
Generating Functions
15-251: Great Theoretical Ideas in Computer Science

September 18, 2008

A generating function represents an entire, infinite sequence as a single mathematical object
that can be manipulated algebraically. The strength of the representation lies in the fact
that many operations can be carried out a generating function, including differentiation,
integration, multiplication, and others, even though the underlying sequence may be defined
in purely symbolic or combinatorial terms. This makes generating functions an elegant and
powerful counting technique. In fact, in the text Concrete Mathematics: A Foundation for
Computer Science [1], generating functions are described as “the most important idea in this
whole book.”

If a0, a1, a2, . . . is a sequence, then we define the formal power series A(z) as

A(z) = a0 + a1z + a2z
2 + · · · =

∞∑
k=0

akz
k. (1)

The adjective formal means that z is an abstract indeterminate, and we are not concerned
about numerical convergence of the series for any particular value of z.

The product of generating functions is defined as

A(z)B(z) =
(
a0 + a1z + a2z

2 + · · ·
) (
b0 + b1z + b2z

2 + · · ·
)

(2)

= a0b0 + (a0b1 + a1b0) z + (a0b2 + a1b1 + a2b0) z
2 + · · · (3)

= c0 + c1z + c2z
2 + · · · (4)

= C(z) (5)

where

ck =
k∑

i=0

aibk−i. (6)

Such a sum is sometimes called a discrete convolution.

Here’s an application of this identity. From the binomial theorem we have

(1 + z)r =
∑
k≥0

(
r

k

)
zk (7)

(1 + z)s =
∑
k≥0

(
s

k

)
zk (8)

1

and therefore

(1 + z)r(1 + z)s = (1 + z)r+s (9)

=
∑
k≥0

(
r + s

k

)
zk. (10)

Therefore we have, by the convolution identity,(
r + s

k

)
=

k∑
i=0

(
r

i

)(
s

k − i

)
. (11)

We’ve seen this before—it’s the number of ways of choosing k turns from a total of r avenues
and s streets.

As another example, using the binomial theorem we have

(1− z)r(1 + z)r = (1− z2)r (12)

=
∑
k≥0

(−1)k

(
r

k

)
z2k. (13)

But now applying the convolution identity (6) on the left, we obtain

k∑
i=0

(−1)i

(
r

i

)(
r

k − i

)
=

{
0 if k is odd;

(−1)k/2
(

r
k/2

)
if k is even.

(14)

This might look a bit strange; let’s check some small examples. Taking k = 2,(
r

0

)(
r

2

)
−
(
r

1

)(
r

1

)
+

(
r

2

)(
r

0

)
= 2

(
r

2

)
− r2 (15)

= −r (16)

= −
(
r

1

)
(17)

which checks out. Taking k = 3, we get(
r

0

)(
r

3

)
−
(
r

1

)(
r

2

)
+

(
r

2

)(
r

1

)
−
(
r

3

)(
r

0

)
= 0 (18)

which also checks.

1 Math Counts

To see the usefulness of generating functions for counting, suppose that we have two disjoint
sets A and B. Also, suppose that there are an ways of selecting n elements from A and bn

2

ways of selecting n elements from B. Then the number ways cn of selecting a total of n items
from either A or B is

cn =
n∑

k=0

akbn−k (19)

To express this in terms of generating functions, we have that the generating function for
selecting items from either A or B is

C(z) = A(z)B(z). (20)

We saw this earlier with choice trees and polynomials; the generating function idea extends
it to choice trees of “infinite depth.”

2 A Fruity Example

Here’s a fun example (from notes by Albert R. Meyer and Clifford Smyth) that illustrates
how generating functions can solve some seemingly very messy counting problems.

