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Happy Autumnal Equinox
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Leonardo Fibonacci



Leonardo Fibonacci
In 1202, Fibonacci proposed a problem 
about the growth of  rabbit populations
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The population starts as single newborn pair

Every month, each productive pair begets 
a new pair which will become productive 
after 2 months old

Fn= # of  rabbit pairs at the beginning of  
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rabbits

Rabbit Reproduction
A rabbit lives forever

The population starts as single newborn pair

Every month, each productive pair begets 
a new pair which will become productive 
after 2 months old

Fn= # of  rabbit pairs at the beginning of  
the nth month

1 1 3 52 8 13
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Fibonacci Numbers

Stage 0, Initial Condition, or Base Case:
Fib(1) = 1; Fib (2) = 1
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Fibonacci Numbers

Stage 0, Initial Condition, or Base Case:
Fib(1) = 1; Fib (2) = 1

Inductive Rule:
For n>3, Fib(n) = Fib(n-1) + Fib(n-2)

month 1 2 3 4 5 6 7

rabbits 1 1 3 52 8 13
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fn+1 = fn + fn-1

# of  
sequences 
beginning 

with a 2

# of  
sequences 
beginning 

with a 1

Sequences That Sum To n

Let fn+1 be the number of  different 
sequences of  1’s and 2’s that sum to n.



Fibonacci Numbers Again

fn+1 = fn + fn-1

f1 = 1      f2 = 1

Let fn+1 be the number of  different 
sequences of  1’s and 2’s that sum to n.



Visual Representation: Tiling

Let fn+1 be the number of  different 
ways to tile a 1 × n strip with squares 
and dominoes.



1 way to tile a strip of  length 0

1 way to tile a strip of  length 1:

2 ways  to tile a strip of  length 2:

Visual Representation: Tiling



fn+1 = fn + fn-1

fn+1 is number of  ways to tile length n.

fn tilings that start with a square.

fn-1 tilings that start with a domino.
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Fibonacci Identities

Some examples:
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(Fn)2    =  Fn-1 Fn+1     +     (-1)n

n

(Fn)2 tilings of  two strips of  size n-1 



(Fn)2    =  Fn-1 Fn+1     +     (-1)n

n

Draw a vertical “fault 
line” at the rightmost  
position (<n) possible  

without cutting any 
dominoes 



(Fn)2    =  Fn-1 Fn+1     +     (-1)n

n

Swap the tails at the fault 
line to map to a tiling of  2 
(n-1)’s to a tiling of  an 
n-2 and an n.



(Fn)2    =  Fn-1 Fn+1     +     (-1)n-1

n even

n odd



Sneezwort (Achilleaptarmica)

 

Each time the plant starts a new shoot 
it takes two months before it is strong 

enough to support branching.



Counting Petals



Counting Petals
5 petals: buttercup, wild rose, larkspur,
 columbine (aquilegia) 
8 petals: delphiniums 
13 petals: ragwort, corn marigold, 
cineraria,
 some daisies   
21 petals: aster, black-eyed susan, chicory 
34 petals: plantain, pyrethrum 
55, 89 petals: michaelmas daisies, the
 asteraceae family. 



The Fibonacci Quarterly
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Ratio obtained when you divide a line segment 
into two unequal parts such that the ratio of  
the whole to the larger part is the same as the 
ratio of  the larger to the smaller.

Definition of  φ (Euclid)



Ratio obtained when you divide a line segment 
into two unequal parts such that the ratio of  
the whole to the larger part is the same as the 
ratio of  the larger to the smaller.

Definition of  φ (Euclid)

A B C



Ratio obtained when you divide a line segment 
into two unequal parts such that the ratio of  
the whole to the larger part is the same as the 
ratio of  the larger to the smaller.

Definition of  φ (Euclid)

A B Cφ = 
AC

AB

AB

BC
=



Ratio obtained when you divide a line segment 
into two unequal parts such that the ratio of  
the whole to the larger part is the same as the 
ratio of  the larger to the smaller.

Definition of  φ (Euclid)

A B Cφ = 
AC

AB

AB

BC
=

φ2 = 



Ratio obtained when you divide a line segment 
into two unequal parts such that the ratio of  
the whole to the larger part is the same as the 
ratio of  the larger to the smaller.

Definition of  φ (Euclid)

A B Cφ = 
AC

AB

AB

BC
=

φ2 = 
AC

BC



Ratio obtained when you divide a line segment 
into two unequal parts such that the ratio of  
the whole to the larger part is the same as the 
ratio of  the larger to the smaller.

Definition of  φ (Euclid)

A B Cφ = 
AC

AB

AB

BC
=

φ2 = 
AC

BC

φ 2 - φ = 



Ratio obtained when you divide a line segment 
into two unequal parts such that the ratio of  
the whole to the larger part is the same as the 
ratio of  the larger to the smaller.

