15-251

Great Theoretical Ideas in Computer Science

Recurrences, Fibonacci Numbers and Continued Fractions

Lecture 9, September 23, 2008

Leonardo Fibonacci

In 1202, Fibonacci proposed a problem about the growth of rabbit populations

Rabbit Reproduction

A rabbit lives forever

The population starts as single newborn pair

Every month, each productive pair begets a new pair which will become productive after 2 months old

F_n= # of rabbit pairs at the beginning of the nth month

month	1	2	3	4	5	6	7
rabbits	1	1	2	3	5	8	13

Sequences That Sum To n

Let f_{n+1} be the number of different sequences of 1's and 2's that sum to n.

$$f_1 = 1$$
 0 = the empty sum

$$f_2 = 1 1 = 1$$

$$f_3 = 2 2 = 1 + 1$$

2

Fibonacci Numbers

month	1	2	3	4	5	6	7
rabbits	1	1	2	3	5	8	13

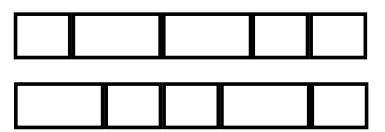
Stage 0, Initial Condition, or Base Case: Fib(1) = 1; Fib (2) = 1

Inductive Rule: For n>3, Fib(n) = Fib(n-1) + Fib(n-2)

Sequences That Sum To n

Let f_{n+1} be the number of different sequences of 1's and 2's that sum to n.

Sequences That Sum To n


Let f_{n+1} be the number of different sequences of 1's and 2's that sum to n.

$$f_{n+1} = f_n + f_{n-1}$$

of sequences beginning with a 1 # of sequences beginning with a 2

Visual Representation: Tiling

Let f_{n+1} be the number of different ways to tile a 1 × n strip with squares and dominoes.

Fibonacci Numbers Again

Let f_{n+1} be the number of different sequences of 1's and 2's that sum to n.

$$\mathbf{f}_{\mathsf{n+1}} = \mathbf{f}_{\mathsf{n}} + \mathbf{f}_{\mathsf{n-1}}$$

$$f_1 = 1$$
 $f_2 = 1$

Visual Representation: Tiling

1 way to tile a strip of length 0

1 way to tile a strip of length 1:

2 ways to tile a strip of length 2:

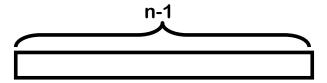
$$f_{n+1} = f_n + f_{n-1}$$

 f_{n+1} is number of ways to tile length n.

|--|

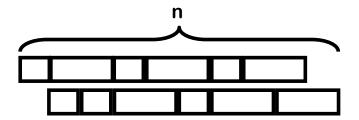
$$F_{m+n+1} = F_{m+1} F_{n+1} + F_m F_n$$

Fibonacci Identities


Some examples:

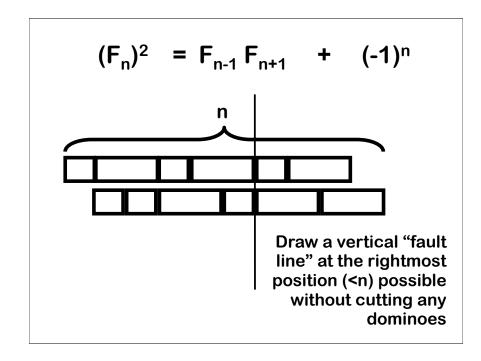
$$F_{2n} = F_1 + F_3 + F_5 + ... + F_{2n-1}$$

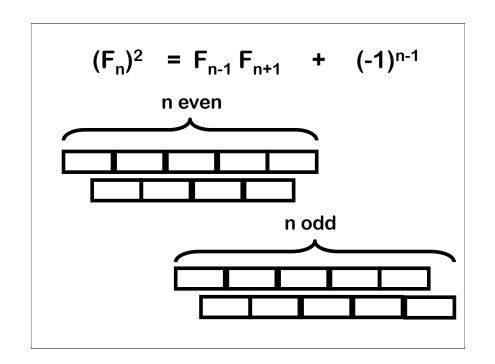
$$F_{m+n+1} = F_{m+1} F_{n+1} + F_m F_n$$


$$(F_n)^2 = F_{n-1} F_{n+1} + (-1)^n$$

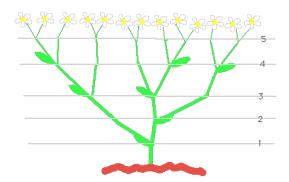
$$(F_n)^2 = F_{n-1} F_{n+1} + (-1)^n$$

 $\mathbf{F}_{\mathbf{n}}$ tilings of a strip of length n-1


$$(F_n)^2 = F_{n-1} F_{n+1} + (-1)^n$$



 $(F_n)^2$ tilings of two strips of size n-1


$$(F_n)^2 = F_{n-1} F_{n+1} + (-1)^n$$

Swap the tails at the fault line to map to a tiling of 2 (n-1)'s to a tiling of an n-2 and an n.

