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Lecture 6, September 11, 2008

Counting I: One-To-One  
Correspondence 
and Choice Trees
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Addition Rule

Let A and B be two disjoint finite sets

The size of  (A ∪ B) is the sum of  the size 
of  A and the size of  B
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Addition Rule

Let A and B be two disjoint finite sets

The size of  (A ∪ B) is the sum of  the size 
of  A and the size of  B
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Addition Rule
(2 possibly overlapping sets)

Let A and B be two finite sets

|A∪B| = 
|A| + |B| - |A∩B|
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Addition of  multiple disjoint sets:

Let A1, A2, A3, …, An be disjoint, finite 
sets.
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Partition Method

To count the elements of  a finite set S, partition the elements into 
non-overlapping subsets A1, A2, A3, …, An .. 

|s| =
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S = all possible outcomes of  one 
white die and one black die.

Partition Method
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S = all possible outcomes of  one 
white die and one black die.

Partition S into 6 sets:

Partition Method
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S = all possible outcomes of  one 
white die and one black die.

Partition S into 6 sets:

Partition Method

A1 = the set of  outcomes where the white die is 1.
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S = all possible outcomes of  one 
white die and one black die.

Partition S into 6 sets:

Partition Method

A1 = the set of  outcomes where the white die is 1.
A2 = the set of  outcomes where the white die is 2. 
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S = all possible outcomes of  one 
white die and one black die.

Partition S into 6 sets:

Partition Method

A1 = the set of  outcomes where the white die is 1.
A2 = the set of  outcomes where the white die is 2. 
A3 = the set of  outcomes where the white die is 3.
A4 = the set of  outcomes where the white die is 4.
A5 = the set of  outcomes where the white die is 5. 
A6 = the set of  outcomes where the white die is 6.
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S = all possible outcomes of  one 
white die and one black die.

Partition S into 6 sets:

Partition Method

A1 = the set of  outcomes where the white die is 1.
A2 = the set of  outcomes where the white die is 2. 
A3 = the set of  outcomes where the white die is 3.
A4 = the set of  outcomes where the white die is 4.
A5 = the set of  outcomes where the white die is 5. 
A6 = the set of  outcomes where the white die is 6.

Each of  6 disjoint sets has size 6 = 36 outcomes 8



S = all possible outcomes where the 
white die and the black die have 

different values 

Partition Method
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Ai ≡ set of  outcomes where black die says i 
and the white die says something else.

S ≡ Set of  all outcomes where the 
dice show different values. S = ?
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Ai ≡ set of  outcomes where black die says i 
and the white die says something else.

S ≡ Set of  all outcomes where the 
dice show different values. S = ?

10



S ≡ Set of  all outcomes where the 
dice show different values. S = ?
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S ≡ Set of  all outcomes where the 
dice show different values. S = ?

T ≡ set of  outcomes where dice agree.
= { <1,1>, <2,2>, <3,3>,<4,4>,<5,5>,<6,6>}
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| S ∪ T | = # of  outcomes = 36

S ≡ Set of  all outcomes where the 
dice show different values. S = ?

T ≡ set of  outcomes where dice agree.
= { <1,1>, <2,2>, <3,3>,<4,4>,<5,5>,<6,6>}
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| S ∪ T | = # of  outcomes = 36

|S| + |T| = 36

S ≡ Set of  all outcomes where the 
dice show different values. S = ?

T ≡ set of  outcomes where dice agree.
= { <1,1>, <2,2>, <3,3>,<4,4>,<5,5>,<6,6>}
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| S ∪ T | = # of  outcomes = 36

|S| + |T| = 36

|T| = 6

S ≡ Set of  all outcomes where the 
dice show different values. S = ?

T ≡ set of  outcomes where dice agree.
= { <1,1>, <2,2>, <3,3>,<4,4>,<5,5>,<6,6>}
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| S ∪ T | = # of  outcomes = 36

|S| + |T| = 36

|T| = 6

|S| = 36 – 6 = 30

S ≡ Set of  all outcomes where the 
dice show different values. S = ?

