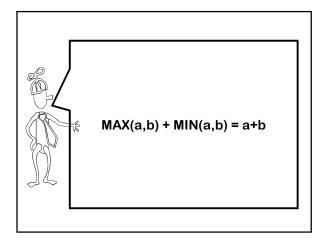
15-251

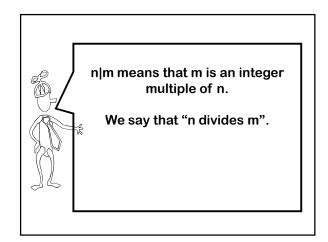
Great Theoretical Ideas in Computer Science

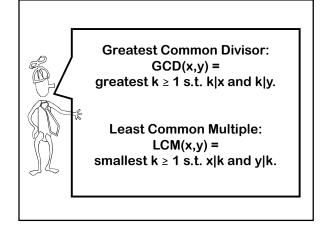
Number Theory and Modular Arithmetic

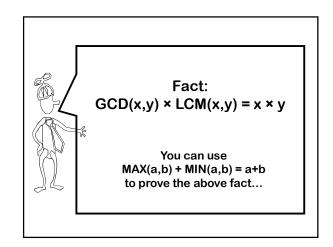
Lecture 13 (October 06, 2008)

$$\equiv_{\mathsf{p}}$$









(a mod n) means the remainder when a is divided by n.

f If a = dn + r with 0 ≤ r < n
Then r = (a mod n)
and d = (a div n)</pre>

Defn: Modular equivalence
of integers a and b
a ≡ b [mod n]
⇔ (a mod n) = (b mod n)
⇔ n|(a-b)

Written as $a \equiv_n b$, and spoken "a and b are equivalent modulo n"

$$31 = 81 \text{ [mod 2]}$$

 $31 =_2 81$

■_n is an <u>equivalence relation</u>

In other words, it is

Reflexive:

a _n a

Symmetric:

 $(a \equiv_n b) \Rightarrow (b \equiv_n a)$

Transitive:

 $(a \equiv_n b \text{ and } b \equiv_n c) \Rightarrow (a \equiv_n c)$

 $\mathbf{a} =_{\mathsf{n}} \mathbf{b} \Leftrightarrow \mathbf{n} | (\mathbf{a} - \mathbf{b})$ "a and b are equivalent modulo n"

 \equiv_{Π} induces a natural partition of the integers into n classes.

a and b are said to be in the same "residue class" or "congruence class" precisely when $a \equiv_n b$.

 $\mathbf{a} \equiv_{\mathsf{n}} \mathbf{b} \Leftrightarrow \mathsf{n} | (\mathbf{a} - \mathbf{b})$ $\mathbf{a} = \mathbf{b} \Leftrightarrow \mathsf{n} | (\mathbf{a} - \mathbf{b})$

Define Residue class [i]

the set of all integers that are congruent to i modulo n.

Residue Classes Mod 3:

$$[0] = \{ ..., -6, -3, 0, 3, 6, .. \}$$

$$[1] = { ..., -5, -2, 1, 4, 7, ..}$$

$$[2] = { ..., -4, -1, 2, 5, 8, ..}$$

$$[-6] = \{ ..., -6, -3, 0, 3, 6, .. \}$$

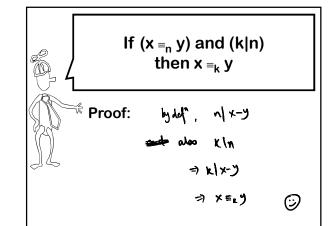
$$[7] = { ..., -5, -2, 1, 4, 7, ..}$$

$$[-1] = \{ ..., -4, -1, 2, 5, 8, .. \}$$

<u>Fact</u>: equivalence mod n implies equivalence mod any divisor of n.

