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Leonardo Fibonacci




Leonardo Fibonacci

In 1202, Fibonacci proposed a problem
about the growth of rabbit populations
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Rabbit Reproduction

A rabbit lives forever
The population starts as single newborn pair

Every month, each productive pair begets
a new pair which will become productive
after 2 months old

F = # of rabbit pairs at the beginning of
the nth month

month [1]2[3]4a]5]6]7
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Fibonacci Numbers

month [1]2[3]4a]5]6]7

aoms |1 (7 12 |3 (5[5 [15

Stage 0, Initial Condition, or Base Case:
Fib(1)=1; Fib (2) =1

Inductive Rule:
For n>3, Fib(n) = Fib(n-1) + Fib(n-2)



Sequences That Sum To n



Sequences That Sum To n

Letf ., be the number of different
sequences of 1’s and 2’s that sum to n.



Sequences That Sum To n

Letf ., be the number of different
sequences of 1’s and 2’s that sum to n.

f,=1



Sequences That Sum To n

Letf ., be the number of different
sequences of 1’s and 2’s that sum to n.

f,=1 0 =the empty sum



Sequences That Sum To n

Letf ., be the number of different
sequences of 1’s and 2’s that sum to n.

f,=1 0 =the empty sum
f,=1



Sequences That Sum To n

Letf ., be the number of different
sequences of 1’s and 2’s that sum to n.

f,=1 0 =the empty sum
f,=1 1=1



Sequences That Sum To n

Letf ., be the number of different
sequences of 1’s and 2’s that sum to n.

f,=1 0 =the empty sum
f,=1 1=1
f,=2



Sequences That Sum To n

Letf ., be the number of different
sequences of 1’s and 2’s that sum to n.

f,=1 0 =the empty sum
f,=1 1=1

fi=2 2=1+1
2



Sequences That Sum To n

Letf ., be the number of different
sequences of 1’s and 2’s that sum to n.

4 =



Sequences That Sum To n

Letf ., be the number of different
sequences of 1’s and 2’s that sum to n.

4= 2+2
2+1+1
1+2+1
1+1+2
1+1+1+1



Sequences That Sum To n

Letf ., be the number of different
sequences of 1’s and 2’s that sum to n.



Sequences That Sum To n

Letf ., be the number of different
sequences of 1’s and 2’s that sum to n.

1:n+1 = 1:n T 1:n-1



Sequences That Sum To n

Letf ., be the number of different
sequences of 1’s and 2’s that sum to n.

1:n+1 = 1:n T 1:n-1

# of # of
sequences seqgquences

beginning beginning
with a 1 with a 2




Fibonacci Numbers Again

Letf ., be the number of different
sequences of 1’s and 2’s that sum to n.

fr\+‘l = fn * fn-‘l



Visual Representation: Tiling

Letf ., be the number of different

ways to tile a 1 x n strip with squares
and dominoes.

L1 T 1]
I .



Visual Representation: Tiling

1 way to tile a strip of length 0
1 way to tile a strip of length 1:

|

2 ways to tile a strip of length 2:

I



1:n+1 = fn T 1:n-1

f

1+ 1S number of ways to tile length n.

f  tilings that start with a square.

: f ., tilings that start with a domino.
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Fibonacci ldentities

Some examples:
F,,=F +F;+F_+...+F,

|:m+n+1 = |:m+1 |:n+1 tF,F

m " N

(l:n)2 = l:n-1 l:r|+1 + ('1 )n



|:m+r\+1
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(Fn)2 = l:n-1 l:n+1 T ('1 )n
n-1
/_/%

I

F, tilings of a strip of length n-1



(F,)? tilings of two strips of size n-1



(F)? = FryFoy + ()

n-1

n

/_/%

e e

Draw a vertical “fault
line” at the rightmost
position (<n) possible
without cutting any
dominoes




(Fn)2 l:n-1 l:n+1 T ('1 )n

n

/_/%

e

Swap the tails at the fault
line to map to a tiling of 2
(n-1)’s to a tiling of an
n-2 and an n.