Sneezwort (Achilleaptarmica)

Each time the plant starts a new shoot it takes two months before it is strong enough to support branching.

The Fibonacci Quarterly

Counting Petals

5 petals: buttercup, wild rose, larkspur, columbine (aquilegia)

8 petals: delphiniums

13 petals: ragwort, corn marigold,

cineraria,

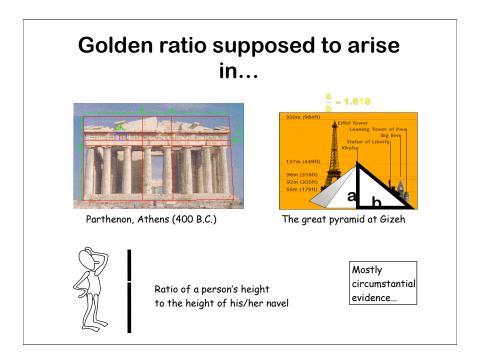
some daisies

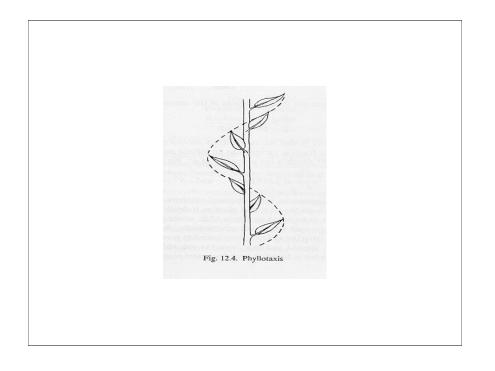
21 petals: aster, black-eyed susan, chicory

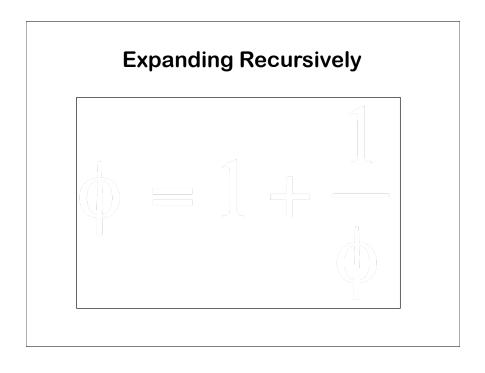
34 petals: plantain, pyrethrum

55, 89 petals: michaelmas daisies, the asteraceae family.

Definition of φ (Euclid)

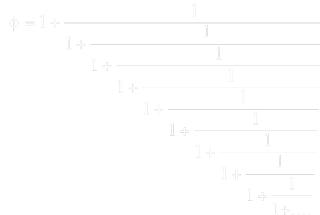

Ratio obtained when you divide a line segment into two unequal parts such that the ratio of the whole to the larger part is the same as the ratio of the larger to the smaller.


$$\phi = \frac{AC}{AB} = \frac{AB}{BC}$$
A
B
C

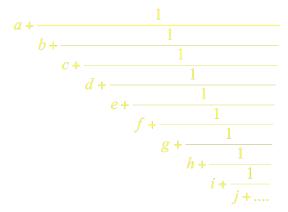

$$\phi^2 - \phi = \frac{AC}{BC} - \frac{AB}{BC} = \frac{BC}{BC} = \frac{AC}{BC}$$

$$\phi^2 - \phi - 1 = 0$$

$$\phi = \frac{1 + \sqrt{5}}{2}$$


Expanding Recursively

A (Simple) Continued Fraction Is Any Expression Of The Form:


$$a + \frac{1}{c + \frac{1}{c + \frac{1}{d + \frac{1}{e + \frac{1}{g + \frac{1}{i + \frac{1}{j + \dots}}}}}}}$$

where a, b, c, ... are whole numbers.

Continued Fraction Representation

A Continued Fraction can have a finite or infinite number of terms.