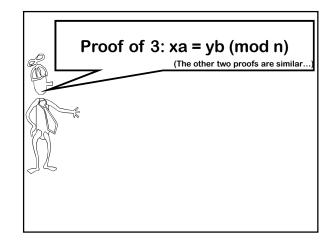
If $(x \equiv_n y)$ and (k|n)Then: $x \equiv_k y$

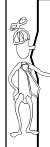
Example: $10 =_6 16 \Rightarrow 10 =_3 16$



Fundamental lemma of plus, minus, and times mod n:

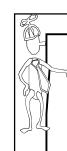
If
$$(x =_n y)$$
 and $(a =_n b)$. Then
1) $x + a =_n y + b$
2) $x - a =_n y - b$
3) $x * a =_n y * b$





Fundamental lemma of plus minus, and times modulo n:

When doing plus, minus, and times modulo n, I can at any time in the calculation replace a number with a number in the same residue class modulo n



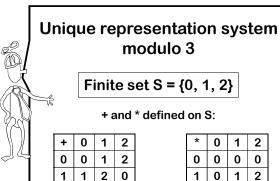
Please calculate: 249 * 504 mod 251

when working mod 251

A Unique Representation System Modulo n:

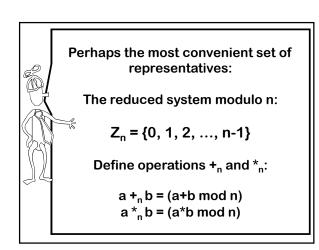
We pick exactly one representative from each residue class.

We do all our calculations using these representatives.



2 2 0 1

	Uni	que	re _l		sent dulc		on s	syst	tem			
		Finite set S = {0, 1, -1} + and * defined on S:										
\\	+	0	1	-1		*	0	1	-1			
	0	0	1	-1		0	0	0	0			
	1	1	-1	0		1	0	1	-1			
	-1	-1	0	1		-1	0	-1	1			
	·									_		



