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Infinite Sample Spaces
and Random Walks
Lecture 11, September 30, 2008
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See handout for probability review 
and some new stuff
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X = number of  pairs of  
people with the same 
birthday

Xjk = 1 if  person j and person k 
have the same birthday; else 0

E[Xjk]  = (1/366) 1 + (1 – 1/366) 0
            = 1/366

E[X]  = E[ Σj ≤ k ≤ m Xjk ]

= Σj ≤ k ≤ m E[ Xjk ]

= m(m-1)/2 × 1/366
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Step Right Up…

You pick a number n ∈ [1..6].  
You roll 3 dice.  If  any match n, 
you win $1.  Else you pay me 

$1.  Want to play?

Hmm…
let’s see
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Analysis

Ai = event that i-th die matches

Xi = indicator RV for Ai

Expected number of  dice that match: 
E[X1+X2+X3] = 1/6+1/6+1/6 = ½

But this is not the same as 
Pr(at least one die matches)



Analysis

Pr(at least one die matches) 
     = 1 – Pr(none match)
     = 1 – (5/6)3 = 0.416



An easy question

lim
n→∞

Fn

Fn−1

= φ =
1 +

√
5

2

∞∑

i=0

qi =
1

1 − q
=

1

p

∞∑

i=0

1

2i
=?



An easy question

                                   

lim
n→∞

Fn

Fn−1

= φ =
1 +

√
5

2

∞∑

i=0

qi =
1

1 − q
=

1

p

∞∑

i=0

1

2i
=?



An easy question

                                   
Answer: 2

lim
n→∞

Fn

Fn−1

= φ =
1 +

√
5

2

∞∑

i=0

qi =
1

1 − q
=

1

p

∞∑

i=0

1

2i
=?



An easy question

                                   

0                      1         1.5         2

Answer: 2

lim
n→∞

Fn

Fn−1

= φ =
1 +

√
5

2

∞∑

i=0

qi =
1

1 − q
=

1

p

∞∑

i=0

1

2i
=?



An easy question

                                   

0                      1         1.5         2

Answer: 2

lim
n→∞

Fn

Fn−1

= φ =
1 +

√
5

2

∞∑

i=0

qi =
1

1 − q
=

1

p

∞∑

i=0

1

2i
=?



An easy question

                                   

0                      1         1.5         2

Answer: 2

lim
n→∞

Fn

Fn−1

= φ =
1 +

√
5

2

∞∑

i=0

qi =
1

1 − q
=

1

p

∞∑

i=0

1

2i
=?



An easy question

                                   

0                      1         1.5         2

Answer: 2

lim
n→∞

Fn

Fn−1

= φ =
1 +

√
5

2

∞∑

i=0

qi =
1

1 − q
=

1

p

∞∑

i=0

1

2i
=?



An easy question

                                   

0                      1         1.5         2

But it never actually gets 
to 2. Is that a problem?

Answer: 2

lim
n→∞

Fn

Fn−1

= φ =
1 +

√
5

2

∞∑

i=0

qi =
1

1 − q
=

1

p

∞∑

i=0

1

2i
=?



But it never actually gets 
to 2. Is that a problem?

No, we really mean the limit 
of  the partial sums.

In this case, the partial sum 
is 2-(½)n which goes to 2.
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A related question

Suppose I flip a coin of  bias p, 
stopping when I first get heads.

What’s the chance that I:
•Flip exactly once?

Ans: p
•Flip exactly two times?

Ans: (1-p)p
•Flip exactly k times?

Ans: (1-p)k-1p
•Eventually stop?

Ans: 1.  (assuming p>0)
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Pictorial view

Sample space S = leaves in this tree.  
Pr(x) = product of  edges on path to x. 

If  p>0, Pr(not halting by time n) goes to zero.
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Reason about expectations too!

E[X] = ∑x Pr(x)X(x).

E[X|A] = ∑x in A Pr(x|A)X(x).  
        I.e., it is as if  we started the game at A.

Suppose A is a node
in this tree

Pr(x|A)=product of  edges 
           on path from A to x.

A



Expected number of  heads

Flip bias-p coin until heads.  

What is expected number of  flips?

p 1-p

...

p

p

p

1-p

1-p



Expected number of  heads
p 1-p

...

p

p

p

1-p

1-p
Let X = # flips.



Expected number of  heads
p 1-p

...

p

p

p

1-p

1-p
Let X = # flips.

B = event “1st flip is heads”



Expected number of  heads
p 1-p

...

p

p

p

1-p

1-p

E[X] = E[X|B] × Pr(B) + E[X| not B] ×  Pr(not B)

Let X = # flips.