We also denote this fraction by [a,b,c,d,e,f,...]

A Finite Continued Fraction

$$2 + \frac{1}{3 + \frac{1}{4 + \frac{1}{2}}}$$

Denoted by [2,3,4,2,0,0,0,...]

Recursively Defined Form For CF

$$CF$$
 = whole number, or
= whole number + $\frac{1}{CF}$

An Infinite Continued Fraction

$$\begin{array}{c}
 1 + \frac{1}{2 + \dots}}}}}} \\
 2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \dots}}}} \\
 Denoted by [1,2,2,2,\dots]$$

Continued fraction representation of a standard fraction

$$\frac{67}{29} = 2 + \frac{1}{3 + \frac{1}{4 + \frac{1}{2}}}$$

$$\frac{67}{29} = 2 + \frac{1}{\frac{29}{9}} = 2 + \frac{1}{3 + \frac{2}{9}} + \frac{1}{3 + \frac{1}{4 + \frac{1}{2}}}$$

Ancient Greek Representation:

Continued Fraction Representation

$$\frac{5}{3} = 1 + \frac{1}{1 + \frac{1}{2}}$$

Ancient Greek Representation: Continued Fraction Representation

$$\frac{5}{3} = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1}}}$$

Ancient Greek Representation: Continued Fraction Representation

$$? = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1}}}$$

$$v = \frac{1}{1 + \frac{1}{1 + \frac{1}{1}}}$$

Ancient Greek Representation: Continued Fraction Representation

$$\frac{8}{5} = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1}}}$$

A Pattern?

Let
$$r_1 = [1,0,0,0,...] = 1$$

 $r_2 = [1,1,0,0,0,...] = 2/1$
 $r_3 = [1,1,1,0,0,0...] = 3/2$
 $r_4 = [1,1,1,1,0,0,0...] = 5/3$
and so on.

Theorem:

$$r_n = Fib(n+1)/Fib(n)$$

Ancient Greek Representation: Continued Fraction Representation

= [1,1,1,1,1,0,0,0,...]

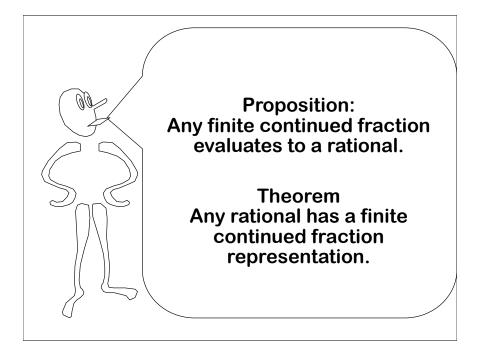
$$\frac{13}{8} = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1}}}$$

$$1 + \frac{1}{1 + \frac{1}{1}}$$

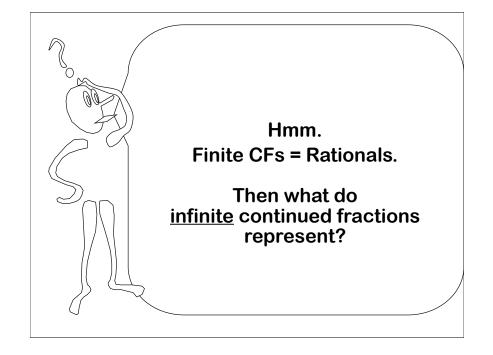
$$= [1,1,1,1,1,0,0,0,0,...]$$

φ = 1.6180339887498948482045

Pineapple whorls


Church and Turing were both interested in the number of whorls in each ring of the spiral.

The ratio of consecutive ring lengths approaches the Golden Ratio.



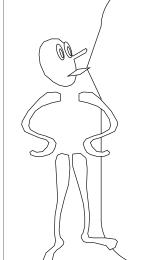
An infinite continued fraction

$$\sqrt{2} = 1 + \frac{1}{2 + \dots}}}}}}}}$$

A Periodic CF

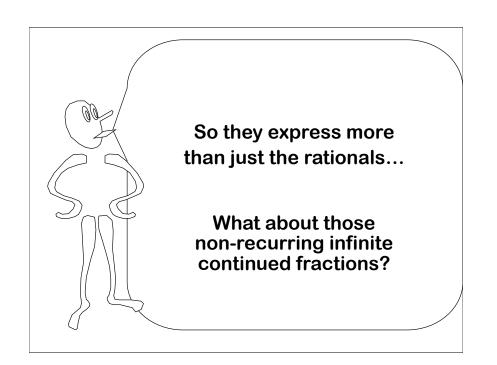
$$\frac{3+\sqrt{13}}{2} = 3 + \frac{1}{3+\frac$$

