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Great Theoretical Ideas
in Computer Science

Number Theory and
Modular Arithmetic

Lecture 13 (October 06, 2008)

%:591

2 MAX(a,b) + MIN(a,b) = a+b

n|m means that m is an integer
multiple of n.

” We say that “n divides m”.

Greatest Common Divisor:
GCD(x,y) =
greatest k > 1 s.t. k|x and k]|y.

Least Common Multiple:
LCM(x,y) =
smallest k > 1 s.t. x|k and y|k.

Fact:
GCD(x,y) x LCM(x,y) =x x y

&

You can use
MAX(a,b) + MIN(a,b) = a+b
to prove the above fact...




(a mod n) means the
remainder when
ais divided by n.

b

Ifa=dn+rwithO<r<n
Then r = (a mod n)
and d = (adivn)

=, is an equivalence relation

In other words, it is

Reflexive:

a=s,a
Symmetric:

(@a=,b)= (b=,a)
Transitive:

(a=s,bandb=,¢c)= (a=,¢)

a=, b < n|(a-b)

“a and b are equivalent modulo n”

Define
Residue class [i]

the set of all integers that are
congruent to i modulo n.

S

Defn: Modular equivalence
of integersaand b
a=b [modn]
<(amod n) = (b mod n)

2 < n|(a-b)

Written as a =, b, and spoken
“a and b are equivalent modulo n”

31 =81 [mod 2]
31-,81

a=, b < nj(a-b)
“a and b are equivalent modulo n”
=, induces a natural partition of the
integers into n classes.

a and b are said to be in the same
“residue class” or “congruence
class” precisely when a =, b.

Residue Classes Mod 3:
[0] ={°-','6,' y Uy 9, U,y ..
11 ={...,-5,-2,1,4,7, ..

3,0,3,6,.)}

2,1,4,7,.)
[2] ={...,-4,-1,2,5,8, ..}
[-6]={...,-6,-3,0,3,6,..}
[71 ={...,-5,-2,1,4,7, .}
[-11={...,-4,-1,2,5,8,..}




Fact: equivalence mod n implies

If (x=,y) and (k|n)
Then: x =y

Example: 10 =, 16 = 10=; 16

equivalence mod any divisor of n.

If (x=,y)and (k|n)
thenx= y

Proof:  hif' ¥
axde oo K\n
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Fundamental lemma of
lus, minus, and times mod n:
§»§ P

If (x=,y) and (a=,b). Then
1)x+a=y+b
2)x-a=,y-b
3)x*a=,y*b

Proof of 3: xa=yb (mod n)

(The other two proofs are similar...

Fundamental lemma of plus
minus, and times modulo n:

When doing plus, minus, and times
modulo n, | can at any time in the
calculation replace a number with a
number in the same residue class
modulo n

Please calculate:
249 * 504 mod 251

when working mod 251
2 * 2 = -4 =247




A Unique Representation
System Modulo n:
We pick exactly
one representative from
each residue class.

We do all our calculations using
these representatives.

Unique representation system
modulo 3

Finite setS={0, 1, -1}

+ and * defined on S:

+ 0 1 -1 * 0 1 -1

0 0 1 -1 0 0 0 0

-
-

4|0 1o | 1|

a
a
o
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Unique representation system

modulo 3
Finite set S ={0, 1, 2}
+ and * defined on S:

+|0 (1|2 0|12
0(0|1]|2 0(0|0]|O
1(1]2|0 17012
22|01 2021

Perhaps the most convenient set of
representatives:
The reduced system modulo n:
2,={0,1,2,...,n-1}
Define operations +, and *,;:

a+,b=(atb mod n)
a*, b= (a*b modn)

Z,={0,1,2, ..., n-1}

a+,b = (atb mod n)
a*,b=(a*b mod n)

[“Closed”]
x,yel, =>x+,ye’Z,

[“Associative”]
X¥,zeZ,= (x+,y) +,z=x+,(y +,2)

[“Commutative”]
X, YyeZ,=>x+y =y+x

Z,={0,1,2, ..., n-1}

a+,b = (atb mod n)
a*,b=(a*b mod n)

[“Closed”]
X,yeZ, =>x*yeZ,

[“Associative”]
X,¥,2e€Z,= (X% y) *z=x"(y*,2)

[“Commutative”]
X, yeZ,=>x*y=y*x




Z2,={0,1,2,...,n-1}
a+,b=(atb mod n)
a*,b=(a*b mod n)

+,and * are
commutative and associative

“doind
fromz,*2, > 2,

The reduced system modulo 3
2;={0,1,2}
Two binary, associative operators on Z;:
+3 1 *3 2

