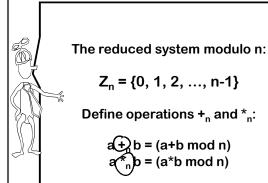
15-251

Great Theoretical Ideas in Computer Science

M

Number Theory, Cryptography and RSA

Lecture 14 (October 08, 2008)

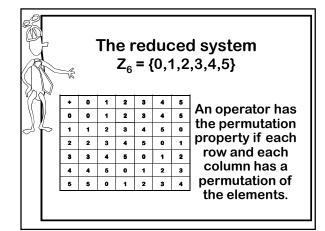


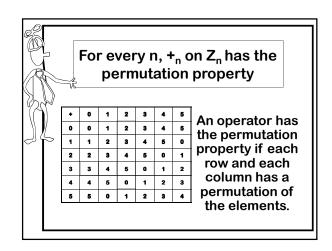
$$Z_n = \{0, 1, 2, ..., n-1\}$$

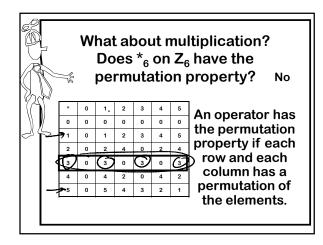
$$a +_{n} b = (a+b \mod n)$$

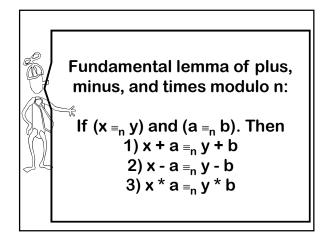
 $a *_{n} b = (a*b \mod n)$

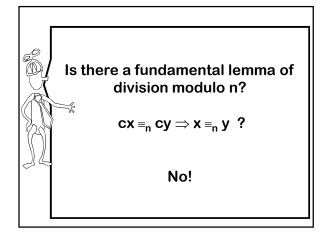
 $+_n$ and $+_n$ are commutative and associative binary operators from $-Z_n + Z_n \rightarrow Z_n$

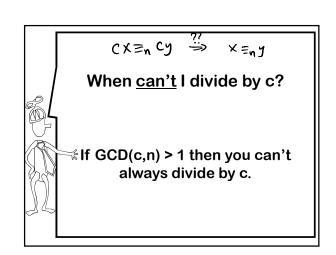






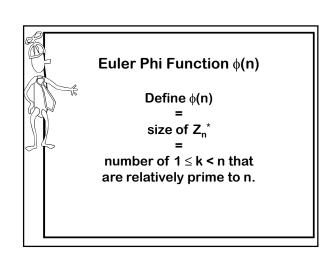


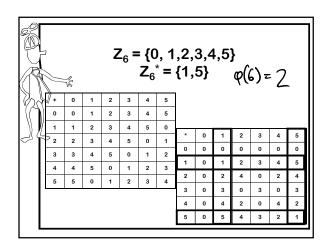


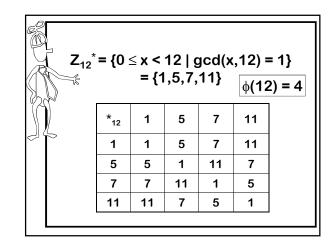


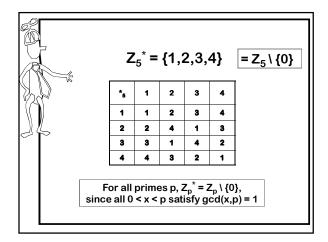
Fundamental lemma of division modulo n. If GCD(c,n)=1, then $ca\equiv_n cb\Rightarrow a\equiv_n b$ So

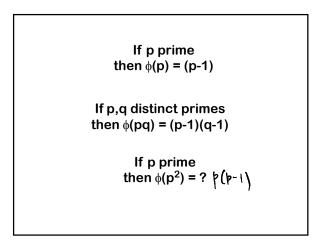
Consider the set $Z_n^*=\{x\in Z_n\mid GCD(x,n)=1\}$ Multiplication over this set Z_n^* will have the cancellation property.