Definition of  φ (Euclid)

A B Cφ = 
AC

AB

AB

BC
=

φ2 = 
AC

BC

φ 2 - φ = 
AC

BC

AB

BC
- =
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φ2 – φ – 1 = 0 



φ2 – φ – 1 = 0 

φ = 
1 + √5

2





Golden ratio supposed to arise 
in…

Parthenon, Athens (400 B.C.)
ba

The great pyramid at Gizeh

Ratio of a person’s height 
to the height of his/her navel



Golden ratio supposed to arise 
in…

Parthenon, Athens (400 B.C.)
ba

The great pyramid at Gizeh

Ratio of a person’s height 
to the height of his/her navel

Mostly
circumstantial
evidence…
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Continued Fraction 
Representation



A (Simple) Continued Fraction Is Any 
Expression Of  The Form:

where a, b, c, … are whole numbers.



A Continued Fraction can have a finite 
or infinite number of  terms.

We also denote this fraction by [a,b,c,d,e,f,…]



A Finite Continued Fraction

Denoted by [2,3,4,2,0,0,0,…]



An Infinite Continued Fraction

Denoted by [1,2,2,2,…]



Recursively Defined Form For CF



Continued fraction representation of  a 
standard fraction



e.g., 67/29  = 2 with remainder 9/29
  = 2 + 1/ (29/9)



Ancient Greek Representation:
Continued Fraction Representation
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Ancient Greek Representation:
Continued Fraction Representation

= [1,1,1,1,1,1,0,0,0,…]



A Pattern?

Let  r1 = [1,0,0,0,…] = 1

       r2 = [1,1,0,0,0,…] = 2/1

       r3 = [1,1,1,0,0,0…] = 3/2

       r4 = [1,1,1,1,0,0,0…] = 5/3

and so on.

Theorem: 
   rn = Fib(n+1)/Fib(n)
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1,1,2,3,5,8,13,21,34,55,….

2/1    = 2
3/2   = 1.5
5/3   = 1.666…
8/5   = 1.6
13/8   = 1.625
21/13 = 1.6153846…
34/21 = 1.61904…

φ =   1.6180339887498948482045



Pineapple whorls

Church and Turing were both 
interested in the number of  
whorls in each ring of  the 
spiral. 

The ratio of  consecutive ring 
lengths approaches the 
Golden Ratio.





Proposition: 
Any finite continued fraction 

evaluates to a rational.

Theorem 
Any rational has a finite 

continued fraction 
representation.



Hmm.
Finite CFs = Rationals. 

Then what do 
infinite continued fractions 

represent?



An infinite continued fraction



Quadratic Equations

• X2 – 3x – 1 = 0

• X2 =  3X +  1
• X   =  3    + 1/X

• X = 3 + 1/X = 3 + 1/[3 + 1/X] = …



A Periodic CF



Theorem: 
Any solution to a quadratic 

equation has a periodic 
continued fraction.

Converse: 
Any periodic continued 

fraction is the solution of  a 
quadratic equation. 

(try to prove this!)



So they express more 
than just the rationals…

What about those 
non-recurring infinite
continued fractions?



Non-periodic CFs



What is the pattern?



What is the pattern?

No one knows!



What a cool representation!

Finite CF: Rationals

Periodic CF: Quadratic roots

And some numbers reveal 
hidden regularity.  



More good news: Convergents

Let α = [a1, a2, a3, ...] be a CF. 

Define:  C1 = [a1,0,0,0,0..] 

   C2 = [a1,a2,0,0,0,...] 

   C3 = [a1,a2,a3,0,0,...]  and so on.

Ck is called the k-th convergent of  α

α is the limit of  the sequence C1, C2, C3,…



Best Approximator Theorem

• A rational p/q is the best approximator to 
a real α if  no rational number of  
denominator smaller than q comes closer 
to α.



Best Approximator Theorem

• A rational p/q is the best approximator to 
a real α if  no rational number of  
denominator smaller than q comes closer 
to α.

BEST APPROXIMATOR THEOREM:
 Given any CF representation of  α, 
 each convergent of  the CF is a 
 best approximator for α  !



Best Approximators of  π

C1 = 3

  
C2 = 22/7

C3 = 333/106

  
C4 = 355/113

 
C5 = 103993/33102

C6 =104348/33215  



Continued Fraction 
Representation



Continued Fraction 
Representation



Remember?

We already saw the convergents of  this CF
   [1,1,1,1,1,1,1,1,1,1,1,…]
are of  the form Fib(n+1)/Fib(n)

Hence:



1,1,2,3,5,8,13,21,34,55,….

• 2/1   = 2
• 3/2   = 1.5
• 5/3   = 1.666…
• 8/5   = 1.6
• 13/8  = 1.625
• 21/13           = 1.6153846…
• 34/21          = 1.61904…

• φ =  1.6180339887498948482045...



As we’ve seen...



Going the Other Way



What is the Power Series 
Expansion of  z/(1-z-z2) ?

What does this look like 
when we expand it as an 

infinite sum?



Since the bottom is quadratic we 
can factor it:

 



Write as a sum of  two terms

where

Solving:



Now use the geometric series





The nth Fibonacci number is:

Leonhard Euler (1765)
 J. P. M. Binet (1843)
A de Moivre (1730)







74

Recurrences and generating 
functions

Golden ratio

Continued fractions

Convergents

Closed form for Fibonaccis
Here’s What 
You Need to 

Know…