0 2 0 1
0 0 1 2 0 0 0 0
1 1 2 0 1 0 1 2
2 2 0 1 2 0 2 1

The reduced system modulo 2

Z,={0,1}
Two binary, associative operators on Z,:
2 0 | 1 2 0 | 1
0 0 1 0 0 0

-
-
o
-
o
-

The Boolean interpretation of Z,

Z,={0,1}

Two binary, associative operators on Z,:
*2 0 1 *2 0 1
XOR AND

0 0 1 0 0 0
101 |0 1,0 | 1

The reduced system
Z,={0,1,2,3}

OC|lW | (N |= (=
SO |W|N|[N
N|[l=2O|lWw|lw
W[N | =~ |O

o|lo|o|o|o©
WIN | =[O | =
N[O |N|O|N
2N |w| o |w

WIN|=2 O |+ ii
WIN | =2|O|O

The reduced system
Z;={0,1,2,3,4}

Slofs|w|Nn(N

N|=|o|d|w|w

w|nv|[a]o(s]|s

o|lo|o|o|o|©o
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Dlw[nv|=2|o|+ ji




The reduced system
Z;={0,1,2,3,4,5}

a(a|w|N|a]o]|+

o (a|lw|N|(ao|e
o|loa|s|lw (N
alo|la|alw | Nn|N
N (2|o|lo|s | w|w
w (N|a|oa|a|s
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The reduced system
Z;={0,1,2,3,4,5}

An operator has
the permutation
property if each
row and each
column has a
permutation of
the elements.

a|lalw| v alo|le
ola|a|w| N ala
s lo|la|a|le|n|n
N (alo|a| s e lw
@ (N|[a|o|a|la|s
slo(n|ao|lala

For every n, +, on Z has the
permutation property

An operator has

the permutation

property if each

row and each

column has a

a|srlw (N alo|+
a|bflw| N a0
o|la|a || N |ala
alof(a|a|ew|n(n
N afo|o| s e w
@ (N|[a|o|a|a|a
bplw(N|=2o|la|la

permutation of

the elements.

What about multiplication?
Does *5 on Z; have the
permutation property? No

An operator has
the permutation
property if each
row and each
column has a
permutation of
the elements.

o|lofjo]e|o|o|e

a|lsfjwln|[=2]o|-
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What about *; on Zg?

*
=)
a
N
w
IS
2]
o
~

N[(foja|b|wW|N|=|O

Which rows have the permutation property?

A visual way to understand
multiplication
and the
“permutation property”.




There are exactly 8 distinct

The multiples of ¢ modulo n is the set: multiples of 3 modulo 8.

{0,c,c+,c,c+,c+,c,....}

.

L

={kcmodn|0<k<n-1} Y /

|
*7 .

hit all numbers < row 3 has the “permutation property”

There are exactly 2 distinct There is exactly 1 distinct
multiples of 4 modulo 8 multiple of 8 modulo 8

. -

row 4 does not have “permutation property” for *g on Zg

There are exactly 4 distinct What’s the pattern?

multiples of 6 modulo 8

exactly 8 distinct multiples of 3 modulo 8.
exactly 2 distinct multiples of 4 modulo 8
exactly 1 distinct multiple of 8 modulo 8

»
4
- -
exactly 4 distinct multiples of 6 modulo 8
exactly )4 407()‘\» distinct

multiples of x modulo y




There are exactly
LCM(n,c)/c = n/IGCD(c,n)
distinct multiples of ¢ modulo n

(’
)
‘- Hence,
only those values of ¢
with GCD(c,n) =1
have the permutation
property for *, on Z,,
(that is, they have n distinct
multiples modulo n)

Theorem: There are exactly k = n/GCD(c,n)
distinct multiples of ¢ modulo n, and these
multiples are {c*imodn|0<i<k}

Proof:
Clearly, c/GCD(c,n) 21 is a whole number

ck = cn/GCD(c,n) = n(c/GCD(c,n)) =, 0

=There are < k distinct multiples of ¢ mod n:
c*0, c*1, c*2, ..., c*(k-1)

= Also, k = all the factors of n missing from c
= cX =, ¢y < n|c(x-y) = k|(x-y) = x-y = k
= There are = k multiples of c. Hence exactly k.

So, if we write the addition and
multiplication tables for Z,....

Addition on Z,, always has the permutation
property

For some n, multiplication does...

ZS = {0,1 ,2,3’4}

+ 0 1 2 3|4 * 0|1 2|1 3|4
0 0 1 2 3| 4 o|ofo0oj|jO0OfO0]O
1 1 2 3|40 1 01 2| 3|4
2 2 3|4(|0 1 2|10(2]4](1 3
3 3|40 1 2 3|03 |1 4 | 2
4 | 4|0 1 2 3 4 (0|4 (3|21

For other n’s multiplication does not
have the permutation property...

