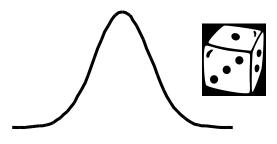
15-251

Great Theoretical Ideas in Computer Science

Probability Theory: Counting in Terms of Proportions

Lecture 10, September 25, 2008



Teams A and B are equally good

In any one game, each is equally likely to win

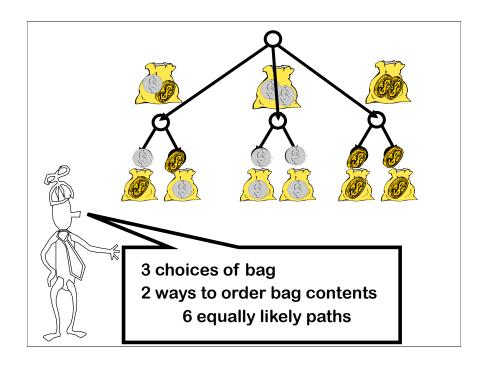
What is the most likely length of a "best of 7" series?

Flip coins until either 4 heads or 4 tails Is this more likely to take 6 or 7 flips?

6 and 7 Are Equally Likely

To reach either one, after 5 games, it must be 3 to 2

½ chance it ends 4 to 2; ½ chance it doesn't



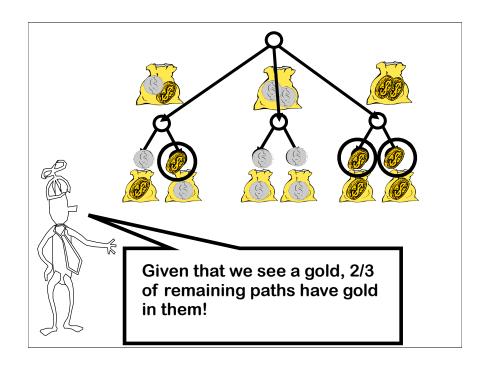
Silver and Gold



One bag has two silver coins, another has two gold coins, and the third has one of each

One bag is selected at random. One coin from it is selected at random. It turns out to be gold

What is the probability that the other coin is gold?



So, sometimes, probabilities can be counter-intuitive

Finite Probability Distribution

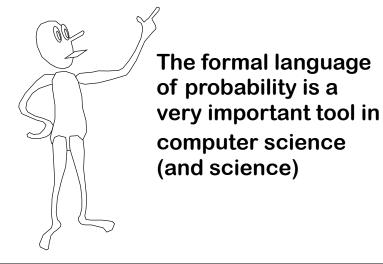
A (finite) probability distribution p is a finite set S of elements, together with a nonnegative real weight, or probability p(x) for each element x in S

The weights must satisfy:

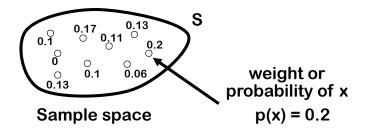
$$\sum_{x \in S} p(x) = 1$$

S is often called the sample space and elements x in S are called samples

Language of Probability



Sample Space



Events

Any set $E \subseteq S$ is called an event

$$\Pr_{D}[E] = \sum_{x \in E} p(x)$$

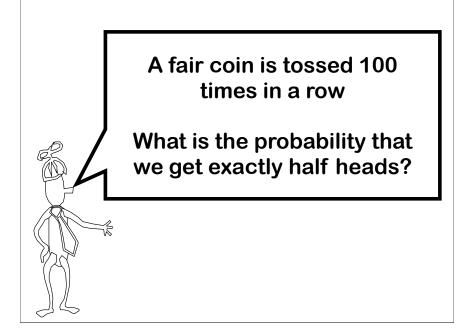
$$0.17 \quad 0$$

$$0.17 \quad 0$$

$$0.13 \quad 0.1$$

$$0.13$$

 $Pr_{D}[E] = 0.4$



Uniform Distribution

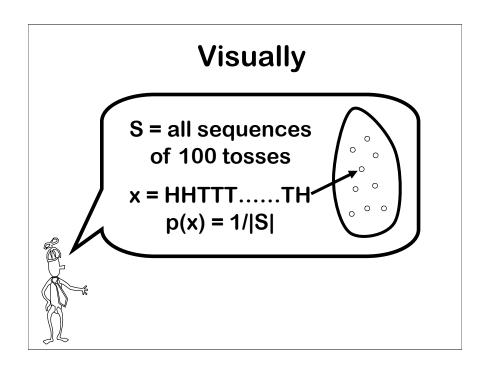
If each element has equal probability, the distribution is said to be uniform