B = event “1st flip is heads”



Expected number of  heads
p 1-p

...

p

p

p

1-p

1-p
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B = event “1st flip is heads”
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E[X] = E[X|B] × Pr(B) + E[X| not B] ×  Pr(not B)

Let X = # flips.

B = event “1st flip is heads”

Solving:  p × E[X] = p + (1-p)
        ⇒ E[X] = 1/p.

= 1 × p  +  (1 + E[X]) × (1-p).
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Infinite Probability spaces

Notice we are using infinite probability 
spaces here, but we really only defined 
things for finite spaces so far.

Infinite probability spaces can sometimes 
be weird. 

Luckily, in CS we will almost always be 
looking at spaces that can be viewed as 
choice trees where 

Pr(haven’t halted by time t) goes to 0 as t 
gets large



General picture

Let sample space S be 
leaves of  a choice tree.

Let Sn = {leaves at depth ≤ n}.

For event A, let An = A ∩ Sn.

If  limnPr(Sn)=1, can define:

 Pr(A)=limn Pr(An).
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Setting that doesn’t fit our model

Event: “Flip coin until #heads > 2*#tails.”

There’s a reasonable chance 
 this will never stop... 



How to walk 
home drunk





Drunk man will find way 
home, but drunk bird may 

get lost forever

- Shizuo Kakutani
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Abstraction of  Student Life

Like finite automata, but 
instead of  a determinisic 
or non-deterministic 
action, we have a 
probabilistic action

Example questions: “What is the probability of  
reaching goal on string Work,Eat,Work?”

No new
ideas

Solve HW
problem

Eat

Wait

Work

Work

0.3

0.30.4
0.990.01

Hungry
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Random Walk on a Line
You go into a casino with $k, and at each time 
step, you bet $1 on a fair game

You leave when you are broke or have $n

Question 1: what is your expected 
amount of  money at time t?

Let Xt be a R.V. for the amount of  $$$ at time t
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Random Walk on a Line
You go into a casino with $k, and at each time 
step, you bet $1 on a fair game

You leave when you are broke or have $n

Xt = k + δ1 + δ2 + ... + δt,

  (δi is RV for change in your money at time i)

So, E[Xt] = k

E[δi] = 0
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Random Walk on a Line
Question 2: what is the probability that you 
leave with $n?

E[Xt] = k

E[Xt] = E[Xt| Xt = 0] × Pr(Xt = 0) 

  + E[Xt | Xt = n] × Pr(Xt = n) 

  + E[ Xt | neither] × Pr(neither)

As t →∞, Pr(neither) → 0, also somethingt < n
 Hence Pr(Xt = n) → k/n

     k  = n × Pr(Xt = n) 

  + (somethingt) × Pr(neither)
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Another Way To Look At It
You go into a casino with $k, and at each time 
step, you bet $1 on a fair game

You leave when you are broke or have $n

Question 2: what is the probability that you 
leave with $n?

= probability that I hit green before I hit red
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What is chance I reach green before red?

Random Walks and 
Electrical Networks

Same as voltage if  edges are resistors and 
we put 1-volt battery between green and red
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Random Walks and 
Electrical Networks

Same as equations for voltage if  edges all 
have same resistance!

px = Pr(reach green first starting from x)

pgreen= 1, pred = 0

And for the rest px = Averagey ∈ Nbr(x)(py)
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Another Way To Look At It
You go into a casino with $k, and at each time 
step, you bet $1 on a fair game

You leave when you are broke or have $n

Question 2: what is the probability that you 
leave with $n?

voltage(k) = k/n 
 = Pr[ hitting n before 0 starting at k] !!!
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Getting Back Home

-

Lost in a city, you want to get back to your hotel
How should you do this?

Requires a good memory and a piece of  chalk

Depth First Search!



Getting Back Home

-

How about walking randomly?
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Will this work?

When will I get home?

Is Pr[ reach home ] = 1?

What is 
E[ time to reach home ]?