Z;={0,1,2,3,4,5}

o | a|lw(N|a]o]|+

o | sa|lw(nw|ajo|e

o|la|a|lw(n|a]a

a lo|lafalo|nm]|n

N a|lofala]|w|w

@ (N afola|s]|s

a2l |N|falo|a|a

a|a|lw|[nw|[a]o| =
a|la|lw(nw|a]|o|a
alN|o(a(nm|o|n
w|o|lw lolw|o|w
N |sa|lo(nw|(a|o|a

alNv|w|(sala|lo|a

1)x+a=y+b
2)x-a=y-b
3)x*a=y*b

Fundamental lemma of plus,
minus, and times modulo n:
\=¢
If (x=,y)and (a=, b). Then




Is there a fundamental lemma of
division modulo n?

cx=,cy=>x=y ?

Of course not!
If c=0[mod n], cx =, cy for all x and y.

Canceling the c is like dividing by
zero.

Let’s fix that!
Repaired fundamental lemma
of division modulo n?

if c 20 [mod n], then
cx=,cy =>x=,y?

6*3 =10 6*8, but not 3 =10 8.
2*2 =, 2*5, but not 2 =; 5.

When can’t | divide by c?
Z,=1{0,1,2,3,4,5}

1(2

B

a|a|w|np|[ao] s
olo|o|e|e|e|e
ma@uao
mo@omom
NI AEYEGEES
N jo|a|la|lo|a
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When can’t | divide by c?

Theorem: There are exactly n/GCD(c.n)
distinct multiples of ¢ modulo n.

Corollary: If GCD(c,n) > 1, then the number
of multiples of c is less than n.

B

>l%orollary: If GCD(c,n) > 1 then you can’t
always divide by c.

Proof: There must exist distinct x,y<n such
that c*x=c*y (but x=y). Hence can’t divide.

Fundamental lemma of division modulo n:
if GCD(c,n)=1,thenca=,cb=a=,b

Proof: wlca—cb & wlcle»
Ik gq)(«,c):\
) W\a—\o \¢. bnb

@

Corollary for general c:
CX =, CY = X =ncep(e,n) Y

4«,/ Cx-¢f = cley)
s L )
J‘LJ (e JC‘J (e

5 x=y [mwd B3

jf—& (E,"n




Fundamental lemma of division modulo n.
If GCD(c,n)=1,thenca=,cb=>a=,b

Consider the set
2 ={x e Z,| GCD(x,n) =1}

Multiplication over this set Z,," will
have the cancellation property.

ZG = {0’ 1 ,2,3,4’5}

*
+ 0 1 2 | 3 4 |5
0 0 1 2 3 4 | s
1 1 2 | 3 4 |5 |0
5 0 1 2 3 a|s
2 2 3 4|5 |0 1
] ] 0 ] 0 ] ]
3 3 4 |5 |0 1 2
1 0 1 2 3 a| s
4|4 |5 |0 1 2 3
2 ] 2 4 0 2 4
5 |5 |0 1 2 | 3 4
3 0 3 0 3 0 3
4 ] 4 2 0 4 2
5 [0 s 4|3 2 1

What are the properties of Zn*

For *, on Z, we showed the following properties:

[Closure]
X, yeZ,=>x*yeZ,

[Associativity]
X, ¥,2e Z, = (X% ¥ ) % z2=x% (¥ %, 2)

[Commutativity]
X,y €Z,=>x Yy Ty x

What about *,, on Z,," ?

*

All these 3 properties hold for *,on Z,,".

* *
Let’s show “closure”: x,y € Z, => x*,y € Z,

All these 3 properties hold for *, on Z,,".

* *
Let’s show “closure”: x,y € Z, = x*,y e Z,

Formal Proof:
Letz=xy.Letz’=zmod n. Thenz =2’ + kn.

Suppose 2’ notin Z_n*. Then GCD(z’, n) > 1.
and hence GCD(z, n) > 1.

Hence there exists a prime p>1 s.t. p|z’ and p|n.
plz= plx or ply. (say plx)

Hence p|n, p|x, so GCD(x,n) > 1.
Contradictionof x € Z*

Z,,={0<x<12|gcd(x,12) = 1}
={1,5,7,11}

o 1 | 5 | 7 | 11

1 5 | 7|1
5 111 7
7 1| 1

10



Zs
* 11 ] 2| 4|7 | 8 11|13 14
101 | 2| 4 7| 8 | 11|13 14
2 2| 4|8 141 | 7|11 13
4 | 4|8 |1 13 2 [14]7 |1
7 | 7 [14a[183] 4 |11 ]2 ]1 |38
8 |8 1| 2 |11 4 |138][14 7
M 1M | 7 |14 2 | 13 8 | 4
13 (13 |11 | 7 |1 |14 | 8 | 4 2
14 14 (13|11 | 8 | 7 | 4] 2 1

Z5'={1,2,34)

alw (N ot
S| W (N =
w| =8N
N | s = w
alv|w|s

Fact:
For prime p, the set Z," =7\ {0}

Proof:
It just follows from the definition!