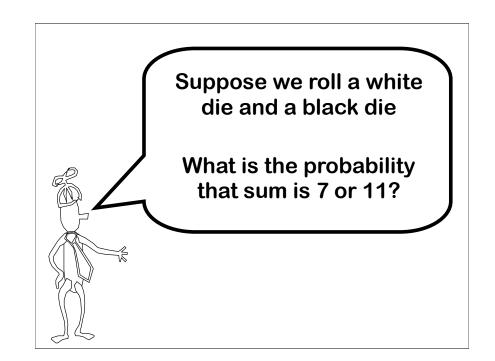
$$Pr_D[E] = \sum_{x \in E} p(x) = \frac{|E|}{|S|}$$

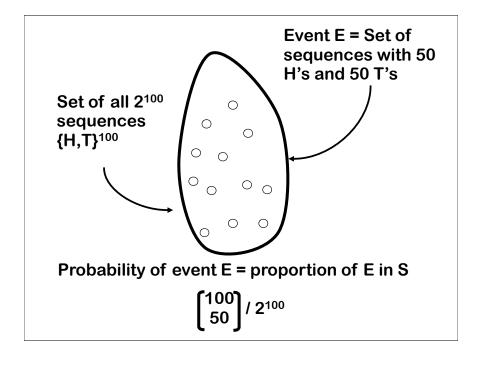
Using the Language

The sample space S is the set of all outcomes {H,T}¹⁰⁰

Each sequence in S is equally likely, and hence has probability 1/|S|=1/2¹⁰⁰







Same Methodology!

$$S = \{ (1,1), (1,2), (1,3), (1,4), (1,5), (1,6) \}$$

$$(2,1), (2,2), (2,3), (2,4), (2,5) (2,6),$$

$$(3,1), (3,2), (3,3), (3,4) (3,5), (3,6),$$

$$(4,1), (4,2), (4,3), (4,4), (4,5), (4,6),$$

$$(5,1), (5,2), (5,3), (5,4), (5,5), (5,6),$$

$$(6,1), (6,2), (6,3), (6,4), (6,5), (6,6) \}$$

$$Pr[E] = |E|/|S| = proportion of E in S = 8/36$$

Suppose that all possible birthdays are equally likely

What is the probability that two people will have the same birthday?

E = all sequences in S that have no repeated numbers

$$|\overline{E}| = (366)(365)...(344)$$

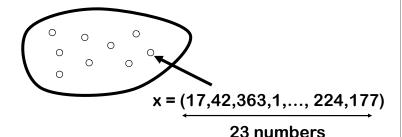
$$|W| = 366^{23}$$

$$\frac{|\overline{E}|}{|W|} = 0.494...$$

$$\frac{|E|}{|W|} = 0.506...$$

And The Same Methods Again!

Sample space W = $\{1, 2, 3, ..., 366\}^{23}$



Event $E = \{ x \in W \mid \text{two numbers in } x \text{ are same } \}$

What is |E|? Count |E| instead!

Sons of Adam

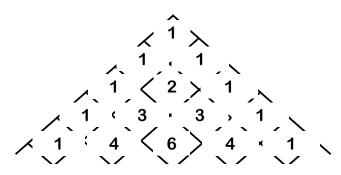
Adam was X inches tall

He had two sons:

One was X+1 inches tall

One was X-1 inches tall

Each of his sons had two sons ...



