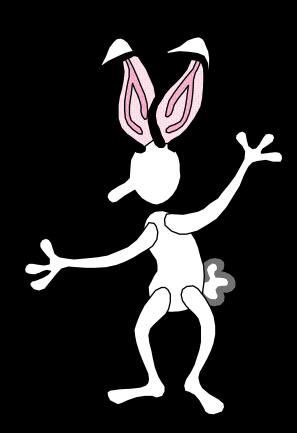
15-251

Great Theoretical Ideas in Computer Science

Recurrences, Fibonacci Numbers and Continued Fractions

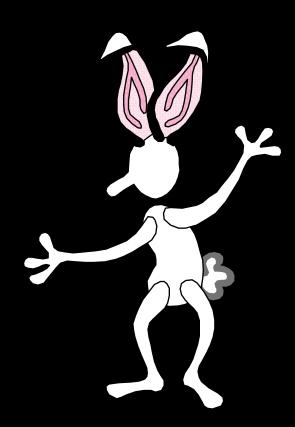
Lecture 9, September 23, 2008

Leonardo Fibonacci



Leonardo Fibonacci

In 1202, Fibonacci proposed a problem about the growth of rabbit populations



A rabbit lives forever

A rabbit lives forever

The population starts as single newborn pair

A rabbit lives forever

The population starts as single newborn pair

Every month, each productive pair begets a new pair which will become productive after 2 months old

A rabbit lives forever

The population starts as single newborn pair

Every month, each productive pair begets a new pair which will become productive after 2 months old

A rabbit lives forever

The population starts as single newborn pair

Every month, each productive pair begets a new pair which will become productive after 2 months old

month	1	2	3	4	5	6	7
rabbits							

A rabbit lives forever

The population starts as single newborn pair

Every month, each productive pair begets a new pair which will become productive after 2 months old

month	1	2	3	4	5	6	7
rabbits	1						

A rabbit lives forever

The population starts as single newborn pair

Every month, each productive pair begets a new pair which will become productive after 2 months old

month	1	2	3	4	5	6	7
rabbits	1	1					

A rabbit lives forever

The population starts as single newborn pair

Every month, each productive pair begets a new pair which will become productive after 2 months old

month	1	2	3	4	5	6	7
rabbits	1	1	2				

A rabbit lives forever

The population starts as single newborn pair

Every month, each productive pair begets a new pair which will become productive after 2 months old

month	1	2	3	4	5	6	7
rabbits	1	1	2	3			

A rabbit lives forever

The population starts as single newborn pair

Every month, each productive pair begets a new pair which will become productive after 2 months old

month	1	2	3	4	5	6	7
rabbits	1	1	2	3	5		

A rabbit lives forever

The population starts as single newborn pair

Every month, each productive pair begets a new pair which will become productive after 2 months old

month	1	2	3	4	5	6	7
rabbits	1	1	2	3	5	8	

A rabbit lives forever

The population starts as single newborn pair

Every month, each productive pair begets a new pair which will become productive after 2 months old

month	1	2	3	4	5	6	7
rabbits	1	1	2	3	5	8	13

month	1	2	3	4	5	6	7
rabbits	1	1	2	3	5	8	13

month	1	2	3	4	5	6	7
rabbits	1	1	2	3	5	8	13

Stage 0, Initial Condition, or Base Case: Fib(1) = 1; Fib (2) = 1

month	1	2	3	4	5	6	7
rabbits	1	1	2	3	5	8	13

Stage 0, Initial Condition, or Base Case: Fib(1) = 1; Fib (2) = 1

Inductive Rule:
For n>3, Fib(n) =

month	1	2	3	4	5	6	7
rabbits	1	1	2	3	5	8	13

Stage 0, Initial Condition, or Base Case: Fib(1) = 1; Fib (2) = 1

Inductive Rule:

For n>3, Fib(n) = Fib(n-1) + Fib(n-2)

$$f_1 = 1$$

$$f_1 = 1$$
 0 = the empty sum

$$f_1 = 1$$
 0 = the empty sum

$$f_2 = 1$$

$$f_1 = 1$$
 0 = the empty sum

$$f_2 = 1 \quad 1 = 1$$

$$f_1 = 1$$
 0 = the empty sum

$$f_2 = 1 \quad 1 = 1$$

$$f_3 = 2$$

$$f_1 = 1$$
 0 = the empty sum
 $f_2 = 1$ 1 = 1
 $f_3 = 2$ 2 = 1 + 1

Let f_{n+1} be the number of different sequences of 1's and 2's that sum to n.