For a prime, all 0 < x < p satisfy
gcd(x,p) =1

f |\% Euler Phi Function ¢(n)

Define ¢(n) =
sizeof Z"=
number of 1 <k <n that
are relatively prime to n.

p prime = Z,"={1,2,3,...,p-1}
= ®(p) = p-1

Z,,={0<x<12|gcd(x,12) = 1}
=(1.57.11) a2)=a

o 1 | 5 | 7 | 11

11 |5 | 7|1
5 5 |1 |11 |7

Theorem: if p,q distinct primes then
¢(pa) = (p-1)(a-1)

How about p =3, q=5?
1.21@1‘1!%“3 L @ /M"’B/
hv

5-5 “34t = b= (3)(s-

11



Theorem: if p,q distinct primes then
¢(pa) = (p-1)(a-1)

pg = # of numbers from 1 to pq
p =# of multiples of q up to pq
q =# of multiples of p up to pq
1 =# of multiple of both p and q up to pq

o(pd) =pa-p-q+1=(p-1)(q-1)

The additive inverse of a € Z,,
is the unique b € Z, such that
a+,b=,0.

We denote this inverse by “-a”.

It is trivial to calculate:
“-a” = (n-a).

Additive
and

Multiplicative
@j Inverses

The multiplicative inverse of a € Z," is the
unique b € Z,"such that
a* b=,1.

We denote this inverse by “a'” or “1/a”.

SE8

What s the
additive inverse
of
a=342952340
in

Z 4230493243 = Z1?

Answer: n-a= 3887540903

The unique inverse of “a” A epsga
must exist because the 1] 11218 4
“a” row contains a 2|12/ 41138
permutation of the a| 3/ 1/4]|2
elements and hence 414131 2) 1
contains a unique 1.
What is the
multiplicative inverse
of
342952340
in
*
Z4230493243 ?
Answer: 583739113

12
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How do you find
multiplicative inverses

fast
?

Euclid’s Algorithm for GCD

Euclid(A,B)
If B=0 then return A
else return Euclid(B, A mod B)

Euclid(67,29)

67-2*29=67mod 29=9

Euclid(29,9) 29-3*9=29mod9 =2
Euclid(9,2) 9-4*2=9mod2 =1
Euclid(2,1) 2-2*4=2mod1 =0

Euclid(1,0) outputs 1

Extended Euclid Algorithm

Not only does it output GCD(A,B)
it also outputs integers r, s such that

r*A + s*B = GCD(A,B)

Euclid(1,0) outputs

Extended Euclid Algorithm

Let <r,s> denote the number r*67 + s*29.
Calculate all intermediate values in this
representation.

67=<1,0> 29=<0,1>

Euclid(67,29) 9=<1,0> - 2*<0,1> 9=<1,-2>
Euclid(29,9) 2=<0,1> - 3*<1,-2> 2=<-3,7>
Euclid(9,2) 1=<1,-2> - 4*<-3,7> 1=<13,-30>
Euclid(2,1) 0=<-3,7> - 2*<13,-30> 0=<-29,67>

1=13%67 - 30*29

SE8

Efficient algorithm to
compute a! from a and n.

Run Extended Euclidean Algorithm
on the numbers a and n.

It will give two integers r and s

such that ra + sn =gcd(a,n) =1

Taking both sides modulo n,
we obtain: ra=, 1

Output r, which is the inverse of a

Example

Multiplicative inverse of 29 in Z4,* ?

1=13*67-30*29
J

Hence: 291 =-30 =37 (mod 67)

13



<Zn’ +.>

. Closed

O UAWN S

Z,={0,1,2,.
Z2,"={x e Z,| GCD(x,n) =1}

., n-1}

Define +, and *:
a+,b=(atb modn)
a* b= (a*b mod n)

* ok
<Zn: n>

1
. Associative 2
. Ois identity 3
. Additive Inverses 4.
. Cancellation 5
Commutative 6

c*,(@a+,b)=,(c*,

. Closed
. Associative
. 1is identity

Multiplicative Inverses

. Cancellation
. Commutative

a) +, (c*, b)

Euler Phi Function

@(n)=sizeof Z,}

p prime = Z,"={1,2,3,...,p-1}
= ¢(p) = p-1

®(pa) = (p-1)(a-1)
if p,q distinct primes

Here’s What
You Need to
Know...

Working modulo integer n

Definitions of Z,,, Z,,
and their properties

Fundamental lemmas of +,-,*,/
When can you divide out
How to calculate ¢ mod n.

Euler phi function ¢(n) = |Zn*|

14



