subgroup of G then |H| divides |G|.

- \Rightarrow If Good is not empty, then |Useless| \leq |Z_n^{*}| / 2
- \Rightarrow |Good| \geq | \mathbb{Z}_{n}^{*} | / 2

Randomized Primality Test

Let's suppose that $Good_n = \{ a \in \mathbb{Z}_n^* \mid a^{(n-1)/2} \neq \pm 1 \}$ contains at least half the elements of \mathbb{Z}_n^* .

Randomized Test:

```
For i = 1 to k:

Pick random a_i \in [2 .. n-1];

If GCD(a_i, n) \neq 1, Halt with "Composite";

If a_i^{(n-1)/2} \neq \pm 1, Halt with "Composite";
```

Halt with "I think n is prime. I am only wrong (½)k fraction of times I think that n is prime."

Is Good_n non-empty for all primes n?

Recall:
$$Good_n = \{ a \in Z_n^* \mid a^{(n-1)/2} \neq \pm 1 \}$$

Good_n may be empty even if n is not a prime.

A Carmichael number is a number n such that $a^{(n-1)/2} = 1 \pmod{n}$ for all numbers a with gcd(a,n)=1.

Example: n = 561 = 3*11*17 (the smallest Carmichael number)

1105 = 5*13*17

1729 = 7*13*19

And there are many of them. For sufficiently large m, there are at least m^{2/7} Carmichael numbers between 1 and m.

The saving grace

The randomized test fails only for Carmichael numbers.

But, there is an efficient way to test for Carmichael numbers.

Which gives an efficient algorithm for primality.

Randomized Primality Test

Let's suppose that $Good_n$ contains at least half the elements of Z_n^* .

Randomized Test:

```
For i = 1 to k:

Pick random a_i \in [2 .. n-1];

If GCD(a_i, n) \neq 1, Halt with "Composite";

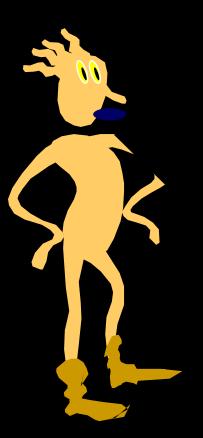
If a_i^{(n-1)/2} \neq \pm 1, Halt with "Composite";
```

If n is Carmichael, Halt with "Composite"

Halt with "I think n is prime. I am only wrong (½)k fraction of times I think that n is prime."

Primality Versus Factoring

Primality has a fast randomized algorithm.



Factoring is not known to have a fast algorithm. The fastest randomized algorithm currently known takes exp(O(n log n log n)^{1/3}) operations on n-bit numbers.

number	digits	prize	factored
RSA-100	100		Apr. 1991
RSA-110	110		Apr. 1992
RSA-120	120		Jun. 1993
RSA-129	129	\$100	Apr. 1994
RSA-130	130		Apr. 10, 1996
RSA-140	140		Feb. 2, 1999
RSA-150	150		Apr. 16, 2004
RSA-155	155		Aug. 22, 1999
RSA-160	160		Apr. 1, 2003
RSA-200	200		May 9, 2005
RSA-576	174	\$10,000	Dec. 3, 2003
RSA-640	193	\$20,000	Nov 2, 2005
RSA-704	212	\$30,000	open
RSA-768	232	\$50,000	open
RSA-896	270	\$75,000	open
RSA-1024	309	\$100,000	open
RSA-1536	463	\$150,000	open
RSA-2048	617	\$200,000	open

Google: RSA Challenge Numbers (the challenge is no longer active)

The techniques we've been discussing today are sometimes called "fingerprinting."

The idea is that a large object such as a string (or document, or function, or data structure...) is represented by a much smaller "fingerprint" using randomness.

If two objects have identical sets of fingerprints, they're likely the same object.

Here's What You Need to Know...

Primes

Prime number theorem

How to pick random primes

Fingerprinting

How to check if a polynomial of degree d is zero
How to check if two n-bit strings are identical

Primality

Fermat's Little Theorem
Algorithm for testing primality