0 1

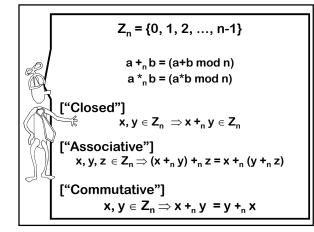
0 0 0 0

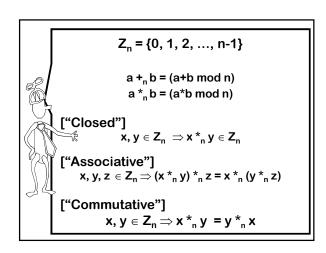
2 0 2 1

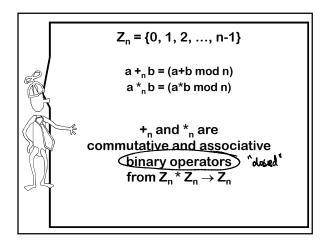
1 0 1

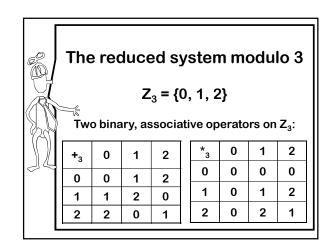
2

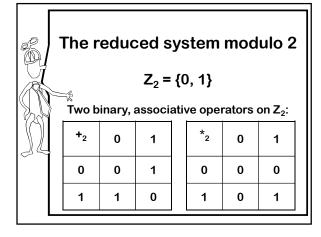
2

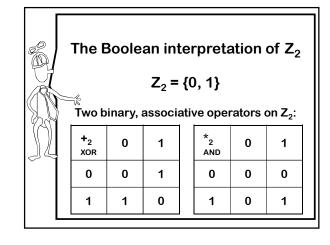


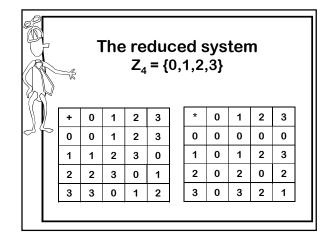


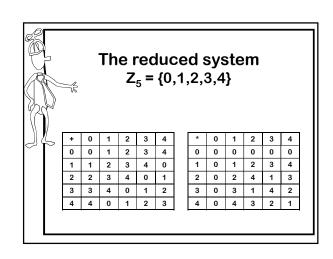


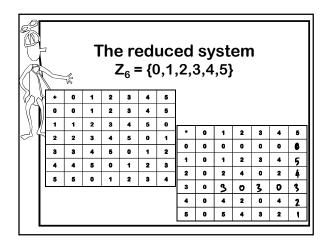


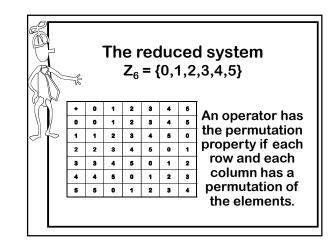


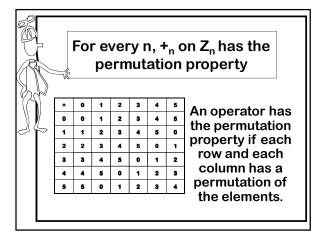


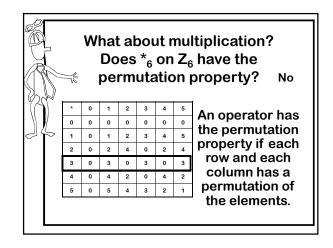


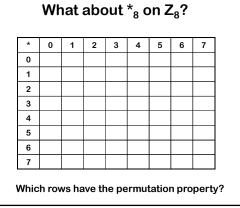




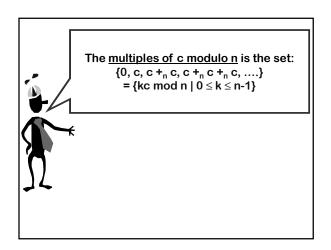


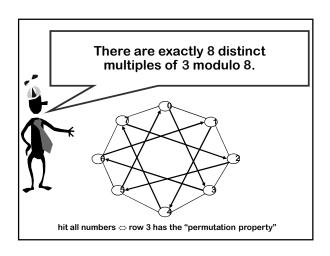


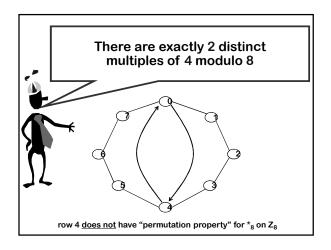


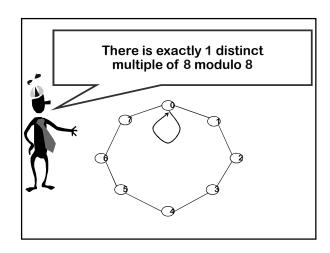


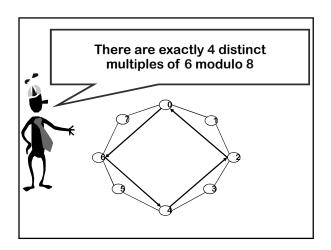
A visual way to understand multiplication and the "permutation property".











There are exactly LCM(n,c)/c = n/GCD(c,n)distinct multiples of c modulo n

> Hence, only those values of c with GCD(c,n) = 1have the permutation property for *_n on Z_n

(that is, they have n distinct multiples modulo n)

Theorem: There are exactly k = n/GCD(c,n)distinct multiples of c modulo n, and these multiples are $\{c^*i \mod n \mid 0 \le i \le k\}$

Clearly, $c/GCD(c,n) \ge 1$ is a whole number

 $ck = cn/GCD(c,n) = n(c/GCD(c,n)) \equiv_n 0$

- \Rightarrow There are \leq k distinct multiples of c mod n: c*0, c*1, c*2, ..., c*(k-1)
- ⇒ Also, k = all the factors of n missing from c
- \Rightarrow cx \equiv_n cy \Leftrightarrow n|c(x-y) \Rightarrow k|(x-y) \Rightarrow x-y \ge k
- \Rightarrow There are \ge k multiples of c. Hence exactly k.

So, if we write the addition and multiplication tables for Z_n ...