T ≡ set of  outcomes where dice agree.
= { <1,1>, <2,2>, <3,3>,<4,4>,<5,5>,<6,6>}
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S ≡ Set of  all outcomes where the 
black die shows a smaller number 

than the white die. S = ?
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S ≡ Set of  all outcomes where the 
black die shows a smaller number 

than the white die. S = ?

Ai ≡ set of  outcomes where the black die says 
i and the white die says something larger.
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S ≡ Set of  all outcomes where the 
black die shows a smaller number 

than the white die. S = ?

Ai ≡ set of  outcomes where the black die says 
i and the white die says something larger.

S = A1 ∪ A2 ∪ A3 ∪ A4 ∪ A5 ∪ A6
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S ≡ Set of  all outcomes where the 
black die shows a smaller number 

than the white die. S = ?

Ai ≡ set of  outcomes where the black die says 
i and the white die says something larger.

S = A1 ∪ A2 ∪ A3 ∪ A4 ∪ A5 ∪ A6

|S| = 5 + 4 + 3 + 2 + 1 + 0 = 15
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S ≡ Set of  all outcomes where the 
black die shows a smaller number 

than the white die. S = ?

L ≡ set of  all outcomes where the black die 
shows a larger number than the white die.
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S + L = 30

S ≡ Set of  all outcomes where the 
black die shows a smaller number 

than the white die. S = ?

L ≡ set of  all outcomes where the black die 
shows a larger number than the white die.
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It is clear by symmetry that | S | = | L |.

S + L = 30

S ≡ Set of  all outcomes where the 
black die shows a smaller number 

than the white die. S = ?

L ≡ set of  all outcomes where the black die 
shows a larger number than the white die.
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It is clear by symmetry that | S | = | L |.

S + L = 30

Therefore | S | = 15

S ≡ Set of  all outcomes where the 
black die shows a smaller number 

than the white die. S = ?

L ≡ set of  all outcomes where the black die 
shows a larger number than the white die.
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“It is clear by symmetry that |S| = |L|?”
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S L

Pinning Down the Idea of  Symmetry 
by Exhibiting a Correspondence

Put each outcome in S in correspondence with 
an outcome in L by swapping color of  the dice.
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S L

Pinning Down the Idea of  Symmetry 
by Exhibiting a Correspondence

Put each outcome in S in correspondence with 
an outcome in L by swapping color of  the dice.

Each outcome in S gets matched with exactly 
one outcome in L, with none left over.
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S L

Pinning Down the Idea of  Symmetry 
by Exhibiting a Correspondence

Put each outcome in S in correspondence with 
an outcome in L by swapping color of  the dice.

Thus: S = L

Each outcome in S gets matched with exactly 
one outcome in L, with none left over.
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f  is 1-1 if  and only if 


 
 ∀x,y∈A,  x ≠ y ⇒ f(x) ≠ f(y)

For Every

There 
Exists

f  is onto if  and only if 

 ∀z∈B  ∃x∈A  f(x) = z

Let f  : A → B Be a Function 
From a Set A to a Set B
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A B

Let’s Restrict Our Attention to 
Finite Sets

∃ 1-1 f  : A → B  ⇒ | A | ≤ | B |
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AB

∃ onto f  : A → B  ⇒ | A | ≥ | B |

BA
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A B

∃ 1-1 onto f  : A → B  ⇒  | A | = | B |
19



f  being 1-1 onto means f-1 is well 
defined and unique

A B
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Correspondence Principle

If  two finite sets can be placed 
into 1-1 onto correspondence, 
then they have the same size

It’s one of  the 
most important 
mathematical 

ideas of  all time!
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Question: How many n-bit 
sequences are there?
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Question: How many n-bit 
sequences are there?

000000

000001

000010

000011

111111 2n-1

↔

↔

↔

↔

↔
::

0

1

2

3

:
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Each sequence corresponds to a unique
number from 0 to 2n-1. Hence 2n sequences.

Question: How many n-bit 
sequences are there?