Suppose that we want to fill a basket with fruit, but we impose on ourselves some very quirky
constraints:

1. The number of apples must be a multiple of five (an apple a [week]day...)

2. The number of bananas must be even (eaten before 15-251 on Tues/Thurs...)

3. We can take at most four oranges (too acidic...).

4. There can be at most one pear (get mushy too fast...)

If we try to count the number of ways directly, it looks complicated. For example, with a
basket of five fruits, there are six possibilities:

apples 0 0 0 0 0 5
bananas 4 4 2 2 0 0
oranges 1 0 2 3 4 0

pears 0 1 1 0 1 0

It’s hard to see any clear pattern here that would extend to bigger baskets.

Let’s give generating functions a shot. Since the number of bananas must be even, the
sequence 〈bn〉 is 〈1, 0, 1, 0, 1, 0, . . .〉, and so the generating functions for bananas is

B(z) =
∑
n≥0

bnz
n = 1 + z2 + z4 + · · · = 1

1− z2
. (21)

3

Similarly, the generating function for apples is

A(z) =
∑
n≥0

anz
n = 1 + z5 + z10 + · · · = 1

1− z5
. (22)

The generating functions O(z) and P (z) for oranges and pears are even easier:

O(z) = 1 + z + z2 + z3 + z4 (23)

P (z) = 1 + z. (24)

Now, recall from our manipulations with geometric series that O(z) = (1− z5)/(1− z). So,
when we multiply all of these functions together, we get

A(z)B(z)O(z)P (z) =
1

1− z5

1

1− z2

1− z5

1− z
(1 + z) (25)

=
1

(1− z)2
. (26)

Now, we need to re-expand this as a series. To do this, we use a little differentiation:

1

(1− z)2
=

d

dz

1

(1− z)
(27)

=
d

dz

∞∑
n=0

zn (28)

=
∞∑

n=0

d

dz
zn (29)

=
∞∑

n=1

nzn−1 (30)

=
∞∑

n=0

(n+ 1)zn. (31)

We’ve determined that the number of ways of filling a basket with n fruits that satisfies our
fruity constraints is n + 1. That wasn’t so bad after all! Note that our special case above
checks out: there are six ways to take five fruits.

3 Basic Properties of Generating Functions

Let’s now look at some of the basic ways we can manipulate generating functions, which
give us a bag of tricks to be used for counting problems. Let A(z) and B(z) denote two

4

generating functions for the sequences 〈an〉 and 〈bn〉 respectively, so that

A(z) = a0 + a1z + a2z
2 + · · · =

∞∑
k=0

akz
k (32)

B(z) = b0 + b1z + b2z
2 + · · · =

∞∑
k=0

bkz
k. (33)

We can add the two functions, and multiply by a scalar; thus αA(z) + βB(z) = C(z) is the
generating function for the sequence 〈cn〉 = 〈αan + βbn〉. We can also easily get the function
for a sequence shifted m places to the right by multiplying by zm:

zmA(z) =
∑

n

anz
n+m =

∑
n

an−mz
n (34)

which corresponds to the sequence shifted to the right:

0, 0, . . . , 0︸ ︷︷ ︸
m

, a0, a1, a2 . . . (35)

Shifting to the left is simple as well:

A(z)− a0 − a1z − . . . am−1z
m−1

zm
=
∑
n≥m

anz
n−m =

∑
n≥0

an+mz
n (36)

which corresponds to the sequence

am, am+1, am+2 . . . (37)

where the first m coefficients are dropped. Another useful technique is to replace the variable
z by cz, where c is a constant, yielding

A(cz) =
∑

n

anc
nzn (38)

which is the generating function for the sequence 〈anc
n〉. If we want to replace 〈an〉 by 〈nan〉

then the thing to do is differentiate and multiply by z:

zA′(z) = z
∑

n

nanz
n−1 =

∑
n

nanz
n (39)

This highlights our perspective that generating functions are formal power series; we are
not concerned with the numerical convergence of the series, and whether the derivative is
defined, etc. In a similar fashion, we can take the integral and use∫ x

0

zn dt =
1

n+ 1
zn+1 (40)

5

αA(z) + βB(z) =
∑

n

(αan + βbn)zn (44)

zmA(z) =
∑

n

an−mz
n, m ≥ 0 (45)