Addition on Z_n always has the permutation property

For some n, multiplication does...

$$Z_5 = \{0,1,2,3,4\}$$

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

*	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

For other n's multiplication does not have the permutation property...

$$Z_6 = \{0,1,2,3,4,5\}$$

+	0	1	2	3	4	5							
0	0	1	2	3	4	5	*	0	1	2	3	4	5
			-		_	-		_			•	•	•
1	1	2	3	4	5	0	0	0	0	0	0	0	0
	•	•		-					_				
-	-	•	-				4		4	9	•		5
			_				•			-	٠	•	•
3	3	4	5	0	1	2	2	0	2	4	0	2	4
_	_	_	-		-								
4	4	5	0	1	2	3	3	0	3	0	3	0	3
_	_	_		_									
5	5	U	1	2	3	4	4	0	4	2	0	4	2
							5	0	5	4	3	2	1
	-	0 0 1 1 2 2 3 3 4 4	0 0 1 1 1 2 2 2 3 3 3 4 4 4 5	0 0 1 2 1 1 2 3 2 2 3 4 3 3 4 5 4 4 5 0	0 0 1 2 3 1 1 2 3 4 2 2 3 4 5 3 3 4 5 0 4 4 5 0 1	0 0 1 2 3 4 5 2 2 3 4 5 0 1 4 4 5 0 1 2	0 0 1 2 3 4 5 1 1 2 3 4 5 0 2 2 3 4 5 0 1 3 3 4 5 0 1 2 4 4 5 0 1 2 3	0 0 1 2 3 4 5 0 0 2 2 3 4 5 0 0 1 1 3 3 4 5 0 1 2 2 4 4 5 0 1 2 3 3 5 5 0 1 2 3 3 4 4	0 0 1 2 3 4 5 0 0 0 0 2 2 2 3 4 5 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 2 3 4 5 0 1 1 1 0 1 3 3 4 5 0 0 1 1 0 1 2 2 0 2 1 4 4 5 0 1 2 3 3 0 3 5 5 0 1 2 3 4 0 0 4	0 0 1 2 3 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 2 3 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 2 3 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fundamental lemma of plus, minus, and times modulo n:

2)
$$x - a =_{n} y - b$$

3)
$$x * a =_{n}^{n} y * b$$

Is there a fundamental lemma of division modulo n?

$$cx \equiv_n cy \Rightarrow x \equiv_n y$$
?

Of course not! If c=0 [mod n], $cx =_n cy \text{ for all } x \text{ and } y$.

Canceling the c is like dividing by zero.

Let's fix that! Repaired fundamental lemma of division modulo n?

if
$$c \neq 0 \pmod{n}$$
, then $cx \equiv_n cy \Rightarrow x \equiv_n y$?

$$6*3 \equiv_{10} 6*8$$
, but not $3 \equiv_{10} 8$.
 $2*2 \equiv_{6} 2*5$, but not $2 \equiv_{6} 5$.

$$2*2 \equiv_6 2*5$$
, but not $2 \equiv_6 5$.

When can't I divide by c?

Theorem: There are exactly n/GCD(c.n) distinct multiples of c modulo n.

Corollary: If GCD(c,n) > 1, then the number of multiples of c is less than n.

Corollary: If GCD(c,n) > 1 then you can't always divide by c.

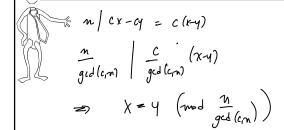
Proof: There must exist distinct x,y<n such that c*x=c*y (but x≠y). Hence can't divide.

Fundamental lemma of division modulo n: if GCD(c,n)=1, then ca \equiv_n cb \Rightarrow a \equiv_n b

Proof:

(3)

Corollary for general c: $\mathbf{cx} \equiv_{\mathbf{n}} \mathbf{cy} \Rightarrow \mathbf{x} \equiv_{\mathbf{n}/\mathbf{GCD}(\mathbf{c},\mathbf{n})} \mathbf{y}$



Fundamental lemma of division modulo n. If GCD(c,n)=1, then ca \equiv_n cb \Rightarrow a \equiv_n b

Consider the set

$$Z_n^* = \{x \in Z_n \mid GCD(x,n) = 1\}$$

Multiplication over this set Z_n^* will have the cancellation property.