000000

000001

000010

000011

111111 2n-1

↔

↔

↔

↔

↔
::

0

1

2

3

:
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A = { a,b,c,d,e } Has Many Subsets

{a}, {a,b}, {a,d,e}, {a,b,c,d,e}, 
{e}, Ø, …
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The entire set and the 
empty set are subsets with 
all the rights and privileges 

pertaining thereto

A = { a,b,c,d,e } Has Many Subsets

{a}, {a,b}, {a,d,e}, {a,b,c,d,e}, 
{e}, Ø, …
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Question: How Many Subsets Can 
Be Made From The Elements of  a 

5-Element Set?
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Question: How Many Subsets Can 
Be Made From The Elements of  a 

5-Element Set?

a b c d e

0 1 1 0 1

24



Question: How Many Subsets Can 
Be Made From The Elements of  a 

5-Element Set?

{ b c e } 1 means “TAKE IT”
0 means “LEAVE IT”

a b c d e

0 1 1 0 1
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Question: How Many Subsets Can 
Be Made From The Elements of  a 

5-Element Set?

{ b c e } 1 means “TAKE IT”
0 means “LEAVE IT”

a b c d e

0 1 1 0 1

Each subset corresponds to a 5-bit sequence  
(using the “take it or leave it” code)

24



For bit string b = b1b2b3…bn, let f(b) = { ai | bi=1} 

A = {a1, a2, a3,…, an}
B = set of  all n-bit strings

a1 a2 a3 a4 a5

b1 b2 b3 b4 b5
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For bit string b = b1b2b3…bn, let f(b) = { ai | bi=1} 

A = {a1, a2, a3,…, an}
B = set of  all n-bit strings

a1 a2 a3 a4 a5

b1 b2 b3 b4 b5

Claim: f  is 1-1
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For bit string b = b1b2b3…bn, let f(b) = { ai | bi=1} 

A = {a1, a2, a3,…, an}
B = set of  all n-bit strings

a1 a2 a3 a4 a5

b1 b2 b3 b4 b5

Claim: f  is 1-1

Any two distinct binary sequences b and b′ 
have a position i at which they differ

Hence, f(b) is not equal to f(b′) because 
they disagree on element ai
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For bit string b = b1b2b3…bn, let f(b) = { ai | bi=1} 

A = {a1, a2, a3,…, an}
B = set of  all n-bit strings

a1 a2 a3 a4 a5

b1 b2 b3 b4 b5

26



For bit string b = b1b2b3…bn, let f(b) = { ai | bi=1} 
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b1 b2 b3 b4 b5
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For bit string b = b1b2b3…bn, let f(b) = { ai | bi=1} 

A = {a1, a2, a3,…, an}
B = set of  all n-bit strings

a1 a2 a3 a4 a5

b1 b2 b3 b4 b5

Let S be a subset of  {a1,…,an}.

Claim: f  is onto
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For bit string b = b1b2b3…bn, let f(b) = { ai | bi=1} 

A = {a1, a2, a3,…, an}
B = set of  all n-bit strings

a1 a2 a3 a4 a5

b1 b2 b3 b4 b5

Let S be a subset of  {a1,…,an}.

Define bk = 1 if  ak in S and bk = 0 otherwise.

Claim: f  is onto

26



For bit string b = b1b2b3…bn, let f(b) = { ai | bi=1} 

A = {a1, a2, a3,…, an}
B = set of  all n-bit strings

a1 a2 a3 a4 a5

b1 b2 b3 b4 b5

Let S be a subset of  {a1,…,an}.

Define bk = 1 if  ak in S and bk = 0 otherwise.
 Note that f(b1b2…bn) = S.

Claim: f  is onto
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The number 
of  subsets of  
an n-element 

set is 2n
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Let f  : A → B Be a Function From 
Set A to Set B

f is 1-1 if  and only if  
∀x,y ∈ A,  x ≠ y ⇒ f(x) ≠ f(y)

f  is onto if  and only if  
∀z∈B  ∃x∈A such that f(x) = z
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Let f  : A → B Be a Function From 
Set A to Set B

f is a 1-to-1 correspondence iff 
∀z∈B  ∃ exactly one x∈A such that f(x) = z
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Let f  : A → B Be a Function From 
Set A to Set B

