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Super-simple and powerful idea



Drawing balls at random

You have a bucket with n balls

there are n/100 green balls (good)

the remaining are red (bad)

What is the probability of drawing a good ball

if you draw a random ball from the bucket?

Now if you draw balls from the bucket at random

(with replacement), how many draws until you 

draw a good ball?



Drawing balls at random

You have a bucket with n balls

there are k green balls (good)

the remaining are red (bad)

Probability of getting a good ball

= k/n.

Expected number of draws until a good ball

= n/k.



even simpler idea…



Repeated experiments

Suppose you run a random experiment that fails 

with probability ¼ independent of the past.

What is the probability that you succeed in k steps?

= 1 – probability you fail in all k steps

= 1 – (¼)k

If probability of failure was at most ±, then

probability of success at least once in k steps 
is at least 1 - ±k



the following (trivial) question



Representing numbers

Question:

Given two numbers a and b, both ¼ n,

how long does it take to add them together?

a) ¼ n

b) ¼ n

c) ¼ log n

d) ¼ 2n

Representing the number n takes ¼ log n bits



Representing numbers

Suppose I want to sell you (for $1M) 

an algorithm 

that takes as input a number n, 

and factors them in ≈ n time, 

should you accept my offer?

Factoring 

fast 

breaking 

RSA!



Finally, remember this bit of algebra



The Fundamental theorem of Algebra

A root of a polynomial p(x) is a value r, 

such that p(r) = 0.

If p(x) is a polynomial of degree d, 

how many roots can it have?

At most d.



How to check your work…



Checking Our Work

Suppose we want to check p(x) q(x) = r(x), 
where p, q and r are three polynomials.

(x-1)(x3+x2+x+1) = x4-1

If  the polynomials have degree n, requires 
n2 mults by elementary school algorithms 
-- or can do faster with fancy techniques like the Fast 
Fourier transform.

Can we check if  p(x) q(x) = r(x) more 
efficiently? 



Idea: Evaluate on Random Inputs

Let f(x) = p(x) q(x) – r(x).  Is f  zero everywhere?

Idea: Evaluate f  on a random input z.

If  we get nonzero f(z), clearly f  is not  zero.

If  we get f(z) = 0, this is (weak) evidence that  f  
is zero everywhere.

If  f(x) is a degree 2n polynomial, it can only 
have 2n roots.  We’re unlikely to guess one of  
these by chance!



Equality checking by random 

evaluation

1. Say S = {1, 2, …, 4n}

2. Select value z uniformly at random from S.

3. Evaluate f(z) = p(z) q(z) – r(z)

4. If  f(z) = 0, output “possibly equal”

otherwise output “not equal”



Equality checking by random 

evaluation

What is the probability the algorithm 

outputs “not equal” when in fact f  0?

Zero!

If  p(x)q(x) = r(x) , always correct!



Equality checking by random 

evaluation

What is the probability the algorithm 

outputs “maybe equal” when in fact f  0?

Let A = {z | z is a root of  f}.  

Recall that |A| degree of  f  ≤ 2n.

Therefore:  P(picked a root) 

2n/4n = 1/2  



Equality checking by random 

evaluation

By repeating this procedure k times, 

we are “fooled” by the event

f(z1) = f(z2) = … = f(zk) = 0

when actually f(x) 0

with probability no bigger than

P(picked root k times) (½)^2



This idea can be used for 

testing equality of  lots of  

different types of  

“functions”!



“Random Fingerprinting”

Find a small random “fingerprint” of a large 

object: e.g., the value f(z) of a polynomial 

at a point z.

This fingerprint captures the essential 

information about the larger object: 

if two large objects are different, their 

fingerprints are usually different!



Earth has huge file X that she 

transferred to Moon. Moon gets Y.

Earth: X Moon: Y

Did you get that file ok? Was the 

transmission accurate?

Uh, yeah….

How do we quickly check 

for accuracy? More soon…

I guess….



How do you pick a random 

1000-bit prime?



Picking A Random Prime

“Pick a random 1000-bit prime.”

Strategy:

1) Generate random 1000-bit number

2) Test each one for primality 

[more on this later in the lecture]

3) Repeat until you find a prime.



How many retries until we succeed?

Recall the balls-from-bucket experiment?

If n = number of 1000-bit numbers = 21000

and k = number of primes in 0 … 21000-1 

then E[number of rounds] = n/k.



Question:

How many primes are there 

between 1 and n?

(approximately…)



Gauss

Let (n) be the 

number of  primes 

between 1 and n.