$Z_6 = \{0, 1, 2, 3, 4, 5\}$ $Z_6^* = \{1, 5\}$														
(b) (1)	∦ +	0	1	2	3	4	5							
	0	0	1	2	3	4	5							
L \\	1	1	2	3	4	5	0	*	_	. 1	_	_		_
C) (> 2	2	3	4	5	0	1		0	1	2	3	4	5
	3	3	4	5	0	1	2	0	0	0	0	0	0	0
	4	4	5	0	1	2	3	1	0	1	2	3	4	5
	5	5	0	1	2	3	4	2	0	2	4	0	2	4
	<u> </u>							3	0	3	0	3	0	3
								4	0	4	2	0	4	2
								5	0	5	4	3	2	1

What are the properties of Z_n^*

For $*_n$ on Z_n we showed the following properties:

[Closure]

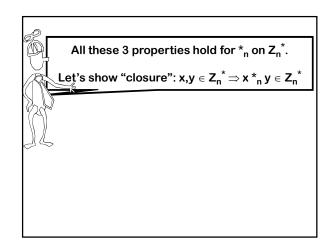
$$x, y \in Z_n \Rightarrow x *_n y \in Z_n$$

[Associativity]

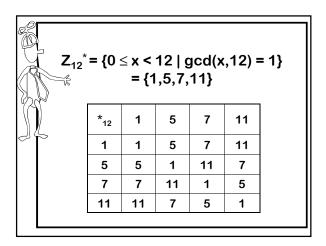
$$x, y, z \in Z_n \Rightarrow (x_n^* y)_n^* z = x_n^* (y_n^* z)$$

$$\begin{tabular}{l} \begin{tabular}{l} \begin{tab$$

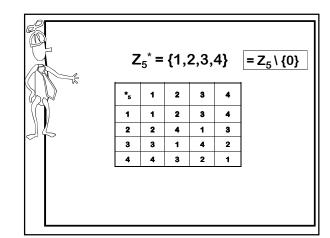
What about *_n on Z_n*?



All these 3 properties hold for *_n on ${\sf Z}_n^{\ \ *}$. Let's show "closure": $x,y \in Z_n^* \Rightarrow x^*_n y \in Z_n^*$ Formal Proof: Let z = xy. Let $z' = z \mod n$. Then z = z' + kn. Suppose z' not in Z_n^* . Then GCD(z', n) > 1. and hence GCD(z, n) > 1. Hence there exists a prime p>1 s.t. p|z' and p|n. $p|z \Rightarrow p|x \text{ or } p|y.$ (say p|x) Hence p|n, p|x, so GCD(x,n) > 1. Contradiction of $x \in Z_n^*$



Z ₁₅ *										
*	1	2	4	7	8	11	13	14		
1	1	2	4	7	8	11	13	14		
2	2	4	8	14	1	7	11	13		
4	4	8	1	13	2	14	7	11		
7	7	14	13	4	11	2	1	8		
8	8	1	2	11	4	13	14	7		
11	11	7	14	2	13	1	8	4		
13	13	11	7	1	14	8	4	2		
14	14	13	11	8	7	4	2	1		



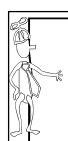
Fact:

For prime p, the set $Z_p^* = Z_p \setminus \{0\}$

Proof:

It just follows from the definition!

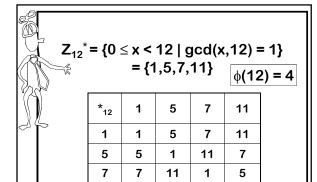
For a prime, all 0 < x < p satisfy gcd(x,p) = 1



Euler Phi Function (n)

Define $\phi(n)$ = size of Z_n^* = number of $1 \le k < n$ that are relatively prime to n.

$$\begin{array}{l} \text{p prime} \Rightarrow \textbf{Z}_{\textbf{p}}^{\ \star} \textbf{= \{1,2,3,...,p-1\}} \\ \Rightarrow \Phi(\textbf{p}) \textbf{= p-1} \end{array}$$