A(z)− a0 − a1z − . . . am−1z
m−1

zm
=

∑
n≥0

an+mz
n, m ≥ 0 (46)

A′(z) =
∑

n

(n+ 1)an+1z
n (47)

zA′(z) =
∑

n

nanz
n (48)∫ x

0

A(t) dt =
∑
n≥1

1

n
an−1z

n (49)

A(z)B(z) =
∑

n

(∑
k

akbn−k

)
zn (50)

1

1− z
A(z) =

∑
n

(∑
k≤n

ak

)
zn (51)

Figure 1: Basic identities for generating functions.

to obtain ∫ x

0

A(t) dt =
∑
n≥1

1

n
an−1z

n (41)

We’ve seen above that multiplication corresponds to convolution of the coefficients:

A(z)B(z) =
∑

n

(∑
k

akbn−k

)
zn (42)

As a useful special case of this, consider what happens when we multiply by 1/(1− z) which
has the geometric series expansion 1/(1− z) = 1 + z + z2 + z3 + · · · :

1

1− z
A(z) =

∑
n

(∑
k

an−k

)
zn =

∑
n

(∑
k≤n

ak

)
zn (43)

This corresponds to a new sequence given by the cumulative sums of the old sequence.

6

4 Solving Recurrences

Generating functions provide a powerful way of solving recurrences. The basic idea is to
write a sequence 〈an〉 that satisfies some recurrence in terms of a generating function A(z),
which after some manipulation can be written in closed form. Then, the coefficients an can
(often) be read off by expanding this closed form in a power series. This sounds circular,
but it’s not.

In more detail, here are the steps you should take to solve a recurrence using generating
functions.

1. Using the recurrence, write a single equation that expresses an in terms of the coeffi-
cients am,m < n, folding the base cases in to get an equation valid for all n, assuming
a−1 = a−2 = · · · = 0.

2. Multiply both sides by zn, and sum over all n. On the lefthand side we have A(z). The
righthand side should be manipulated so that it can be expressed as another function
of A(z). (This is often the most creative part of the process.)

3. Solve the equation for A(z), getting a closed form.

4. Expand this closed form into a power series, to get a closed form for an.

To illustrate, let’s consider the recurrence

a0 = a1 = 1 (52)

an = an−1 + 2an−2 + (−1)n, for n ≥ 2 (53)

We can express this as a single equation by writing

an = an−1 + 2an−2 + (−1)n[n ≥ 0] + [n = 1] (54)

where we use the notation

[P] =

{
1 if P is true;

0 if P is false.
(55)

This single equation handles the base cases

a0 = 0 + 2 · 0 + (−1)0 + 0 = 1 (56)

a1 = 1 + 2 · 0 + (−1)1 + 1 = 1. (57)

7

This carries out Step 1; to execute Step 2, we multiply by zn and sum, to get

A(z) =
∑

n

anz
n =

∑
n

(an−1 + 2an−2 + (−1)n[n ≥ 0] + [n = 1]) zn (58)

= zA(z) + 2z2A(z) +
∑
n≥0

(−1)nzn + z (59)

= zA(z) + 2z2A(z) +
1

1 + z
+ z. (60)

Now we carry out Step 3, solving for A(z) to get

A(z) =
1

1+z
+ z

1− z − 2z2
(61)

=
1 + z + z2

(1 + z)(1− z − 2z2)
(62)

=
1 + z + z2

(1 + z)2(1− 2z)
. (63)

At this point, we have a closed form for A(z). If we can express the righthand side as a
power series, we’ll be done.

After some work (which we’ll explain later), the expansion can be shown to have the form

an =
7

9
2n +

(
1

3
n+

2

9

)
(−1)n (64)

and this is the solution to the recurrence.

5 Another example: Fibonacci

We can apply this same strategy to get a generating function for the Fibonacci numbers.
Recall that the recurrence relation is

Fn =


0 n ≤ 0

1 n = 1

Fn−1 + Fn−2 n > 1.