I wonder how fast 

(n) grows? 

Conjecture [1790s]: 
( )

lim 1
/ lnn

n

n n

Legendre



Their estimates

x pi(x) Gauss' Li Legendre x/(log x - 1)

1000 168 178 172 169

10000 1229 1246 1231 1218

100000 9592 9630 9588 9512

1000000 78498 78628 78534 78030

10000000 664579 664918 665138 661459

100000000 5761455 5762209 5769341 5740304

1000000000 50847534 50849235 50917519 50701542

10000000000 455052511 455055614 455743004 454011971



J-S Hadamard

Two independent

proofs of  the 

Prime Density 

Theorem [1896]:

( )
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De la Vallée 

Poussin



The Prime Density Theorem

This theorem remains one of the 

celebrated achievements of 

number theory. 

In fact, an even sharper conjecture

remains one of the great open 

problems of mathematics!



Riemann

The Riemann 

Hypothesis 

[1859]:

still unproven!

( ) / ln
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n
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The Prime Density Theorem

Slightly easier to show

(n)/n ≥ 1/(2 logn).

In other words, at least (1/2B) 

of  all B-bit numbers are prime 



So, for this algo…

“Pick a random 1000-bit prime.”

Strategy:

1) Generate random 1000-bit number

2) Test each one for primality 

[more on this later in the lecture]

3) Repeat until you find a prime.



the facts are these:

If we’re picking 1000-bit numbers,

number of numbers is n = 21000

number of primes is k ≥ n/(2 log n)

Hence, expected number of trials before we get a 

prime number = n/k ≤ 2 log n.



Moral of the story

Picking a random B-bit prime is 

“almost as easy as”*

picking a random B-bit number.

Need to try at most 2 log B times,

in expectation.

(*Provided we can check for primality.

More on this later.)



Earth has huge file X that she 

transferred to Moon. Moon gets Y.

Earth: X Moon: Y

Did you get that file ok? Was the 

transmission accurate?

Uh, yeah.



Are X and Y the same N-bit 

numbers?

p = random 2logN-bit prime

Send (p, X mod p)

Answer to “X Y mod p ?”

Earth: X Moon: Y



Why is this any good?

Easy case:

If X = Y, then X Y (mod p)



Why is this any good?

Harder case:

What if X ≠ Y? We mess up if p | (X-Y).

Define Z = (X-Y). To mess up, p must divide Z.

Z is an N-bit number.

Z is at most 2N.

But each prime ≥ 2.

Hence Z has at most N prime divisors.



Almost there…

Z = (X-Y) has at most N prime divisors.

How many 2logN-bit primes?

at least 22logN/(2*2logN) = N2/(4logN) >> 2N primes.

Only (at most) half of them divide Z.

A random B-bit number has at least a 

1/2B chance of  being prime.



Theorem:
Let X and Y be distinct N-bit 
numbers. Let p be a random 

2logN-bit prime.

Then

Prob [X = Y mod p] < 1/2

Earth-Moon protocol makes mistake

with probability at most 1/2!



Boosting the success probability

EARTH: X MOON: Y

Pick t random 

2logN-bit primes: P1, P2, .., Pt

Send (X mod Pi) for 1 ≤ i ≤ t

k answers to “X = Y mod Pi ?”



Exponentially smaller error probability

If X=Y, always accept.

If X Y,

Prob [X = Y mod Pi for all i] ≤ (1/2)t



Picking A Random Prime

“Pick a random B-bit prime.”

Strategy:

1) Generate random B-bit numbers

2) Test each one for primality 

How do we test if  a number n is prime?



Primality Testing: 

Trial Division On Input n

Trial division up to n

for k = 2 to n do
if k |n then
return “n is not prime”
otherwise return “n is prime”

about n divisions



Trial division performs n divisions 

on input n.

Is that efficient?

For a 1000-bit number, this will take 

about 2500 operations.

That’s not very efficient at all!!!

More on efficiency and run-times

in a future lecture…



But so many cryptosystems, 

like RSA and PGP, use fast 

primality testing as part of  

their subroutine to generate 

a random n-bit prime! 

What is the fast primality 

testing algorithm that they 

use?



There are fast randomized
algorithms to do primality 

testing. 

Miller-Rabin test Solovay-Strassen test



If  n is composite, how would 

you show it? 

Give a non-trivial factor of  n.

But, we don’t know how to 

factor numbers fast.

We will use a different
certificate of  compositeness 

that does not require 

factoring.



Recall that for prime p, a ≠ 0 mod p:

Fermat Little Thm: ap-1 = 1 mod p.