f is a 1-to-1 correspondence iff 
∀z∈B  ∃ exactly one x∈A such that f(x) = z

f  is a k-to-1 correspondence iff 
∀z∈B  ∃ exactly k x∈A such that f(x) = z
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Let f  : A → B Be a Function From 
Set A to Set B

f is a 1-to-1 correspondence iff 
∀z∈B  ∃ exactly one x∈A such that f(x) = z

f  is a k-to-1 correspondence iff 
∀z∈B  ∃ exactly k x∈A such that f(x) = z

A
B

3 to 1 function
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To count the number of  horses in 
a barn, we can count the number 

of  hoofs and then divide by 4
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If  a finite set A 
has a k-to-1 

correspondence 
to finite set B, 
then |B| = |A|/k
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How many seats in 
this auditorium?
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How many seats in 
this auditorium?

Count without Counting:
The auditorium can be
partitioned into n rows 

with k seats each

Thus, we have nk seats in the room
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Choice Trees
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I own 3 beanies and 2 
ties. How many different 
ways can I dress up in a 

beanie and a tie?
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A Restaurant Has a Menu With
5 Appetizers, 6 Entrees, 3 Salads, 

and 7 Desserts

How many items on the menu?

36



A Restaurant Has a Menu With
5 Appetizers, 6 Entrees, 3 Salads, 

and 7 Desserts

How many items on the menu?

5 + 6 + 3 + 7 = 21
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A Restaurant Has a Menu With
5 Appetizers, 6 Entrees, 3 Salads, 

and 7 Desserts

How many items on the menu?

5 + 6 + 3 + 7 = 21

How many ways to choose a complete meal?

5 × 6 × 3 × 7   = 630

How many ways to order a meal if  I am 
allowed to skip some (or all) of  the courses?
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A Restaurant Has a Menu With
5 Appetizers, 6 Entrees, 3 Salads, 

and 7 Desserts

How many items on the menu?

5 + 6 + 3 + 7 = 21

How many ways to choose a complete meal?

5 × 6 × 3 × 7   = 630

6 × 7 × 4 × 8 = 1344

How many ways to order a meal if  I am 
allowed to skip some (or all) of  the courses?
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Hobson’s Restaurant Has 
Only 1 Appetizer, 1 Entree, 1 

Salad, and 1 Dessert

24 ways to order a meal if  I might not 
have some of  the courses
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Hobson’s Restaurant Has 
Only 1 Appetizer, 1 Entree, 1 

Salad, and 1 Dessert

24 ways to order a meal if  I might not 
have some of  the courses

Same as number of  subsets of  the set
{Appetizer, Entrée, Salad, Dessert}
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0 1 0 10 1 0 1

0 1 0 1

0 1

We can use a “choice tree” to represent the 
construction of  objects of  the desired type

Choice Tree For 2n n-bit Sequences
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0 1 0 10 1 0 1

0 1 0 1

0 1

Choice Tree For 2n n-bit Sequences

Label each leaf  with the object constructed 
by the choices along the path to the leaf

000 001 010 011 100 101 110 111
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   2 choices for first bit
× 2 choices for second bit
× 2 choices for third bit
 : :
× 2 choices for the nth

0 1 0 10 1 0 1

0 1 0 1

0 1
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Leaf  Counting Lemma

Let T be a depth-n tree when each node at 
depth 0 ≤ i ≤ n-1 has Pi+1 children

The number of  leaves of  T is given by:
P1P2…Pn
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Choice Tree

A choice tree is a rooted, directed tree with 
an object called a “choice” associated with 

each edge and a label on each leaf
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A choice tree  provides a “choice tree 
representation” of  a set S, if

1. Each leaf  label is in S, and each 
element of  S is some leaf  label

2. No two leaf  labels are the same
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We will now combine 
the correspondence 

principle with the 
leaf  counting lemma 
to make a powerful 

counting rule for 
choice tree 

representation.
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Product Rule
IF set S has a choice tree representation with 
  P1 possibilities for the first choice, 
  P2 for the second, P3 for the third,
  and so on,
THEN
   there are P1P2P3…Pn objects in S

Proof:

There are P1P2P3…Pn leaves of  the choice tree
which are in 1-1 onto correspondence with the 
elements of  S.
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Product Rule (Rephrased)
Suppose every object of  a set S can be 
constructed by a sequence of  choices with P1 
possibilities for the first choice, P2 for the 
second, and so on. 
IF 1. Each sequence of  choices 

constructs an object of  type S

2. No two different sequences create the
same object

There are P1P2P3…Pn objects of  type S

AND

THEN
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How Many Different Orderings 
of  Deck With 52 Cards?
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How Many Different Orderings 
of  Deck With 52 Cards?