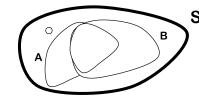
In the nth generation there will be 2^n males, each with one of n+1 different heights: $h_0, h_1,...,h_n$

 $h_i = (X-n+2i)$ occurs with proportion: $\begin{bmatrix} n \\ i \end{bmatrix} / 2^i$

More Language Of Probability

The probability of event A given event B is written Pr[A|B] and is defined to be =

$$\frac{\Pr[A \cap B]}{\Pr[B]}$$

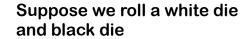


proportion of A ∩ B

Unbiased Binomial Distribution On n+1 Elements

Let S be any set $\{h_0, h_1, ..., h_n\}$ where each element h_i has an associated probability

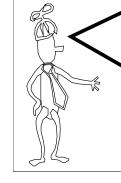
Any such distribution is called an Unbiased Binomial Distribution or an Unbiased Bernoulli Distribution



What is the probability that the white is 1 given that the total is 7?

event A = {white die = 1}

event $B = \{total = 7\}$



$$S = \{ (1,1), (1,2), (1,3), (1,4), (1,5), (1,6) \}$$

$$(2,1), (2,2), (2,3), (2,4), (2,5), (2,6), (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), (5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6) \}$$

$$Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]} = \frac{|A \cap B|}{|B|} = \frac{1}{6}$$

Independence!

A and B are independent events if

Declaration of Independence

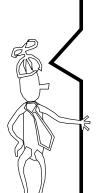
 $A_1, A_2, ..., A_k$ are independent events if knowing if some of them occurred does not change the probability of any of the others occurring

E.g.,
$$\{A_1, A_2, A_3\}$$
 Pr[A₁ | A₂ \cap A₃] = Pr[A₁] are independent events if: Pr[A₂ | A₁ \cap A₃] = Pr[A₂] Pr[A₃ | A₁ \cap A₂] = Pr[A₃]

$$Pr[A_1 | A_2] = Pr[A_1] Pr[A_1 | A_3] = Pr[A_1]$$

 $Pr[A_2 | A_1] = Pr[A_2] Pr[A_2 | A_3] = Pr[A_2]$
 $Pr[A_3 | A_1] = Pr[A_3] Pr[A_3 | A_2] = Pr[A_3]$

Silver and Gold



One bag has two silver coins, another has two gold coins, and the third has one of each

One bag is selected at random. One coin from it is selected at random. It turns out to be gold

What is the probability that the other coin is gold?

Let G₁ be the event that the first coin is gold

 $Pr[G_1] = 1/2$

Let G₂ be the event that the second coin is gold

 $Pr[G_2 \mid G_1] = Pr[G_1 \text{ and } G_2] / Pr[G_1]$

= (1/3) / (1/2)

= 2/3

Note: G₁ and G₂ are not independent

Monty Hall Problem

Sample space = { prize behind door 1, prize behind door 2, prize behind door 3 }

Each has probability 1/3

Staying we win if we chose the correct door

Pr[choosing correct door] = 1/3

Switching we win if we chose the incorrect door

Pr[choosing incorrect door] = 2/3

Monty Hall Problem

Announcer hides prize behind one of 3 doors at random

You select some door

Announcer opens one of others with no prize

You can decide to keep or switch

What to do?

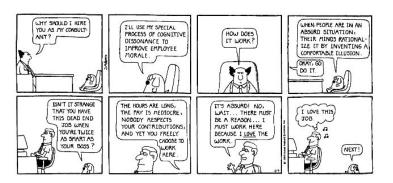
Why Was This Tricky?

We are inclined to think:

"After one door is opened, others are equally likely..."

But his action is not independent of yours!

Cognitive Dissonance



Monty Meets Monkeys

Psychological explanation: Monkey rationalizes its initial rejection of blue by telling itself it doesn't really like blue. (Cognitive dissonance) Probabilistic explanation: If the monkey slightly prefers red over blue, only three ways it can rank green. It prefers green in two of the three.