7

5

1

11

11

$$\phi(pq) = (p-1)(q-1)$$
How about p = 3, q = 5?
$$(1, 2, 3), 4, \times (2, 7, 8, 9), (9, 11, 12)$$

$$(3, 14, 13)$$

$$(5-5-3+1 = 8 = (3-1)(5-1)$$
in larges multiples (5)

Theorem: if p,q distinct primes then

②

Theorem: if p,q distinct primes then $\phi(pq) = (p-1)(q-1)$

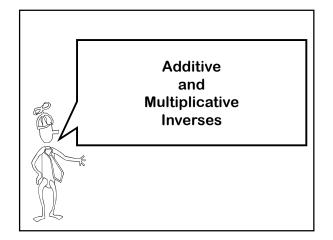
pq = # of numbers from 1 to pq

p = # of multiples of q up to pq

q = # of multiples of p up to pq

1 = # of multiple of both p and q up to pq

$$\phi(pq) = pq - p - q + 1 = (p-1)(q-1)$$



The additive inverse of $a \in Z_n$ is the unique $b \in Z_n$ such that $a +_n b \equiv_n 0$.

We denote this inverse by "-a".

It is trivial to calculate: "-a" = (n-a). The multiplicative inverse of $a\in Z_n^*$ is the unique $b\in Z_n^*$ such that $a\stackrel{*}{\sim}_n b\equiv_n 1.$

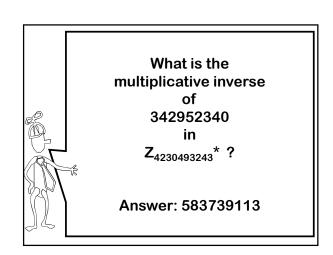
We denote this inverse by "a-1" or "1/a".

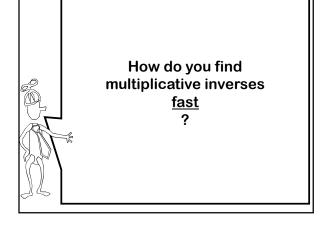
The unique inverse of "a" must exist because the "a" row contains a permutation of the elements and hence contains a unique 1.

*	1	b	3	4
1	1	2	3	4
2	2	4	1	3
а	3	1	4	2
4	4	3	2	1

What is the additive inverse of a = 342952340 in Z₄₂₃₀₄₉₃₂₄₃ = Z_n?

Answer: n - a = 3887540903





Euclid's Algorithm for GCD

Euclid(A,B)

If B=0 then return A

else return Euclid(B, A mod B)

Euclid(67,29) $67 - 2*29 = 67 \mod 29 = 9$ Euclid(29,9) $29 - 3*9 = 29 \mod 9 = 2$ Euclid(9,2) $9 - 4*2 = 9 \mod 2 = 1$ Euclid(2,1) $2 - 2*1 = 2 \mod 1 = 0$

Euclid(1,0) outputs 1

Extended Euclid Algorithm

Not only does it output GCD(A,B) it also outputs integers r, s such that

r*A + s*B = GCD(A,B)

Extended Euclid Algorithm

Let <r,s> denote the number r*67 + s*29. Calculate all intermediate values in this representation.

67=<1,0> 29=<0,1>

 Euclid(67,29)
 9=<1,0> - 2*<0,1>
 9 =<1,-2>

 Euclid(29,9)
 2=<0,1> - 3*<1,-2>
 2=<-3,7>

 Euclid(9,2)
 1=<1,-2> - 4*<-3,7>
 1=<13,-30>

 Euclid(2,1)
 0=<-3,7> - 2*<13,-30>
 0=<-29,67>

Euclid(1,0) outputs 1 = 13*67 – 30*29

Efficient algorithm to compute a⁻¹ from a and n.

Run Extended Euclidean Algorithm on the numbers a and n.

It will give two integers r and s such that ra + sn = gcd(a,n) = 1

Taking both sides modulo n, we obtain: $ra \equiv_n 1$

Output r, which is the inverse of a

Example

Multiplicative inverse of 29 in Z₆₇*?

Hence: $29^{-1} = -30 = 37 \pmod{67}$