4 =

$$4 = 2 + 2$$

$$2 + 1 + 1$$

$$1 + 2 + 1$$

$$1 + 1 + 2$$

$$1 + 1 + 1 + 1$$

$$f_{n+1} = f_n + f_{n-1}$$

Let f_{n+1} be the number of different sequences of 1's and 2's that sum to n.

$$f_{n+1} = f_n + f_{n-1}$$

of sequences beginning with a 1

of sequences beginning with a 2

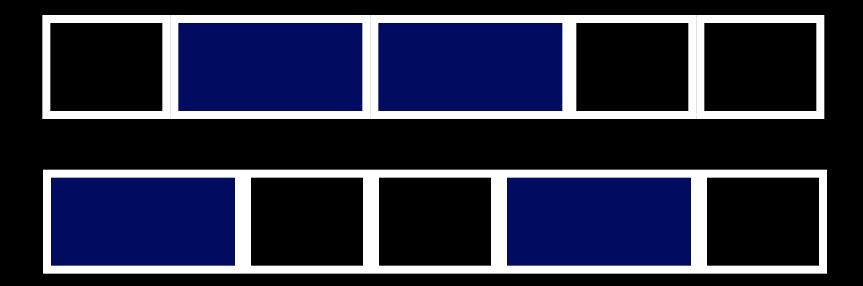
Fibonacci Numbers Again

$$f_{n+1} = f_n + f_{n-1}$$

$$f_1 = 1$$
 $f_2 = 1$

Visual Representation: Tiling

Let f_{n+1} be the number of different ways to tile a 1 × n strip with squares and dominoes.

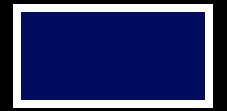


Visual Representation: Tiling

1 way to tile a strip of length 0

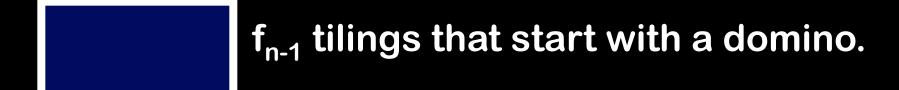
1 way to tile a strip of length 1:

2 ways to tile a strip of length 2:



$$f_{n+1} = f_n + f_{n-1}$$

 f_{n+1} is number of ways to tile length n.



$$F_{2n} = F_1 + F_3 + F_5 + ... + F_{2n-1}$$

$$F_{2n} = F_1 + F_3 + F_5 + ... + F_{2n-1}$$

$$F_{2n} = F_1 + F_3 + F_5 + ... + F_{2n-1}$$

$$F_{m+n+1} = F_{m+1} F_{n+1} + F_m F_n$$

$$F_{2n} = F_1 + F_3 + F_5 + ... + F_{2n-1}$$

$$F_{m+n+1} = F_{m+1} F_{n+1} + F_m F_n$$

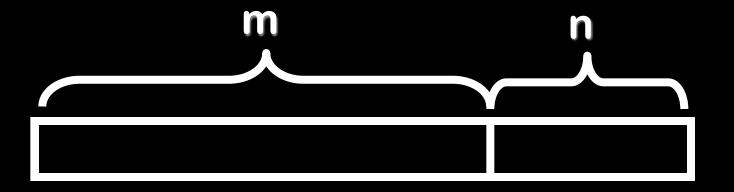
$$F_{2n} = F_1 + F_3 + F_5 + ... + F_{2n-1}$$