Pr[ will reach home ] = 1
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We Will Eventually Get Home
Look at the first n steps

There is a non-zero chance p1 that we get home

Also, p1 ≥ (1/n)n

Suppose we fail

Then, wherever we are, there is a chance p2 
≥ (1/n)n that we hit home in the next n steps 
from there

Probability of  failing to reach home by time kn 
 = (1 – p1)(1 – p2) … (1 – pk) → 0 as k → ∞
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Furthermore:

If  the graph has 
n nodes and m edges, then

E[ time to visit all nodes ] 
≤ 2m × (n-1)



E[ time to reach home ] is at 
most this

Furthermore:

If  the graph has 
n nodes and m edges, then

E[ time to visit all nodes ] 
≤ 2m × (n-1)
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Cover Times

Cover time (from u)
Cu = E [ time to visit all vertices | start at u ]

Cover time of  the graph

(worst case expected time to see all vertices)

C(G) = maxu  { Cu }
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Cover Time Theorem

If  the graph G has 
n nodes and m edges, then 

the cover time of  G is

C(G) ≤ 2m (n – 1)

Any graph on n vertices has < n2/2 edges

Hence C(G) < n3 for all graphs G



Actually, we get home 
pretty fast…

Chance that we don’t hit home by 
(2k)2m(n-1) steps is (½)k
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earning more than $200 each

True or False:



A Simple Calculation

If  the average income of  people is $100 then 
more than 50% of  the people can be

earning more than $200 each

False! else the average would be higher!!!

True or False:
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Markov’s Inequality
If  X is a non-negative r.v. with mean E[X], then 

Pr[ X > 2 E[X] ]   ≤  ½ 

Pr[ X > k E[X] ]   ≤  1/k 
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Markov’s Inequality
Non-neg random variable X has expectation 
A = E[X]
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(since X is non-neg)

Markov’s Inequality
Non-neg random variable X has expectation 
A = E[X]

A = E[X] = E[X | X > 2A ] Pr[X > 2A]
   + E[X | X ≤ 2A ] Pr[X ≤ 2A]

≥ E[X | X > 2A ] Pr[X > 2A]

Also, E[X | X > 2A] > 2A

⇒ A ≥ 2A × Pr[X > 2A]   

Pr[ X > k × expectation ] ≤ 1/k

⇒ ½ ≥ Pr[X > 2A]



Actually, we get home 
pretty fast…

Chance that we don’t hit home by 
(2k)2m(n-1) steps is (½)k
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An Averaging Argument

Suppose I start at u

E[ time to hit all vertices | start at u ] ≤ C(G)

Hence, by Markov’s Inequality:
Pr[ time to hit all vertices > 2C(G) | start at u ]  ≤ ½
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So Let’s Walk Some More!

Pr [ time to hit all vertices > 2C(G) | start at u ] ≤ ½

Suppose at time 2C(G), I’m at some node 
with more nodes still to visit

Pr [ haven’t hit all vertices in 2C(G) more time 
             | start at v ] ≤ ½

Chance that you failed both times ≤ ¼ = (½)2 

Hence,
Pr[ havent hit everyone in time k × 2C(G) ] ≤ (½)k
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Hence, if  we know that

Expected Cover Time
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Hence, if  we know that

Expected Cover Time
C(G) < 2m(n-1)

then



Hence, if  we know that

Expected Cover Time
C(G) < 2m(n-1)

then

Pr[ home by time 4k m(n-1) ] 
≥ 1 – (½)k



Random walks 
on infinite graphs





Drunk man will find way 
home, but drunk bird may 

get lost forever

- Shizuo Kakutani
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Random Walk On a Line

Flip an unbiased coin and go left/right

Let Xt be the position at time t

Pr[ Xt = i ] = Pr[ #heads –  #tails = i]

= Pr[ #heads – (t - #heads) = i]

t
(t+i)/2 /2t=
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Stirling’s
approx

Random Walk On a Line

0 i

Pr[ X2t = 0 ] = ≤ Θ(1/√t)
2t
t /22t

Y2t = indicator for (X2t = 0) ⇒ E[ Y2t ] = Θ(1/√t)

Z2n = number of  visits to origin in 2n steps

E[ Z2n ] = E[ ∑t = 1…n Y2t ]

≤ Θ(1/√1 + 1/√2 +…+ 1/√n) = Θ(√n)



In n steps, you expect to 
return to the origin 

Θ(√n) times!
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In The 2-d Walk
Returning to the origin in the grid

   ⇔ both “line” random walks return 
to their origins

Pr[ visit origin at time t ]  = Θ(1/√t) × Θ(1/√t)
      = Θ(1/t)

E[ # of  visits to origin by time n ]
 = Θ(1/1 + 1/2 + 1/3 + … + 1/n ) = Θ(log n)
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But In 3D
Pr[ visit origin at time t ] = Θ(1/√t)3 = Θ(1/t3/2)

limn →∞ E[ # of  visits by time n ] < K (constant)

Hence Pr[ never return to origin ] > 1/K



Here’s What 
You Need to 

Know…

Conditional expectation

Flipping coins with bias p
Expected number of  flips 
 before a heads

Random Walk on a Line

Cover Time of  a Graph

Markov’s Inequality