Hence, a(p-1)/2 = §1.

So if  we could find some a ≠ 0 mod p

such that a(p-1)/2 ≠ §1

p must not be prime.

simple idea #1



Goodn = { a 2 Z*
n | a(n-1)/2 §1 }

(these prove that n is not prime)

Uselessn = { a 2 Z*
n | a(n-1)/2 §1 }

(these don’t prove anything)

Theorem:

if  Goodn is not empty, then

Goodn contains at least half of  Zn
*.



simple idea #2

Remember Lagrange’s theorem:

If G is a group, and U is a subgroup

then |U| divides |G|.

In particular, if U ≠ G then |U| ≤ |G|/2.



Proof

Goodn = { a 2 Z*
n | a(n-1)/2 §1 }

Uselessn = { a 2 Z*
n | a(n-1)/2 §1 }

Fact 1: Uselessn is a subgroup of Zn
*

Fact 2: If H is a subgroup of G then |H| divides |G|.

If  Good  is not empty, then |Useless| ≤ |Zn
*| / 2

|Good| ≥ |Zn
*| / 2



Randomized Primality Test

Let’s suppose that Goodn = { a 2 Z*
n | a(n-1)/2 §1 }

contains at least half the elements of Z*n.

Randomized Test:

For i = 1 to k:

Pick random ai 2 [2 .. n-1];

If GCD(ai, n) 1, Halt with “Composite”;

If ai
(n-1)/2 ≠ §1 , Halt with “Composite”;

Halt with “I think n is prime. I am only wrong (½)k fraction 
of times I think that n is prime.” 



Is Goodn non-empty for all primes n?

Goodn may be empty even if  n is not a prime.

A Carmichael number is a number n such that 

a(n-1)/2 = 1 (mod n) for all numbers a with gcd(a,n)=1. 

Example:  n = 561 =3*11*17 (the smallest Carmichael 
number) 

1105 = 5*13*17  

1729 = 7*13*19

And there are many of  them. For sufficiently large m, there 
are at least m2/7 Carmichael numbers between 1 and m.

Recall: Goodn = { a 2 Z*
n | a(n-1)/2 §1 }



The saving grace

The randomized test fails only for 

Carmichael numbers.

But, there is an efficient way to test for 

Carmichael numbers.

Which gives an efficient algorithm for 

primality.



Randomized Primality Test

Let’s suppose that Goodn contains at least 

half the elements of Z*n.

Randomized Test:

For i = 1 to k:

Pick random ai 2 [2 .. n-1];

If GCD(ai, n) 1, Halt with “Composite”;

If ai
(n-1)/2 ≠ §1 , Halt with “Composite”;

If n is Carmichael, Halt with “Composite”

Halt with “I think n is prime. I am only wrong (½)k fraction 

of times I think that n is prime.” 



Primality Versus Factoring

Primality has a fast randomized 

algorithm. 

Factoring is not known to have a 

fast algorithm.  The fastest  

randomized algorithm 

currently known takes 

exp( O(n log n log n)1/3 )

operations on n-bit numbers. 



number digits prize factored

RSA-100 100 Apr. 1991

RSA-110 110 Apr. 1992

RSA-120 120 Jun. 1993

RSA-129 129 $100 Apr. 1994

RSA-130 130 Apr. 10, 1996

RSA-140 140 Feb. 2, 1999

RSA-150 150 Apr. 16, 2004

RSA-155 155 Aug. 22, 1999

RSA-160 160 Apr. 1, 2003

RSA-200 200 May 9, 2005

RSA-576 174 $10,000 Dec. 3, 2003

RSA-640 193 $20,000 Nov 2, 2005

RSA-704 212 $30,000 open

RSA-768 232 $50,000 open

RSA-896 270 $75,000 open

RSA-1024 309 $100,000 open

RSA-1536 463 $150,000 open

RSA-2048 617 $200,000 open

Google:  RSA Challenge Numbers

(the challenge is no longer active)



The techniques we’ve been 

discussing today are sometimes 

called “fingerprinting.”

The idea is that a large object such as 

a string (or document, or function, or 

data structure…) is represented by a 

much smaller  “fingerprint”

using randomness.

If  two objects have identical sets of  

fingerprints, they’re likely the same 

object.



Here’s What 

You Need to 

Know…

Primes
Prime number theorem

How to pick random primes

Fingerprinting
How to check if  a polynomial

of  degree d is zero

How to check if  two n-bit strings 

are identical

Primality
Fermat’s Little Theorem

Algorithm for testing primality