$$F_{m+n+1} = F_{m+1} F_{n+1} + F_m F_n$$

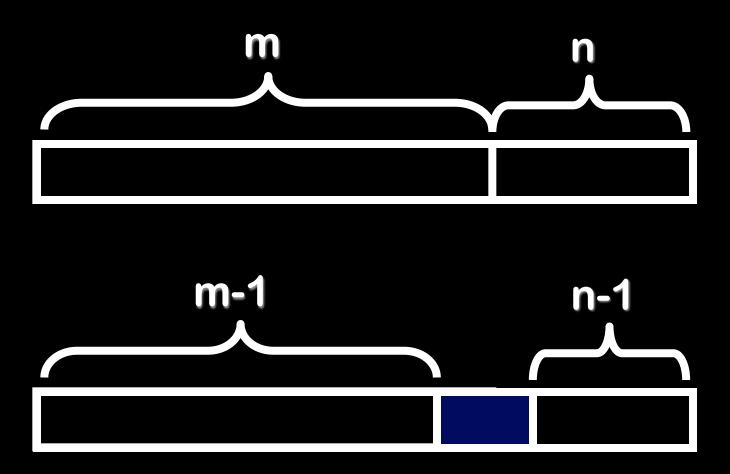
$$(F_n)^2 = F_{n-1} F_{n+1} + (-1)^n$$

 $F_{m+n+1} = F_{m+1} F_{n+1} + F_m F_n$

$$F_{m+n+1} = F_{m+1} F_{n+1} + F_m F_n$$

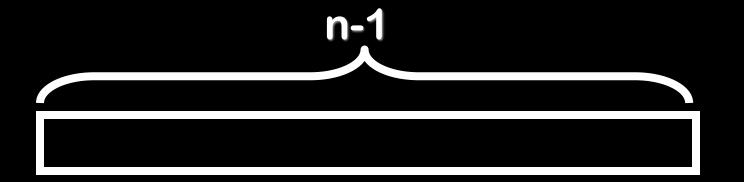


$$F_{m+n+1} = F_{m+1} F_{n+1} + F_m F_n$$



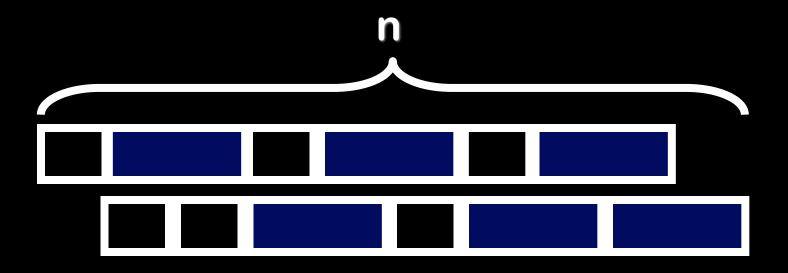
$$(F_n)^2 = F_{n-1} F_{n+1} + (-1)^n$$

$$(F_n)^2 = F_{n-1} F_{n+1} + (-1)^n$$



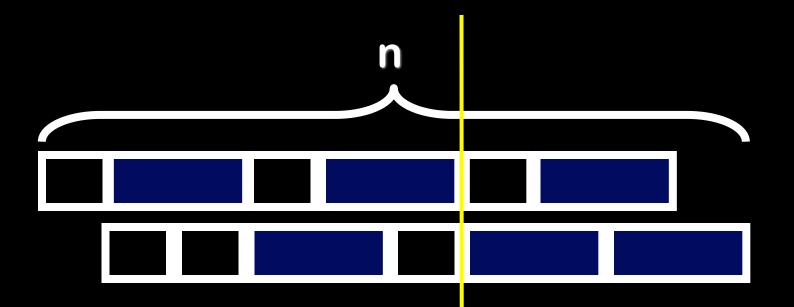
F_n tilings of a strip of length n-1

$$(F_n)^2 = F_{n-1} F_{n+1} + (-1)^n$$



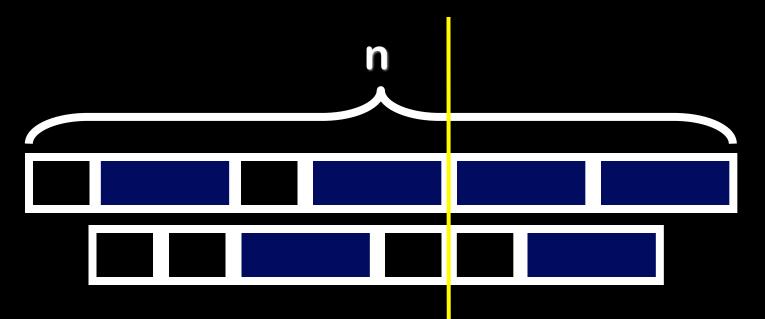
 $(F_n)^2$ tilings of two strips of size n-1

$$(F_n)^2 = F_{n-1} F_{n+1} + (-1)^n$$



Draw a vertical "fault line" at the rightmost position (<n) possible without cutting any dominoes

$$(F_n)^2 = F_{n-1} F_{n+1} + (-1)^n$$



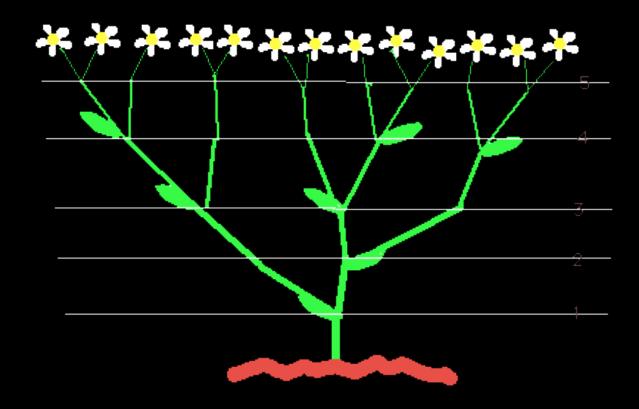
Swap the tails at the fault line to map to a tiling of 2 (n-1)'s to a tiling of an n-2 and an n.

$$(F_n)^2 = F_{n-1} F_{n+1} + (-1)^{n-1}$$

n even

n odd

Sneezwort (Achilleaptarmica)



Each time the plant starts a new shoot it takes two months before it is strong enough to support branching.