Monty Meets Monkeys

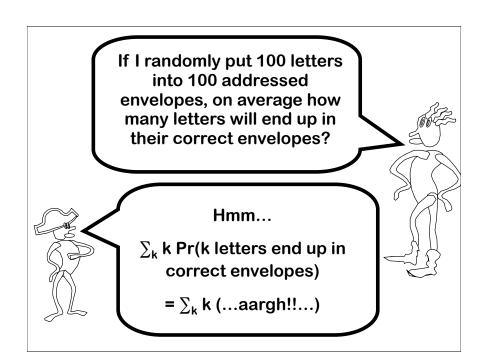
(from article by John Tierney)

Experiment: Psychologists first observe that a monkey seeks out red, blue, and green M&Ms about equally

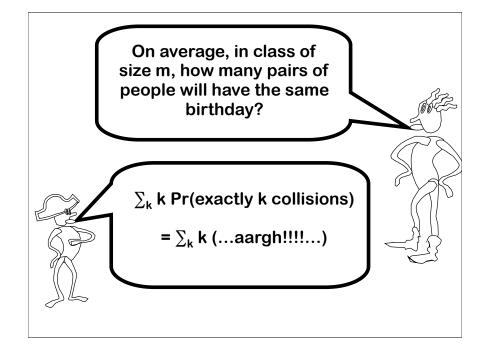
The monkey is given a choice of red or blue candy. It chooses red.

If the monkey is then given a choice of blue or green, it is more likely to choose green.

Next, we'll learn about a formidable tool in probability that will allow us to solve problems that seem really really messy...



The new tool is called "Linearity of Expectation"



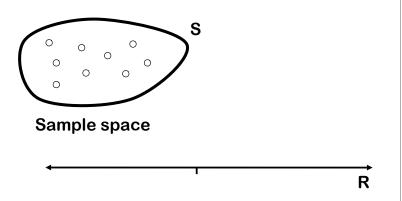
Random Variable

To use this new tool, we will also need to understand the concepts of Random Variable and Expectations

Basic, but need to understand it well

Random Variable

Let S be sample space in a probability distribution A Random Variable is a real-valued function on S



Tossing a Fair Coin n Times

Random Variable

Let S be sample space in a probability distribution A Random Variable is a real-valued function on S Examples:

X =value of white die in a two-dice roll X(3,4) = 3, X(1,6) = 1

Y = sum of values of the two dice

Y(3,4) = 7, Y(1,6) = 7

W = (value of white die) value of black die

 $W(3,4) = 3^4$, $Y(1,6) = 1^6$

Notational Conventions

Use letters like A, B, E for events
Use letters like X, Y, f, g for R.V.'s
R.V. = random variable

Two Views of Random Variables

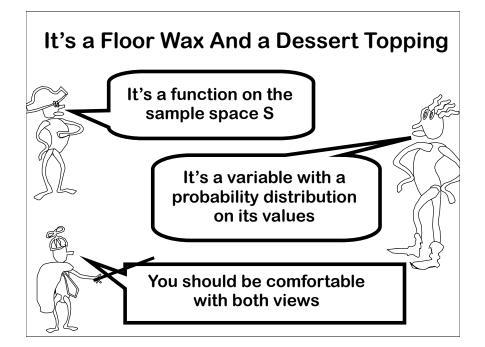
Think of a R.V. as

Input to the function is random

A function from S to the reals R

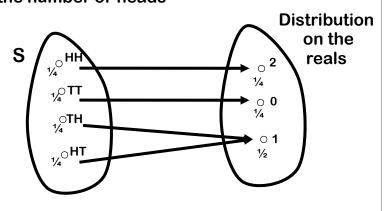
Or think of the induced distribution on R

Randomness is "pushed" to the values of the function



Two Coins Tossed

X: $\{TT, TH, HT, HH\} \rightarrow \{0, 1, 2\}$ counts the number of heads



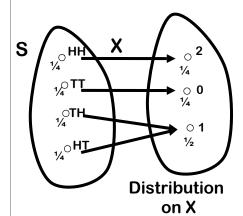
From Random Variables to Events

For any random variable X and value a, we can define the event A that "X = a"

$$Pr(A) = Pr(X=a) = Pr(\{x \in S | X(x)=a\})$$

Two Coins Tossed

X: $\{TT, TH, HT, HH\} \rightarrow \{0, 1, 2\}$ counts # of heads



$$Pr(X = a) =$$

 $Pr(\{x \in S | X(x) = a\})$

$$Pr(X = 1)$$

= $Pr(\{x \in S | X(x) = 1\})$
= $Pr(\{TH, HT\}) = \frac{1}{2}$

Definition: Expectation

The expectation, or expected value of a random variable X is written as E[X], and is