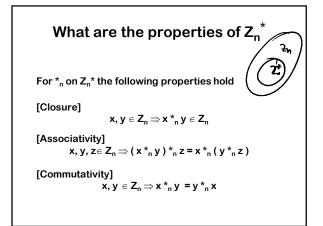


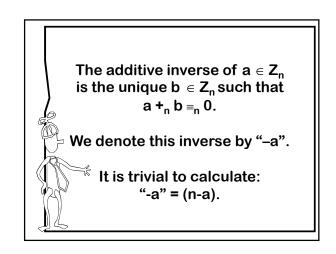












Efficient algorithm to find multiplicative inverse a⁻¹ from a and n.

Extended Euclidean Algorithm(a, n)

Get r,s such that ra + sn = gcd(a,n) = 1

Output: ${\bf r}$ is the multiplicative inverse of a

$$Z_n = \{0,1,2,...,n-1\}$$

$$Z_n^* = \{x \in Z_n \mid GCD(x,n) = 1\}$$

$$Define +_n and *_n:$$

$$a +_n b = (a+b \bmod n)$$

$$a *_n b = (a*b \bmod n)$$

$$$$

$$$$

$$1. Closed$$

$$2. Associative$$

$$3. 0 is identity$$

$$4. Additive Inverses$$

$$5. Cancellation$$

$$6. Commutative$$

$$c *_n (a +_n b) \equiv_n (c *_n a) +_n (c *_n b)$$

new stuff starts here...

Fundamental Lemmas until now

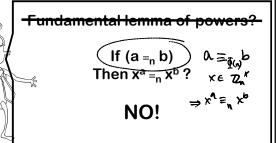
For x, y, a, b in Z_n , $(x \equiv_n y)$ and $(a \equiv_n b)$. Then

1)
$$x + a =_{n} y + b$$

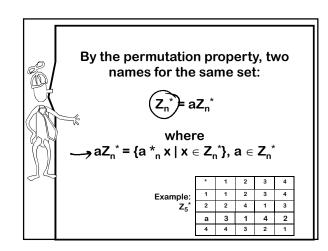
3)
$$x * a =_{n} y * b$$

For a,b,c in
$$Z_n^*$$

then ca \equiv_n cb \Rightarrow a \equiv_n b



(2 ${\scriptstyle \equiv}_3$ 5) , but it is not the case that: $2^2 {\scriptstyle \equiv}_3 \ 2^5$



Two products on the same set:

$$\checkmark$$
 $Z_n^* = aZ_n^*$

$*$
 $aZ_{n}^{*} = \{a *_{n} x \mid x \in Z_{n}^{*}\}, a \in Z_{n}^{*}\}$

 $\prod x \equiv_n \Pi$ ax [as x ranges over Z_n^*]

$$\iint x = \int_{n} (x) (a^{\text{size of } Zn^*}) \quad [Commutativity]$$

1 = asize of Zn*

[Cancellation]

$$a^{\Phi(n)} =_{n} 1$$

Euler's Theorem

$$a\in {Z_n}^*$$
, $a^{\Phi(n)}\!\equiv_n 1$

Fermat's Little Theorem

p prime,
$$a \in \mathbb{Z}_p^* \Rightarrow a^{p-1} \equiv_p 1$$

(Correct) Fundamental lemma of powers.

Suppose $x \in Z_n^*$, and a,b,n are naturals.