Counting Petals

Counting Petals

```
5 petals: buttercup, wild rose, larkspur,
     columbine (aquilegia)
8 petals: delphiniums
13 petals: ragwort, corn marigold,
cineraria,
     some daisies
21 petals: aster, black-eyed susan, chicory
34 petals: plantain, pyrethrum
55, 89 petals: michaelmas daisies, the
     asteraceae family.
```

The Fibonacci Quarterly

Definition of ϕ (Euclid)

Definition of φ (Euclid)

Definition of φ (Euclid)

Definition of \phi (Euclid)

$$\phi = \frac{AC}{AB} = \frac{AB}{BC}$$
A
B
C

Definition of \phi (Euclid)

$$\phi = \frac{AC}{AB} = \frac{AB}{BC}$$
A
B
C

$$\phi^2 =$$

Definition of φ (Euclid)

$$\phi = \frac{AC}{AB} = \frac{AB}{BC}$$
A
B
C

$$\phi^2 = \frac{AC}{BC}$$

Definition of φ (Euclid)

$$\phi = \frac{AC}{AB} = \frac{AB}{BC}$$
A
B
C

$$\phi^2 = \frac{AC}{BC}$$

$$\phi^2 - \phi =$$

Definition of ϕ (Euclid)

$$\phi = \frac{AC}{AB} = \frac{AB}{BC}$$
A
B
C

$$\phi^2 = \frac{AC}{BC}$$

$$\phi^2 - \phi = \frac{AC}{BC} - \frac{AB}{BC} =$$

Definition of φ (Euclid)

$$\phi = \frac{AC}{AB} = \frac{AB}{BC}$$
 A B C

$$\phi^2 = \frac{AC}{BC}$$

$$\phi^2 - \phi = \frac{AC}{BC} - \frac{AB}{BC} = \frac{BC}{BC} = 1$$

$$\phi^2 - \phi - 1 = 0$$

$$\phi^2 - \phi - 1 = 0$$

$$\phi = \frac{1 + \sqrt{5}}{2}$$

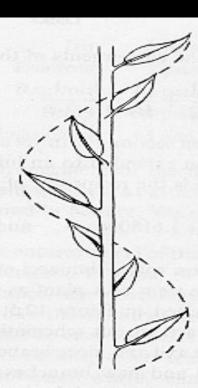
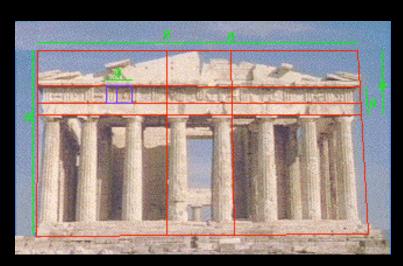
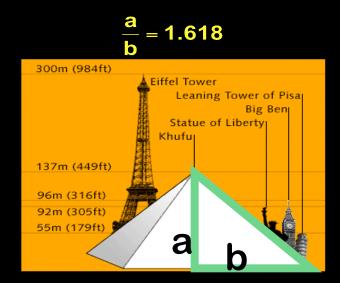


Fig. 12.4. Phyllotaxis

Golden ratio supposed to arise in...



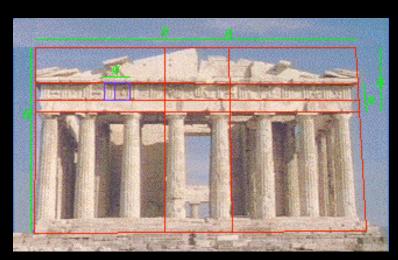
Parthenon, Athens (400 B.C.)



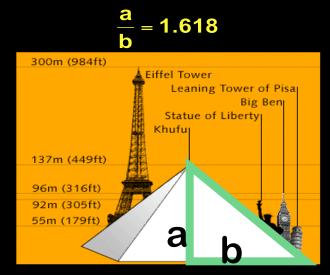
The great pyramid at Gizeh

Ratio of a person's height to the height of his/her navel

Golden ratio supposed to arise in...



Parthenon, Athens (400 B.C.)



The great pyramid at Gizeh

Ratio of a person's height to the height of his/her navel Mostly circumstantial evidence...

Expanding Recursively

$$\phi = 1 + \frac{1}{\phi}$$

Expanding Recursively

$$\phi = 1 + \frac{1}{\phi}$$

$$= 1 + \frac{1}{1 + \frac{1}{\phi}}$$

$$= 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{\phi}}}$$

Continued Fraction Representation

$$\phi = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \dots}}}}}}$$

A (Simple) Continued Fraction Is Any Expression Of The Form:

$$a + \frac{1}{b + \frac{1}{c + \frac{1}{d + \frac{1}{e + \frac{1}{f + \frac{1}{i + \frac{1}{j + \dots}}}}}}}$$

where a, b, c, ... are whole numbers.

A Continued Fraction can have a finite or infinite number of terms.

$$a + \frac{1}{b + \frac{1}{c + \frac{1}{d + \frac{1}{e + \frac{1}{f + \frac{1}{i + \frac{1}{j + \dots}}}}}}}$$

We also denote this fraction by [a,b,c,d,e,f,...]

A Finite Continued Fraction

$$2 + \frac{1}{3 + \frac{1}{4 + \frac{1}{2}}}$$

Denoted by [2,3,4,2,0,0,0,...]