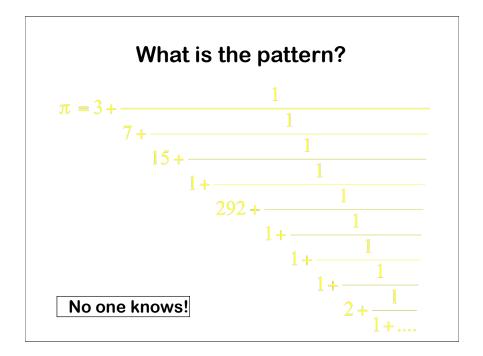
Quadratic Equations

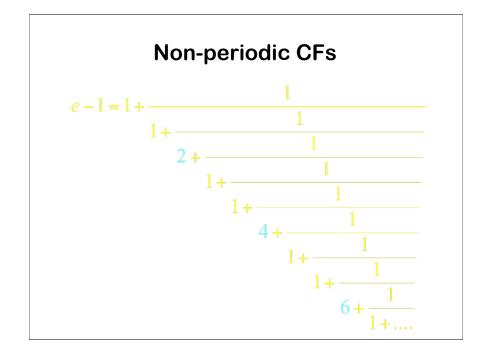

•
$$X^2 - 3x - 1 = 0$$

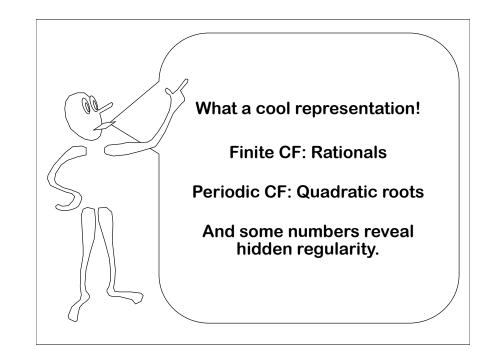
$$X = \frac{3 + \sqrt{13}}{2}$$

•
$$X^2 = 3X + 1$$


•
$$X = 3 + 1/X$$


•
$$X = 3 + 1/X = 3 + 1/[3 + 1/X] = ...$$




Theorem:
Any solution to a <u>quadratic</u>
equation has a periodic
continued fraction.

Converse:
Any periodic continued fraction is the solution of a quadratic equation.
(try to prove this!)

More good news: Convergents

Let
$$\alpha$$
 = [a_1 , a_2 , a_3 , ...] be a CF.

Define:
$$C_1 = [a_1, 0, 0, 0, 0, 0..]$$

$$C_2 = [a_1, a_2, 0, 0, 0, ...]$$

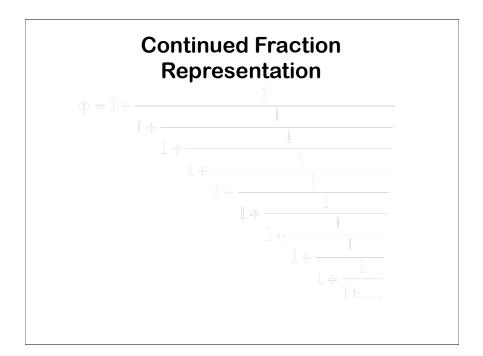
 $C_3 = [a_1, a_2, a_3, 0, 0, ...]$ and so on.

 C_k is called the k-th convergent of α

 α is the limit of the sequence C_1 , C_2 , C_3 ,...

Best Approximators of $\boldsymbol{\pi}$

$$C_1 = 3$$
 $\pi = 3 + \frac{1}{7 + \frac{1}{15 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \dots}}}}}}}$
 $C_2 = 22/7$
 $C_3 = 333/106$
 $C_4 = 355/113$
 $C_5 = 103993/33102$
 $\frac{1}{15 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \dots}}}}$
 $C_5 = 103993/33102$


 $C_6 = 104348/33215$

Best Approximator Theorem

• A rational p/q is the <u>best approximator</u> to a real α if no rational number of denominator smaller than q comes closer to α .

BEST APPROXIMATOR THEOREM:

Given any CF representation of α , each convergent of the CF is a best approximator for α !