If $a \equiv_{\Phi(n)} b$ Then $x^a \equiv_n x^b$

Equivalently,

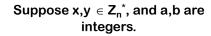
Defining negative powers

Suppose $x \in Z_n^*$, and a,n are naturals.

x^{-a} is defined to be the multiplicative inverse of x^a

$$x^{-a} = (x^a)^{-1}$$

Rule of integer exponents

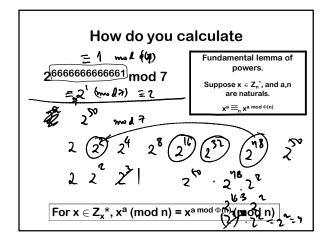


$$(xy)^{-1} \equiv_n x^{-1} y^{-1}$$

$$X^a X^b \equiv_n X^{a+b}$$

Can use Lecture 13 to do fast exponentiation!

A note about exponentiation



Time to compute

To compute $a^x \pmod{n}$ for $a \in Z_n^*$ first, get $x' = x \pmod{\Phi(n)}$

By Euler's theorem: $a^x = a^{x'} \pmod{n}$

Hence, we can calculate $a^{x'}$ where $x' \le n$.

But still that might take x'-1 \approx n steps if we calculate a, a², a³, a⁴, ..., a^{x'}

Faster exponentiation

How do you compute a^{x^k} fast? Suppose $x^k = 2^k$ Suppose $2^k \le x^k \le 2^{k+1}$

How much time did this take?

Only 2 log x' multiplications

Instead of (x'-1) multiplications

Ok, back to number theory

Agreeing on a secret

Randon R

(m⊕R) @ (m'⊕R) = m⊕ m'

Alice and Bob have never talked before but they want to agree on a secret...

How can they do this?

Diffie-Hellman Key Exchange

Alice:

Picks prime p, and a value g in (Z_p^*)

Picks random a in Z_p* Sends over $p, g, g^a \pmod{p}$

Bob:

ob: \\ \frac{\lambda_{\subset}(\beta^*)^{\beta}}{\text{picks random \overline{b} in \overline{Z_p}^*, and sends overline{g}} \((\text{mod p}) \)

Now both can compute gab (mod p)

Ere knows p,g, ge,gb

What about Eve?

Picks random a in Z_n* Sends over p, g, ga (mod p)

Picks random b in Z_p^* , and sends over g^b (mod p)

Now both can compute gab (mod p)

If Eve's just listening in, ?
she sees p, g, g^a, g^b.

It's believed that computing gab (mod p) from just this information is not easy...

btw, discrete logarithms seem hard

Discrete-Log:

Given p, g, ga (mod p), compute a

1 + +

How fast can you do this?

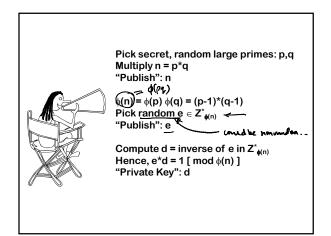
If you can do discrete-logs fast, you can solve the Diffie-Hellman problem fast.

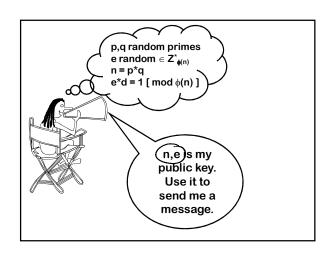
How about the other way? If you can break the DH key exchange protocol, do discrete logs fast?

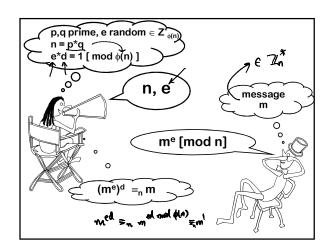
The RSA Cryptosystem

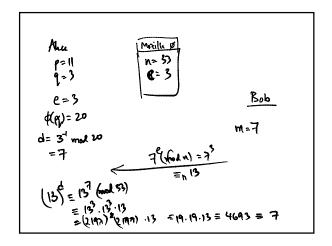
Our dramatis personae

Euler









How hard is cracking RSA?

If we can factor products of two large primes, can we crack RSA?

n, ø(~)

If we know \phi(n), can we crack RSA?

How about the other way? Does cracking RSA mean we must do one of these two?

We don't know..