An Infinite Continued Fraction

$$1 + \frac{1}{2 + \dots}}}}}}}$$

$$2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \dots}}}}$$

$$2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \dots}}}$$

$$2 + \frac{1}{2 + \frac{1}{2 + \dots}}$$

$$2 + \frac{1}{2 + \frac{1}{2 + \dots}}$$

$$2 + \frac{1}{2 + \dots}$$

$$2 + \frac{1}{2 + \dots}$$

$$2 + \frac{1}{2 + \dots}$$

Denoted by [1,2,2,2,...]

Recursively Defined Form For CF

CF = whole number, or

= whole number +
$$\frac{1}{CF}$$

Continued fraction representation of a standard fraction

$$\frac{67}{29} = 2 + \frac{1}{3 + \frac{1}{4 + \frac{1}{2}}}$$

$$\frac{67}{29} = 2 + \frac{1}{\frac{29}{9}} = 2 + \frac{1}{3 + \frac{2}{9}} 2 + \frac{1}{3 + \frac{1}{\frac{1}{2}}}$$

e.g.,
$$67/29 = 2$$
 with remainder $9/29 = 2 + 1/(29/9)$

Ancient Greek Representation: Continued Fraction Representation

$$\frac{5}{3} = 1 + \frac{1}{1 + \frac{1}{2}}$$

Ancient Greek Representation: Continued Fraction Representation

$$\frac{5}{3} = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1}}}$$

$$= [1,1,1,1,0,0,0,...]$$

Ancient Greek Representation: Continued Fraction Representation

$$? = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1}}}$$

$$1 + \frac{1}{1 + \frac{1}{1}}$$

Ancient Greek Representation: Continued Fraction Representation

$$\frac{8}{5} = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1}}}$$

= [1,1,1,1,0,0,0,...]

Ancient Greek Representation: Continued Fraction Representation

$$\frac{13}{8} = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1}}}$$

$$1 + \frac{1}{1 + \frac{1}{1}}$$

$$= [1,1,1,1,1,0,0,0,0,...]$$

A Pattern?

Let
$$r_1 = [1,0,0,0,...] = 1$$

 $r_2 = [1,1,0,0,0,...] = 2/1$
 $r_3 = [1,1,1,0,0,0,...] = 3/2$
 $r_4 = [1,1,1,1,0,0,0,...] = 5/3$
and so on.

Theorem:

$$r_n = Fib(n+1)/Fib(n)$$

2/1 = 2

2/1 = 2 3/2 = 1.5

```
2/1 = 2
3/2 = 1.5
5/3 = 1.666...
```

```
2/1 = 2
3/2 = 1.5
5/3 = 1.666...
8/5 = 1.6
```

```
2/1 = 2

3/2 = 1.5

5/3 = 1.666...

8/5 = 1.6

13/8 = 1.625
```

```
2/1 = 2

3/2 = 1.5

5/3 = 1.666...

8/5 = 1.6

13/8 = 1.625

21/13 = 1.6153846...
```

```
2/1 = 2

3/2 = 1.5

5/3 = 1.666...

8/5 = 1.6

13/8 = 1.625

21/13 = 1.6153846...

34/21 = 1.61904...
```

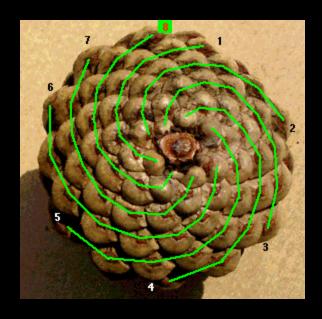
```
2/1
            2
3/2
         1.5
5/3
         1.666...
8/5
         1.6
        13/8
         1.625
      21/13
      = 1.6153846...
       = 1.61904...
34/21
```

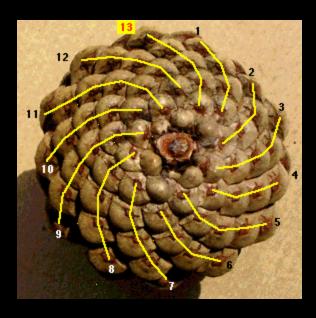
 ϕ = 1.6180339887498948482045

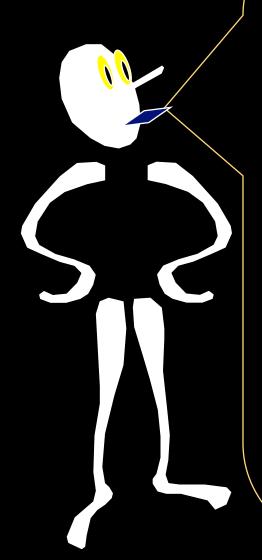
Pineapple whorls

Church and Turing were both interested in the number of whorls in each ring of the spiral.

The ratio of consecutive ring lengths approaches the Golden Ratio.