Continued Fraction Representation

$$\frac{1+\sqrt{5}}{2} = 1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\cdots}}}}}$$

1,1,2,3,5,8,13,21,34,55,....

• ϕ = 1.6180339887498948482045...

Remember?

We already saw the convergents of this CF [1,1,1,1,1,1,1,1,1,1,1] are of the form Fib(n+1)/Fib(n)

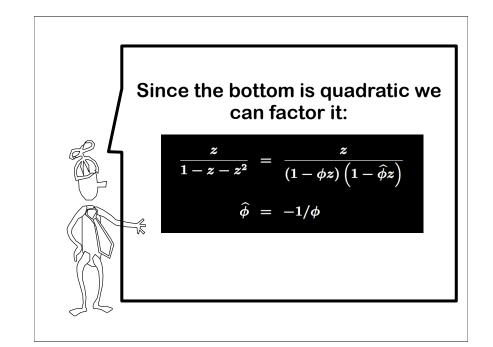
Hence:
$$\lim_{n\to\infty}\frac{\mathbb{F}_n}{\mathbb{F}_{n-1}}=\phi=\frac{1+\sqrt{5}}{2}$$

As we've seen...

$$\frac{z}{1-z-z^2} = 0 \times 1 + z + z^2 + 2z^3 + 3z^4 + 5z^5 + \cdots$$
$$= F_0 + F_1 z + F_2 z^2 + F_3 z^3 + F_4 z^4 + F_5 z^5 + \cdots$$

Going the Other Way

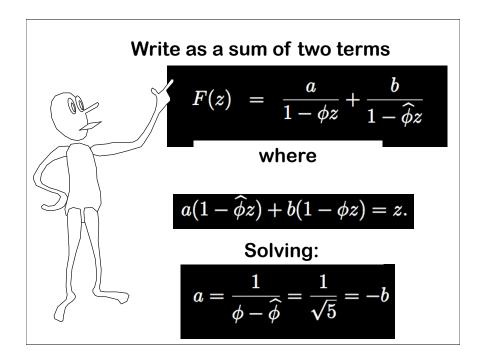
$$(1-z-z^{2})(F_{0}+F_{1}z+F_{2}z^{2}+F_{3}z^{3}+\cdots)$$

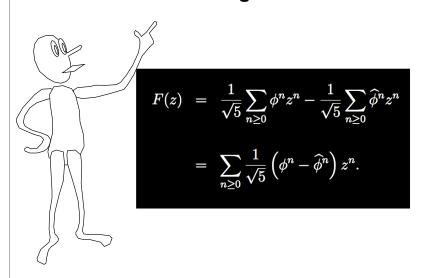

$$= F_{0}+F_{1}z+F_{2}z^{2}+F_{3}z^{3}+\cdots$$

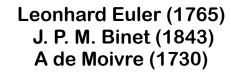
$$-F_{0}z-F_{1}z^{2}-F_{2}z^{3}-\cdots$$

$$-F_{0}z^{2}-F_{1}z^{3}-\cdots$$

$$= F_{0}+(F_{1}-F_{0})z$$


$$= z$$

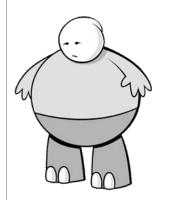

What is the Power Series Expansion of $z/(1-z-z^2)$?



What does this look like when we expand it as an infinite sum?

Now use the geometric series

The nth Fibonacci number is:


$$F_n = \frac{\phi^n - \left(\frac{-1}{\phi}\right)^n}{\sqrt{5}}$$

$$F(z) = F_0 + F_1 z + F_2 z^2 + \dots = \frac{z}{1 - z - z^2}$$

$$\frac{z}{1 - z - z^2} = \sum_{n \ge 0} \frac{1}{\sqrt{5}} \left(\phi^n - \widehat{\phi}^n \right) z^n.$$

$$F_n = \frac{\phi^n - \left(\frac{-1}{\phi}\right)^n}{\sqrt{5}} \approx \frac{\phi^n}{\sqrt{5}}$$

$$\frac{F_n}{F_{n-1}} = \frac{\phi^n - \left(\frac{-1}{\phi}\right)^n}{\phi^{n-1} - \left(\frac{-1}{\phi}\right)^{n-1}} \longrightarrow \phi$$

Here's What You Need to Know... Recurrences and generating functions

Golden ratio

Continued fractions

Convergents

Closed form for Fibonaccis