15-251

Great Theoretical Ideas
in Computer Science

Randomness and
Computation

Lecture 16 (October 16, 2008)

\

\

v, &
e

Super-simple and powerful idea

Drawing balls at random

You have a bucket with n balls
there are n/100 green balls (good)
the remaining are red (bad)

What is the probability of drawing a good bali
if you draw a random ball from the bucket?

Now if you draw balls from the bucket at random
(with replacement), how many draws until you
draw a good ball?

Drawing balls at random

You have a bucket with n balls
there are k green balls (good)
the remaining are red (bad)

Probability of getting a good ball
= k/n.

Expected number of draws until a good ball
= n/k.

even simpler idea...

Repeated experiments

Suppose you run a random experiment that fails
with probability V2 independent of the past.

What is the probability that you succeed in k steps?
=1 — probability you fail in all k steps

=1 - (1/4)k

If probability of failure was at most ¢, then

probability of success at least once in k steps
is at least 1 - §*

the following (trivial) question

Representing numbers

Question:

Given two numbers a and b, both ~ n,
how long does it take to add them together?

a)~n
b) ~ Vn
c) ~logn
d) ~ 2"

Representing the number n takes ~ log n bits

Representing numbers

Factoring
Suppose | want to sell you (for $1M) fast —

an algorithm breaking
that takes as input a number n, RSA!
and factors them in = Vn time, *®
should you accept my offer?

Finally, remember this bit of algebra

The Fundamental theorem of Algebra

A root of a polynomial p(x) is a value r,
such that p(r) = 0.

If p(x) is a polynomial of degree d,
how many roots can it have?

At most d.

How to check your work...

Checking Our Work

Suppose we want to check p(x) q(x) = r(x),
where p, q and r are three polynomials.

(x-1)(x3+x2+x+1) = x*-1

If the polynomials have degree n, requires

n? mults by elementary school algorithms

-- or can do faster with fancy techniques like the Fast
Fourier transform.

Can we check if p(x) q(x) = r(x) more
efficiently?

Idea: Evaluate on Random Inputs

Let f(x) = p(x) g(x) — r(x). Is f zero everywhere?
Idea: Evaluate f on a random input z.
If we get nonzero f(z), clearly f is not zero.

If we get f(z) =0, this is (weak) evidence that f
is zero everywhere.

If f(x) is a degree 2n polynomial, it can only
have 2n roots. We’re unlikely to guess one of
these by chance!

Equality checking by random
evaluation

1. SayS={1, 2, ...,4n}
2. Select value z uniformly at random from S.
3. Evaluate f(z) = p(z) q(z) — r(z)

4. If f(z) = 0, output “possibly equal”
otherwise output “not equal”

Equality checking by random
evaluation

What is the probability the algorithm
outputs “not equal” whenin factf =0?

Zero!

If p(x)a(x) =r(x) , always correct!

Equality checking by random
evaluation

What is the probability the algorithm
outputs “maybe equal” when in factf #0?

LetA={z|zis aroot of f}.
Recall that |A| < degree of f < 2n.

Therefore: P(picked a root)
<2n/4n=1/2

Equality checking by random
evaluation

By repeating this procedure k times,
we are “fooled” by the event

B

f(zy) =1f(z,)=...=1(z,)=0
when actually f(x) =0

with probability no bigger than

P(picked root k times) < (12)*2

This idea can be used for
testing equality of lots of
different types of
“functions”!

“Random Fingerprinting”

Find a small random “fingerprint” of a large
object: e.g., the value f(z) of a polynomial
at a point z.

This fingerprint captures the essential
information about the larger object:
if two large objects are different, their
fingerprints are usually different!

Earth has huge file X that she
transferred to Moon. Moon gets Y.

Did you get that file ok? Was the
transmission accurate?

—

Uh, yeah....
—
| guess....

Earth: X How do we quickly check Moon: Y
for accuracy? More soon...

How do you pick a random
1000-bit prime?

Picking A Random Prime

“Pick a random 1000-bit prime.”

Strategy:
1) Generate random 1000-bit number
2) Test each one for primality

[more on this later in the lecture]

3) Repeat until you find a prime.

How many retries until we succeed?

Recall the balls-from-bucket experiment?

If n = number of 1000-bit numbers = 21000
and k = number of primes in 0 ... 210001

then E[number of rounds] = n/k.

Question:

How many primes are there
between 1 and n?

(approximately...)