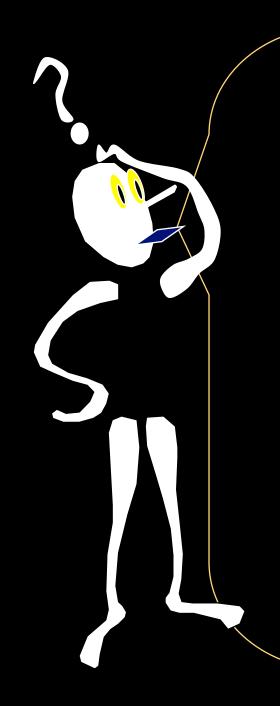


Proposition:

Any finite continued fraction evaluates to a rational.

Theorem

Any rational has a finite continued fraction representation.



Hmm.
Finite CFs = Rationals.

Then what do infinite continued fractions represent?

An infinite continued fraction

$$\sqrt{2} = 1 + \frac{1}{2 + \dots}}}}}}$$

Quadratic Equations

•
$$X^2 - 3x - 1 = 0$$

$$X = \frac{3 + \sqrt{13}}{2}$$

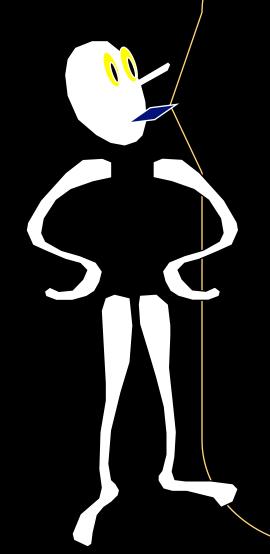
•
$$X^2 = 3X + 1$$

•
$$X = 3 + 1/X$$

•
$$X = 3 + 1/X = 3 + 1/[3 + 1/X] = ...$$

A Periodic CF

$$\frac{3+\sqrt{13}}{2} = 3 + \frac{1}{3+\frac{1}{3+\frac{1}{3+\frac{1}{3+\frac{1}{3+\frac{1}{3+\frac{1}{3+\dots}}}}}}}$$

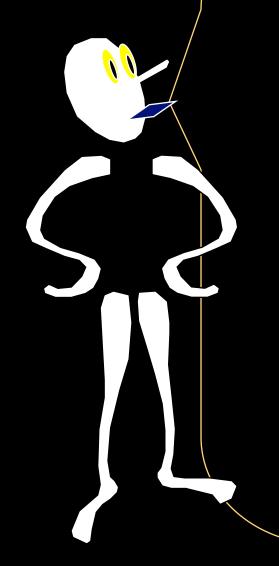


Theorem:

Any solution to a quadratic equation has a periodic continued fraction.

Converse:

Any periodic continued fraction is the solution of a quadratic equation. (try to prove this!)



So they express more than just the rationals...

What about those non-recurring infinite continued fractions?

Non-periodic CFs

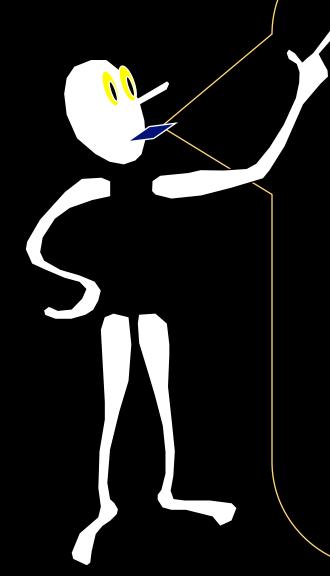
$$e-1 = 1 + \cfrac{1}{1 +$$

What is the pattern?

$$\pi = 3 + \frac{1}{7 + \frac{1}{15 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \dots}}}}}}$$

What is the pattern?

$$\pi = 3 + \frac{1}{7 + \frac{1}{15 + \frac{1}{1 + \frac$$



What a cool representation!

Finite CF: Rationals

Periodic CF: Quadratic roots

And some numbers reveal hidden regularity.

More good news: Convergents

Let
$$\alpha = [a_1, a_2, a_3, ...]$$
 be a CF.

Define:
$$C_1 = [a_1, 0, 0, 0, 0, 0]$$

$$C_2 = [a_1, a_2, 0, 0, 0, ...]$$

$$C_3 = [a_1, a_2, a_3, 0, 0, ...]$$
 and so on.

 C_k is called the k-th convergent of α

 α is the limit of the sequence C_1 , C_2 , C_3 ,...

Best Approximator Theorem

• A rational p/q is the best approximator to a real α if no rational number of denominator smaller than q comes closer to α .

Best Approximator Theorem

• A rational p/q is the best approximator to a real α if no rational number of denominator smaller than q comes closer to α .

BEST APPROXIMATOR THEOREM:

Given any CF representation of α , each convergent of the CF is a best approximator for α !