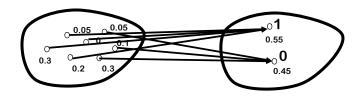
$$E[X] = \sum_{x \in S} Pr(x) X(x) = \sum_{k} k Pr[X = k]$$

$$X \text{ is a function} \qquad X \text{ has a}$$
on the sample space S distribution on its values

From Events to Random Variables

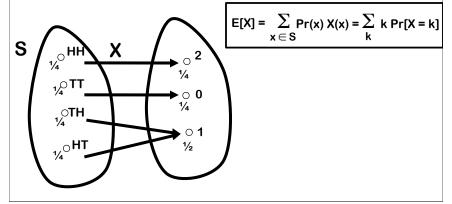
For any event A, can define the indicator random variable for A:

$$X_{A}(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$



A Quick Calculation...

What if I flip a coin 2 times? What is the expected number of heads?



A Quick Calculation...

What if I flip a coin 3 times? What is the expected number of heads?

$$E[X] = (1/8) \times 0 + (3/8) \times 1 + (3/8) \times 2 + (1/8) \times 3 = 1.5$$

But
$$Pr[X = 1.5] = 0$$

Moral: don't always expect the expected.

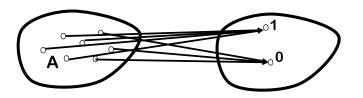
Pr[X = E[X]] may be 0!

Indicator R.V.s: $E[X_A] = Pr(A)$

For any event A, can define the indicator random variable for A:

$$X_{A}(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$

$$E[X_{A}] = 1 \times Pr(X_{A} = 1) = Pr(A)$$



Type Checking

You can average the values of a random variable.

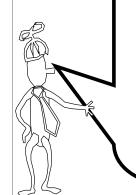
If you are computing an expectation, the thing whose expectation you are computing is a random variable

Adding Random Variables

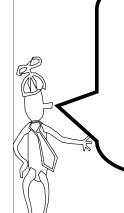
If X and Y are random variables (on the same set S), then Z = X + Y is also a random variable

$$Z(x) = X(x) + Y(x)$$

E.g., rolling two dice. X = 1st die, Y = 2nd die, Z = sum of two dice



Adding Random Variables



Example: Consider picking a random person in the world. Let X = length of the person's left arm in inches. Y = length of the person's right arm in inches. Let Z = X+Y. Z measures the combined arm lengths

Linearity of Expectation

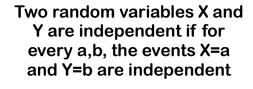
Expectatus linearis

If Z = X+Y, then

E[Z] = E[X] + E[Y]

Even if X and Y are not independent!

Independence

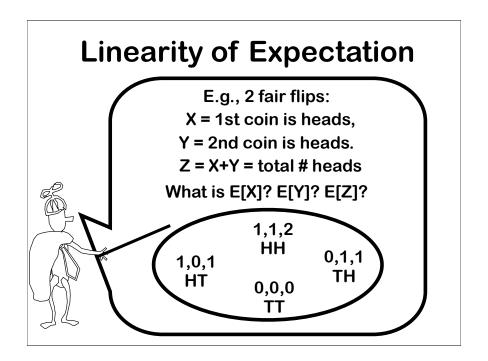


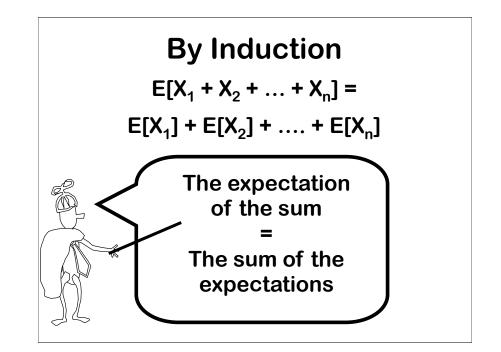
How about the case of X=1st die, Y=2nd die? X = left arm, Y=right arm?