(F)? = FryFoy + ()

neven



Sneezwort (Achilleaptarmica)

\/

Each time the plant starts a new shoot
it takes two months before it is strong
enough to support branching.
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Counting Petals

5 petals: buttercup, wild rose, larkspur,
columbine (aquilegia)
8 petals: delphiniums
13 petals: ragwort, corn marigold,
cineraria,
some daisies

21 petals: aster, black-eyed susan, chicory

34 petals: plantain, pyrethrum

55, 89 petals: michaelmas daisies, the
asteraceae family.



The Fibonacci Quarterly
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Definition of ¢ (Euclid)

Ratio obtained when you divide a line segment
into two unequal parts such that the ratio of
the whole to the larger part is the same as the
ratio of the larger to the smaller.

_ AC _ AB EE—
¢ B BC A B C
AC
2 —
¢ BC
AC AB BC
q)z- = ____ - ____=___=1
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Fig. 12.4. Phyllotaxis




Golden ratio supposed to arise
in...
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Golden ratio supposed to arise
in...

2 _1.618
b

300m (984ft)

Eiffel Tower
Leaning Tower of Pisa
Big Ben
Statue of Liberty

137m (449ft)

96m (316ft)

Mostly
circumstantial
evidence...

Ratio of a person's height
to the height of his/her navel
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Expanding Recursively
1
=]+ —
? ¢
1

1+l

P

1
1

1+1

P

=1+
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1 +



=1+

Continued Fraction

Representation
1

1

1+ 1

1+ 1

1+

1 +

1+

1 +

1 +




A (Simple) Continued Fraction Is Any
Expression Of The Form:

1
1
1
1
1

where a, b, c, ... are whole numbers.



A Continued Fraction can have a finite
or infinite number of terms.

1
1
1
1
1

We also denote this fraction by [a,b,c,de.f,..]



A Finite Continued Fraction

1
1
1

4 + —
2

Denoted by [2,3,4,2,0,0,0,...]

2+

3+




An Infinite Continued Fraction

1

1+
2+ :

2+ :

2+ :

2+ :

1

2+ 1

1

2+ :
Denoted by [1,2,2,2,...] 2+....

2+

2+




Recursively Defined Form For CF

CF = whole number, or

= whole number + L

CF



Continued fraction representation of a
standard fraction

ﬂ=2+ 11
29 3+

4+l

2



e.g., 67/29 =2 with remainder 9/29
=2+ 1/(29/9)
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np



Ancient Greek Representation:
Continued Fraction Representation

§=1+ :

d - 1

1

1+1

1

=[111110,0,0,.]

1 +



Ancient Greek Representation:
Continued Fraction Representation

13—1+ :

3 - 1

1
1

1+l

|
=1111111000,.]

1 +

1 +



A Pattern?

Let r,=[1,0,0,0,...]=1
r,=[1,1,0,0,0,...] = 2/1
r, =[1,1,1,0,0,0...] = 3/2
r,=[01,1,1,1,0,0,0...] =5/3
and so on.

Theorem:
r, = Fib(n+1)/Fib(n)
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1,1,2,3,5,8,13,21,34,55,....

2/1 = 2

3/2 = 1.5

5/3 = 1.666...

8/5 = 1.6

13/8 = 1.625

21113 = 1.6153846...
34/21 = 1.61904...

¢= 1.6180339887498948482045



Pineapple whorls

Church and Turing were both
interested in the number of
whorls in each ring of the
spiral.

The ratio of consecutive ring
lengths approaches the
Golden Ratio.







>
!

Proposition:

Any finite continued fraction
evaluates to a rational.

Theorem
Any rational has a finite
continued fraction
representation.

o /




\

Hmm.
Finite CFs = Rationals.

Then what do

infinite continued fractions

.

represent?

_/




An infinite continued fraction

J2 =1+ :

2+ 11
2+

1

2+
2+ 1

1

2+
2+ 1

2+ 1

2+1

2+....



Quadratic Equations

X2-3x-1=0 3 ++/13
X =
2
X2= 3X+ 1
X =3 +1/X

X=3+1/X=3+1/[3+1/X] =...