Best Approximators of π

$$C_1 = 3$$

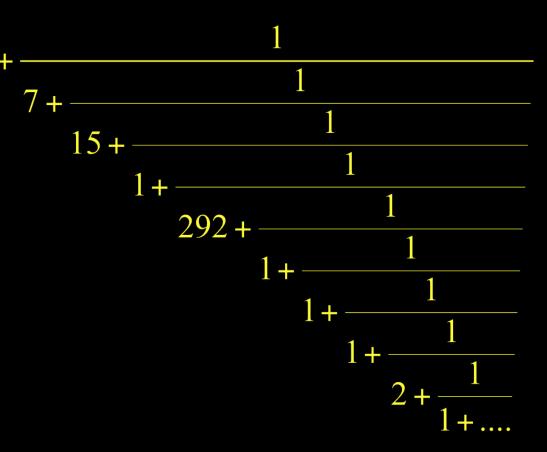
$$C_2 = 22/7$$

$$C_3 = 333/106$$

$$C_4 = 355/113$$

$$C_5 = 103993/33102$$

$$C_6 = 104348/33215$$



Continued Fraction Representation

$$\phi = 1 + \frac{1}{1 + \dots}}}}}}}$$

Continued Fraction Representation

$$\frac{1+\sqrt{5}}{2} = 1 + \frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\dots}}}}}}}$$

Remember?

We already saw the convergents of this CF [1,1,1,1,1,1,1,1,1,1,1,1,1] are of the form Fib(n+1)/Fib(n)

Hence:
$$\lim_{n\to\infty} \frac{F_n}{F_{n-1}} = \phi = \frac{1+\sqrt{5}}{2}$$

1,1,2,3,5,8,13,21,34,55,....

```
• 2/1
                 2
• 3/2
                 1.5
• 5/3
                 1.666...
8/5
                 1.6
            13/8
                 1.625
            21/13
           = 1.6153846...
• 34/21
            = 1.61904...
```

• ϕ = 1.6180339887498948482045...

As we've seen...

$$\frac{z}{1-z-z^2} = 0 \times 1 + z + z^2 + 2z^3 + 3z^4 + 5z^5 + \cdots$$
$$= F_0 + F_1 z + F_2 z^2 + F_3 z^3 + F_4 z^4 + F_5 z^5 + \cdots$$

Going the Other Way

$$(1 - z - z^{2})(F_{0} + F_{1}z + F_{2}z^{2} + F_{3}z^{3} + \cdots)$$

$$= F_{0} + F_{1}z + F_{2}z^{2} + F_{3}z^{3} + \cdots$$

$$- F_{0}z - F_{1}z^{2} - F_{2}z^{3} - \cdots$$

$$- F_{0}z^{2} - F_{1}z^{3} - \cdots$$

$$= F_{0} + (F_{1} - F_{0})z$$

$$= z$$

What is the Power Series Expansion of $z/(1-z-z^2)$?

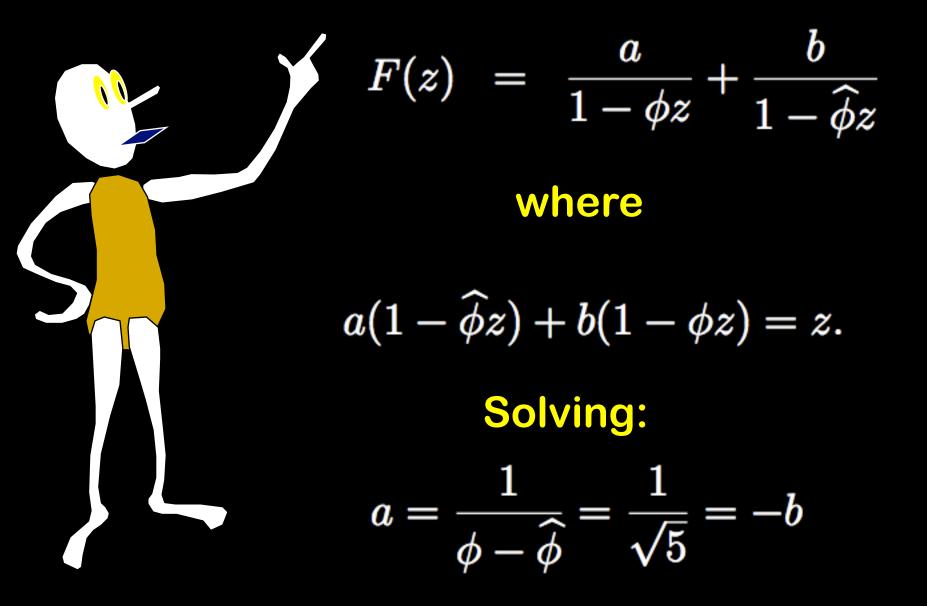
What does this look like when we expand it as an infinite sum?