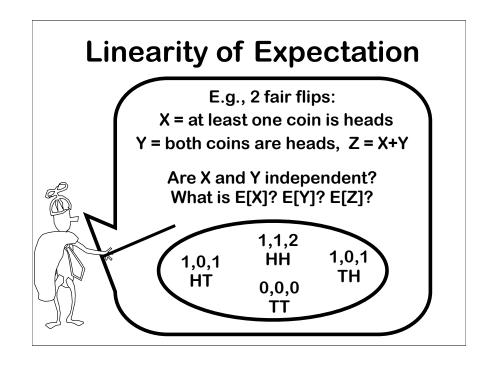
$$E[Z] = \sum_{x \in S} Pr[x] Z(x)$$
$$= \sum_{x \in S} Pr[x] (X(x) + Y(x))$$

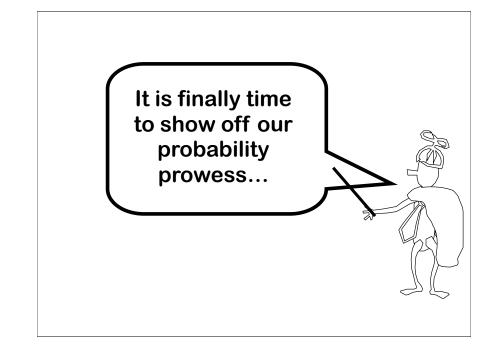
$$= \sum_{x \in S} \Pr[x] X(x) + \sum_{x \in S} \Pr[x] Y(x)$$

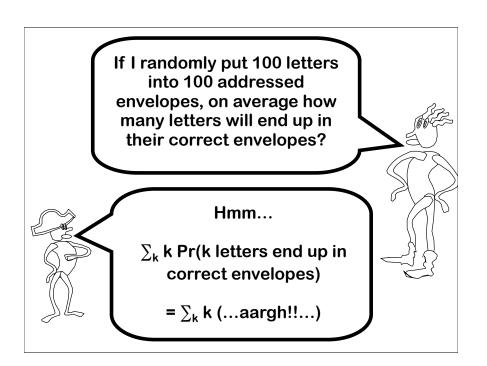
$$= E[X] + E[Y]$$

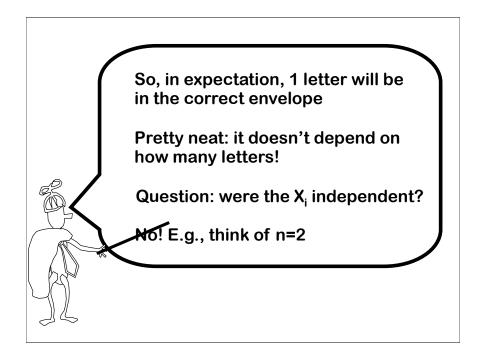












Use Linearity of Expectation

Let A_i be the event the ith letter ends up in its correct envelope

Let X_i be the indicator R.V. for A_i

$$X_{i} = \begin{cases} 1 & \text{if } A_{i} \text{ occurs} \\ 0 & \text{otherwise} \end{cases}$$

Let Z = X₁ + ... + X₁₀₀

We are asking for E[Z]

 $E[X_i] = Pr(A_i) = 1/100$

So E[Z] = 1

Use Linearity of Expectation

General approach:

View thing you care about as expected value of some RV

Write this RV as sum of simpler RVs (typically indicator RVs)

Solve for their expectations and add them up!

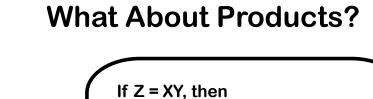
Example

We flip n coins of bias p. What is the expected number of heads?

We could do this by summing

$$\sum_{k} k \operatorname{Pr}(X = k) = \sum_{k} k \binom{n}{k} p^{k} (1-p)^{n-k}$$

But now we know a better way!



If Z = XY, then $E[Z] = E[X] \times E[Y]$?

No!

X=indicator for "1st flip is heads" Y=indicator for "1st flip is tails"

E[XY]=0

Linearity of Expectation!