3+\/E

A Periodic CF




Theorem: \

Any solution to a quadratic
equation has a periodic
continued fraction.

Converse:

g D Any periodic continued
! fraction is the solution of a
! quadratic equation.

(try to prove this!)

. _/




!

5
[

.

So they express more

than just the rationals...

What about those
non-recurring infinite
continued fractions?

_/




Non-periodic CFs
1

e—1=1+ 1

1+

2+ 1

1

1+ 1

1+ 1

1+ 1

1+ 1

1+
6 + 1

1+....



3+

What is the pattern?
1

T+ 1

15+

1+
292 +

1+
I+

1+
2+

1+....



=
I

What is the pattern?

3+ 1

1

T+
15+

1+
292 +

1+
I+

No one knows!

1+

2+

1+....



¢
!

.

Periodic CF: Quadratic roots

N

\

hat a cool representation!

Finite CF: Rationals

And some numbers reveal

hidden regularity.

/




More good news: Convergents

Leto =[a,, a,, a5, ...] be a CF.

Define: c,=[a,,0,0,0,0..]
C,=[a,,a,,0,0,0,...]
C;=[a ,a,,a;5,0,0,...] and so on.

C, is called the k-th convergent of a

a is the limit of the sequence C,, C,, C,,...



Best Approximator Theorem

e A rational p/q is the best approximator to
a real a if no rational number of

denominator smaller than g comes closer
to o.




Best Approximator Theorem

e A rational p/q is the best approximator to
a real a if no rational number of

denominator smaller than g comes closer
to o.

BEST APPROXIMATOR THEOREM:

Given any CF representation of «,
each convergent of the CF is a
best approximator for o !




Best Approximators of n

C,=3 T =3+ 1
|
7T+
C,=22/7 154 11
1+

C, =333/106 297 + 11

1+ 1
C,=355/113 L+ 1

C;=103993/33102

C,=104348/33215




=1+

Continued Fraction

Representation
1

1

I + 1

1+ 1

1+

1 +

1+

1 +

1+




1++/5

2

Continued Fraction
Representation

1

=1+

1+ 1

1+ :

1

1+
1+

1+

1+
1+




Remember?

We already saw the convergents of this CF
1,1,1,1,1,1,1,1,1,1,1,...]
are of the form Fib(n+1)/Fib(n)

Hence: |lim__



1,1,2,3,5,8,13,21,34,55,....

e 2/1 = 2

e 3/2 = 1.5

 5/3 = 1.666...

e 8/5 = 1.6

 13/8 = 1.625

e 2113 = 1.6153846...
e 34/21 = 1.61904...

e = 1.6180339887498948482045...



1—2z—22

As we’ve seen...

Ox1+2+224+223+322+52°+-..
F0+F12+F222+F323+F4Z4-|-F5z’5-|-...



Going the Other Way

(1—2—22)(F0+F12+F222+F323+"')

= Fo F1Z F222 F3Z3

—FoZ—Flzz—F223—"'

—Fozz—F123—'°‘

FO -+ (F]_ — F())Z

VA




What is the Power Series
Expansion of z/(1-z-z%) ?

when we expand it as an
infinite sum?



Since the bottom is quadratic we
can factor it:

< <

1—2z—22 (1—¢z)(1—$z)

—1/¢



Write as a sum of two terms

a b
& ) o) = 10t %
g‘ where

a(l — ¢z) + b(1 — ¢2) = 2.

Solving:
| |
6—6 V5

—b

I



Now use the geometric series

¢

< uk

|
Sl
A~
5
I
3
~—
%

’ n>0



Z

F(Z) - F0+F12+F2Z2+”°=
1 —2— 22

i Tl

n>0




Leonhard Euler (1765)
J. P. M. Binet (1843)
A de Moivre (1730)

The nt" Fibonacci number is:










Here’s What
You Need to
Know...
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Recurrences and generating
functions

Golden ratio
Continued fractions
Convergents

Closed form for Fibonaccis
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