Let n(n) be the
number of primes
between 1 and n.

| wonder how fast
n(n) grows?

Conjecture [1790s]:
im0 g

—on/lnn
\

Their estimates

X pi(x) Gauss' Li Legendre x/(log x - 1)

1000 168 178 172 169

10000 1229 1246 1231 1218
100000 9592 9630 9588 9512
1000000 78498 78628 78534 J4:10K]0
10000000 664579 664918 665138 661459
100000000 5761455 5762209 5769341 5740304
1000000000 50847534 50849235 50917519 50701542
10000000000 455052511 455055614 455743004 454011971

W

De la Vallée
Poussin

v A A

' AR A
VL L o \
’ Nt RN
. s i/

: A

3 W\ /

\

Two independent
proofs of the
Prime Density

Theorem [1896]:

imZN)
o N /]nn

SNE R
J-S Hadamard

The Prime Density Theorem

This theorem remains one of the
celebrated achievements of
number theory.

In fact, an even sharper conjecture
remains one of the great open
problems of mathematics!

The Riemann
Hypothesis
[1859]:

: —n/lnn
lim 7(n)-n =0
Las \/ﬁ

still unproven!
|

Riemann_

The Prime Density Theorem

jim =N _ 4
n—on/lnn

Slightly easier to show
- n(n)/n > 1/(2 logn).
In other words, at least (1/2B)
of all B-bit numbers are prime

S0, for this algo...

“Pick a random 1000-bit prime.”

Strategy:
1) Generate random 1000-bit number
2) Test each one for primality

[more on this later in the lecture]

3) Repeat until you find a prime.

the facts are these:

If we’re picking 1000-bit numbers,

number of numbers is n = 21000
number of primes is k > n/(2 log n)

Hence, expected number of trials before we get a
prime number =n/k <2 log n.

Moral of the story

Picking a random B-bit prime is
“almost as easy as”*
picking a random B-bit number.

Need to try at most 2 log B times,
In expectation.

(*Provided we can check for primality.
More on this later.)

Earth has huge file X that she
transferred to Moon. Moon gets Y.

Did you get that file ok? Was the
transmission accurate?

—

Uh, yeah.

Earth: X Moon:Y

Are X and Y the same N-bit
numbers?

p = random 2logN-bit prime
Send (p, X mod p)

—
Answer to “X=Y mod p ?” i i
—

Earth X Moon:Y

Why is this any good?

Easy case:
IfX=Y,thenX=Y (mod p)

Why is this any good?

Harder case:
What if X # Y? We mess up if p | (X-Y).

Define Z = (X-Y). To mess up, p must divide Z.

Z is an N-bit number.
— Z is at most 2N,

But each prime > 2.
Hence Z has at most N prime divisors.

Almost there...

Z = (X-Y) has at most N prime divisors.

How many 2logN-bit primes?

A random B-bit number has at least a
1/2B chance of being prime.

at least 221°9N/(2*2logN) = N?/(4logN) >> 2N primes.

Only (at most) half of them divide Z.

Theorem:
Let X and Y be distinct N-bit
numbers. Let p be a random
2logN-bit prime.

Then
Prob [X=Y mod p] <1/2

Earth-Moon protocol makes mistake
with probability at most 1/2!

Boosting the success probability

Pick t random
2logN-bit primes: P,, P,, ..

Send (X mod P;) for1 <i < t
—
k answers to “X=Y mod P, ?” i i

EARTH X MOON:Y

Exponentially smaller error probability

If X=Y, always accept.

IfX=Y,
Prob [X =Y mod P, for all i] < (1/2)t

Picking A Random Prime

“Pick a random B-bit prime.”

Strategy:
1) Generate random B-bit numbers
2) Test each one for primality

How do we test if a number nis prime?

Primality Testing:
Trial Division On Input n

Trial division up to Vn

for k=2 toVndo
if k|n then
return “nis not prime”
otherwise return “nis prime”

about Vn divisions

Trial division performs Vndivisions
on input n.

Is that efficient?

For a 1000-bit number, this will take
about 2°% operations.

That’s not very efficient at all!!!

More on efficiency and run-times
in a future lecture...

But so many cryptosystems,
like RSA and PGP, use fast
primality testing as part of

their subroutine to generate
a random n-bit prime!

What is the fast primality
testing algorithm that they
use?

There are fast randomized
algorithms to do primality
testing.

Miller-Rabin test Solovay-Strassen test

If nis composite, how would
you show it?