Since the bottom is quadratic we can factor it:

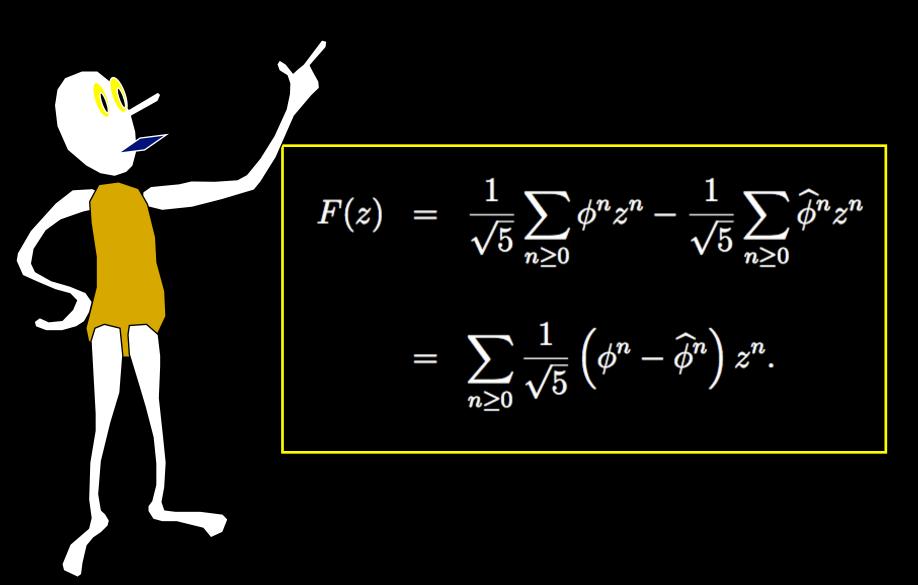
$$\frac{z}{1-z-z^2} = \frac{z}{(1-\phi z)\left(1-\widehat{\phi}z\right)}$$

$$\widehat{\phi} = -1/\phi$$

Write as a sum of two terms

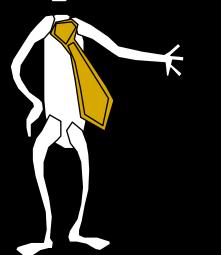


Now use the geometric series

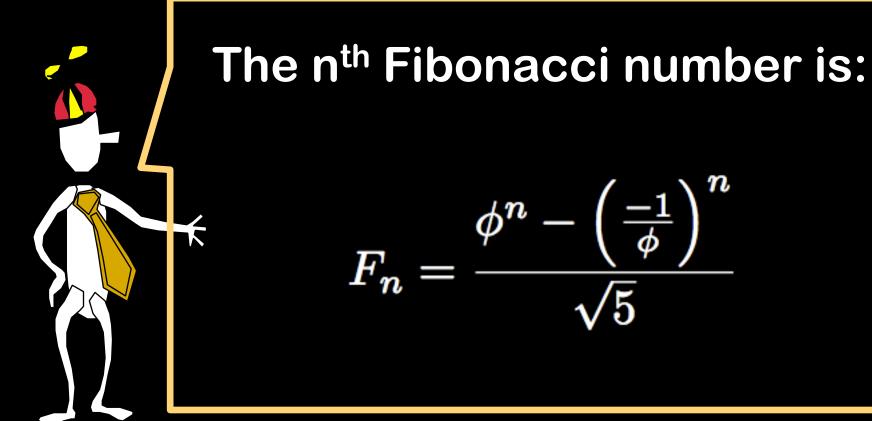


$$F(z) = F_0 + F_1 z + F_2 z^2 + \dots = \frac{z}{1 - z - z^2}$$

$$\frac{z}{1-z-z^2} = \sum_{n\geq 0} \frac{1}{\sqrt{5}} \left(\phi^n - \widehat{\phi}^n \right) z^n.$$

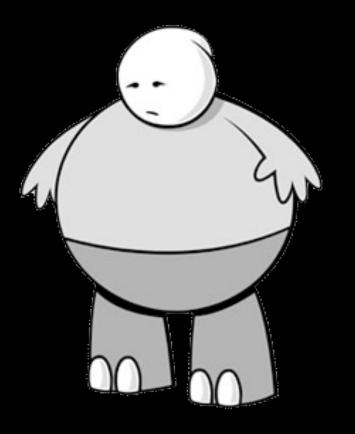


Leonhard Euler (1765) J. P. M. Binet (1843) A de Moivre (1730)



$$F_n = \frac{\phi^n - \left(\frac{-1}{\phi}\right)^n}{\sqrt{5}} \approx \frac{\phi^n}{\sqrt{5}}$$

$$\frac{F_n}{F_{n-1}} = \frac{\phi^n - \left(\frac{-1}{\phi}\right)^n}{\phi^{n-1} - \left(\frac{-1}{\phi}\right)^{n-1}} \longrightarrow \phi$$



Here's What You Need to Know... Recurrences and generating functions

Golden ratio

Continued fractions

Convergents

Closed form for Fibonaccis