Let X = number of heads when n independent coins of bias p are flipped

Break X into n simpler RVs:

$$X_{i} = \begin{cases} 1 & \text{if the } j^{th} \text{ coin is tails} \\ 0 & \text{if the } j^{th} \text{ coin is heads} \end{cases}$$

$$E[X] = E[\Sigma_i X_i] = np$$

But It's True If RVs Are Independent

Proof:
$$E[X] = \sum_{a} a \times Pr(X=a)$$

 $E[Y] = \sum_{b} b \times Pr(Y=b)$

$$E[XY] = \sum_{c} c \times Pr(XY = c)$$

=
$$\sum_{c} \sum_{a,b:ab=c} c \times Pr(X=a \cap Y=b)$$

=
$$\sum_{a,b}$$
 ab × Pr(X=a \cap Y=b)

=
$$\sum_{a,b}$$
ab × Pr(X=a) Pr(Y=b)

$$= E[X] E[Y]$$

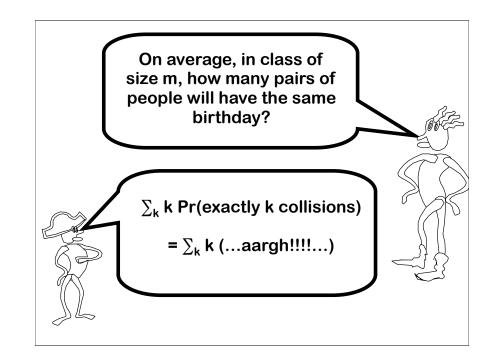
Example: 2 fair flips
X = indicator for 1st coin heads
Y = indicator for 2nd coin heads
XY = indicator for "both are heads"

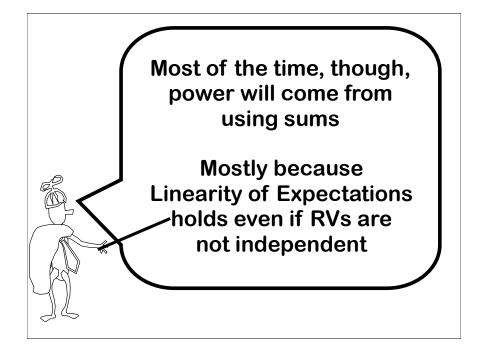
E[X] = ½, E[Y] = ½, E[XY] = ¼

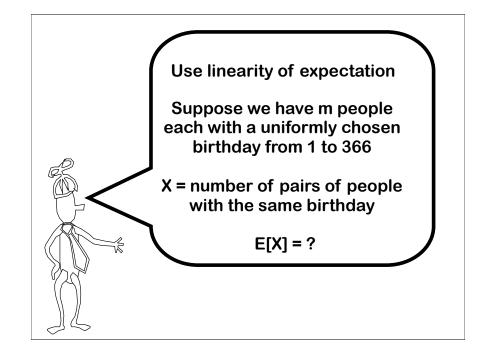
E[X²] = E[X]²?

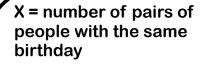
No: E[X²] = ½, E[X]² = ¼

In fact, E[X²] - E[X]² is called the variance of X









E[X] = ?

Use m(m-1)/2 indicator variables, one for each pair of people

 X_{ik} = 1 if person j and person k have the same birthday; else 0

$$E[X_{jk}] = (1/366) 1 + (1 - 1/366) 0$$

= 1/366

Here's What You Need to Know...

Language of Probability

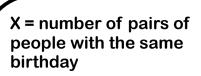
Sample Space **Events Uniform Distribution** Pr[A|B] Independence

Binomial Distribution

Definition

Random Variables

Two views **Expectation** Linearity of expectation



 X_{ik} = 1 if person j and person k have the same birthday; else 0

$$E[X_{jk}] = (1/366) 1 + (1 - 1/366) 0$$

= 1/366

$$E[X] = E[\sum_{j \le k \le m} X_{jk}]$$

$$= \sum_{j \le k \le m} E[X_{jk}]$$

$$= m(m-1)/2 \times 1/366$$