(65)

To execute Step 1, we need to write this in terms of a single equation. This is easily done:

Fn = Fn−1 + Fn−2 + [n = 1] (66)

8

Note that the base cases check out: F0 = 0, F1 = 1 and F2 = 1. To carry out Step 2, we
multipy by zn and sum:∑

n

Fnz
n =

∑
n

Fn−1z
n +

∑
n

Fn−2z
n + z (67)

= z
∑

n

Fn−1z
n−1 + z2

∑
n

Fn−2z
n−2 + z (68)

= zF (z) + z2F (z) + z (69)

Step 3 is then easily carried out, since we can solve for F (z) to get

F (z) =
z

1− z − z2
. (70)

We can view this in terms of tilings, described below.

It’s not really necessary to use the somewhat funky bracketing notation [·]. Instead, we could
just reason that since Fn = Fn−1 + Fn−2 for n ≥ 2, we have that

∞∑
n=2

Fnz
n =

∞∑
n=2

Fn−1z
n +

∞∑
n=2

Fn−2z
n (71)

= z
∞∑

n=1

Fnz
n + z2

∞∑
n=0

Fnz
n. (72)

Now, to massage the lefthand side into the generating function, we need to add in—and
subtract out—the missing terms F0 + F1z. This gives us

∞∑
n=2

Fnz
n = F (z)− F0 − F1z = z

∞∑
n=1

Fnz
n + z2

∞∑
n=0

Fnz
n (73)

= zF (z)− zF0 + z2F (z) (74)

from which we obtain
F (z) =

z

1− z − z2
(75)

by appealing to the base cases F0 = 0 and F1 = 1.

6 Tiling by Dominoes

A generating function is best thought of as a symbolic object, which can be manipulated
with formal mathematical operations, without worrying about their numerical properties. To
better appreciate this point, it’s helpful to consider an example involving tilings by dominoes.

9

Suppose that we have a bunch of dominoes of identical shape; we can either stand a domino
on end like this , or lay it on its side, like this . We’re interested in tiling a 2 × n strip
with dominoes. For example, we could tile a 2× 5 region as or .

Let T denote the collection of all tilings of a 2× n region, for all n ≥ 0. Then we can write
T symbolically as

T = + + + + + + + · · · (76)

Here the symbol denotes the unique tiling of the 2 × 0 region which uses no tiles, and the
mathematical operator + really means “union.” We can define a kind of multiplication on
tiles, where × = means pasting a vertical tile on the left of two horizontal tiles.
Note that this multiplication is not commutative, so that = × 6= × = .
The trivial tiling acts like the multiplicative identity—it doesn’t change a tiling.

Now, with this symbolic multiplication in hand we can rearrange terms in the (infinite)
description of T to obtain

T = + + + + + + + · · · (77)

= + (+ + + + · · ·) + (+ + + + · · ·) (78)

= + T + T (79)

To spell this symbolic equation out longhand, we would get the following long addition
formula:

+ + + + + + + · · ·

− − − − − − − − · · ·

− − − − − − − − · · ·

Now, we can proceed by a leap of faith to solve equation (79) for T , obtaining

T =
− −

(80)

What do we mean by the fraction
− −

? It should be thought of as a shorthand for a

formal geometric series:

− −
= + (+) + (+)

2
+ (+)

3
+ · · · (81)

= + (+) + (+ + +) + (82)

(+ + + + + + +) + · · ·

10

Now, when we tile a 2× n region, there are two basic “moves” we can make. Either we can
can place down a vertical tile , or we can place down two horizontal tiles on top of each
other, . Note that if we are only interested in counting the number of tilings, then the
order in which these “moves” are made does not matter. If we represent by the variable
z, and we represent by z2, then it is plausible that the above expression is equivalent to

T (z) =
1

1− z − z2
. (83)

In this way, we get an algebraic representation of symbolic object—the set of tilings of a
2× n strip.

Note the resemblance to the generating function for Fibonaccis; we’ll explore this connection
in more depth in the next lecture.

References

[1] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathematics: A
Foundation for Computer Science. Addison-Wesley, second edition, 1994.

11