Give a non-trivial factor of n.

But, we don’t know how to
factor numbers fast.

We will use a different
certificate of compositeness
that does not require
factoring.

simple idea #1

Recall that for prime p, a # 0 mod p:
Fermat Little Thm: aP' =1 mod p.

Hence, alP-V2 = {1,

So if we could find somea=0modp
such that atP-1)/2 = 1-1

= p must not be prime.

Good, ={acZ |a™V2x 41}
(these prove that n is not prime)

Useless,={acZ |a™2= 11}
(these don’t prove anything)

B

Theorem:
If Good,, is not empty, then
Good_ contains at least half of Z_".

simple idea #2

Remember Lagrange’s theorem:

If G is a group, and U is a subgroup
then |U| divides |G]|.

In particular, if U = G then |U| £ |G]/2.

Proof

Good, ={acZ |a"D2: 11}
Useless,={ac Z |a™2= +1}

Fact 1: Useless,, is a subgroup of Z,,
Fact 2: If H is a subgroup of G then |H| divides |G]|.
= If Good is not empty, then |Useless| < |Zn*| | 2

— |Good| > 2,7 / 2

Randomized Primality Test

Let’s suppose that Good, ={ac Z’ | a2« +1}
contains at least half the elements of Z*.

Randomized Test:
Fori=1tok:
Pick random a, € [2 .. n-1];
If GCD(a,, n) # 1, Halt with “Composite’;
If a2 = +1 , Halt with “Composite”;

Halt with “I think n is prime. | am only wrong ('2)k fraction
of times | think that n is prime.”

Is Good,, non-empty for all primes n?

Recall: Good,={acZ | a™12 11}

Good A may be empty even if n is not a prime.

A Carmichael number is a number n such that
a(™1)2 =1 (mod n) for all numbers a with gcd(a,n)=1.

Example: n=561=3*11*17 (the smallest Carmichael
number)

1105 =5*13*17
1729 = 7*13*19

And there are many of them. For sufficiently large m, there
are at least m?7 Carmichael numbers between 1 and m.

The saving grace

The randomized test fails only for
Carmichael numbers.

But, there is an efficient way to test for
Carmichael numbers.

Which gives an efficient algorithm for
primality.

Randomized Primality Test

Let’s suppose that Good,, contains at least
half the elements of Z*,..

Randomized Test:
Fori=1tok:
Pick random a, € [2 .. n-1];
If GCD(a,;, n) # 1, Halt with “Composite”;
If a2 = +1 , Halt with “Composite”;

If nis Carmichael, Halt with “Composite”

Halt with “I think n is prime. | am only wrong ('2)k fraction
of times | think that n is prime.”

Primality Versus Factoring

Primality has a fast randomized
algorithm.

Factoring is not known to have a
fast algorithm. The fastest
randomized algorithm
currently known takes

exp(O(n log nlog n)'3)
operations on n-bit numbers.

number digits prize factored
RSA-100 100 Apr. 1991
RSA-110 110 Apr. 1992
RSA-120 120 Jun. 1993
RSA-129 129 $100 Apr. 1994
RSA-130 130 Apr. 10, 1996
RSA-140 140 Feb. 2, 1999
RSA-150 150 Apr. 16, 2004
RSA-155 155 Aug. 22, 1999
RSA-160 160 Apr. 1, 2003
RSA-200 200 May 9, 2005
RSA-576 174 $10,000 Dec. 3, 2003
RSA-640 193 $20,000 Nov 2, 2005
RSA-704 212 $30,000 open
RSA-768 232 $50,000 open
RSA-896 270 $75,000 open
RSA-1024 309 $100,000 open
RSA-1536 463 $150,000 open
RSA-2048 617 $200,000 open

Google: RSA Challenge Numbers
(the challenge is no longer active)

The techniques we’ve been
discussing today are sometimes
called “fingerprinting.”

The idea is that a large object such as
a string (or document, or function, or
data structure...) is represented by a

much smaller “fingerprint”
using randomness.

If two objects have identical sets of
fingerprints, they’re likely the same
(o] o][=To1 &

M
A

.\ s
™
-
. -
-
S
S~
-
-
-

3
X
N
N

N

Here’s What
You Need to
Know...

Py

MEIUER

Prime number theorem
How to pick random primes

Fingerprinting
How to check if a polynomial
of degree d is zero
How to check if two n-bit strings
are identical

Primality
Fermat’s Little Theorem
Algorithm for testing primality