What object are we making?
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How Many Different Orderings 
of  Deck With 52 Cards?

What object are we making? Ordering of  a deck
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How Many Different Orderings 
of  Deck With 52 Cards?

What object are we making? Ordering of  a deck

Construct an ordering of  a deck by a sequence 
of  52 choices:
  52 possible choices for the first card;
  51 possible choices for the second card;
   :    :
    1 possible choice for the 52nd card.
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How Many Different Orderings 
of  Deck With 52 Cards?

What object are we making? Ordering of  a deck

Construct an ordering of  a deck by a sequence 
of  52 choices:
  52 possible choices for the first card;
  51 possible choices for the second card;
   :    :
    1 possible choice for the 52nd card.

By product rule: 52 × 51 × 50 × … × 2 × 1 = 52!
47



A permutation or 
arrangement of  n objects is 
an ordering of  the objects

The number of  permutations of 
n distinct objects is n!
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267
(26 choices for each 

of  the 7 positions)

How many sequences of  
7 letters are there?
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How many sequences of  
7 letters contain at least 
two of  the same letter?
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How many sequences of  
7 letters contain at least 
two of  the same letter?

267 - 26×25×24×23×22×21×20
  

number of  sequences containing 
all different letters
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Sometimes it is easiest 
to count the number of  
objects with property Q, 
by counting the number 
of  objects that do not 
have property Q.
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Helpful Advice:

In logic, it can be useful to 
represent a statement in the 
contra positive.

In counting, it can be useful to 
represent a set in terms of  its 
complement.
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If  10 horses race, how many 
orderings of  the top three 
finishers are there?
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If  10 horses race, how many 
orderings of  the top three 
finishers are there?

10 × 9 × 8 = 720
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Number of  ways of  ordering, per-
muting, or arranging r out of  n objects

n choices for first place, n-1 choices for 
second place, . . .

n × (n-1) × (n-2) ×…× (n-(r-1))
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Number of  ways of  ordering, per-
muting, or arranging r out of  n objects

n choices for first place, n-1 choices for 
second place, . . .

n × (n-1) × (n-2) ×…× (n-(r-1))

n!
(n-r)!

=

54
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From a deck of  52 cards how many ordered 
pairs can be formed?

Ordered Versus Unordered
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From a deck of  52 cards how many ordered 
pairs can be formed?

52 × 51

Ordered Versus Unordered
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From a deck of  52 cards how many ordered 
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56



From a deck of  52 cards how many ordered 
pairs can be formed?

52 × 51

How many unordered pairs?

52×51 / 2   divide by overcount

Ordered Versus Unordered
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From a deck of  52 cards how many ordered 
pairs can be formed?

52 × 51

How many unordered pairs?

52×51 / 2   divide by overcount

Each unordered pair is listed twice 
on a list of  the ordered pairs

Ordered Versus Unordered
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From a deck of  52 cards how many ordered 
pairs can be formed?

52 × 51

How many unordered pairs?

52×51 / 2   divide by overcount

We have a 2-1 map from ordered pairs to 
unordered pairs.

Hence #unordered pairs = (#ordered pairs)/2

Ordered Versus Unordered
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Ordered Versus Unordered

How many ordered 5 card sequences
can be formed from a 52-card deck?

58



Ordered Versus Unordered

How many ordered 5 card sequences
can be formed from a 52-card deck?

52 × 51 × 50 × 49 × 48
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Ordered Versus Unordered

How many ordered 5 card sequences
can be formed from a 52-card deck?

52 × 51 × 50 × 49 × 48

How many orderings of  5 cards?
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Ordered Versus Unordered

How many ordered 5 card sequences
can be formed from a 52-card deck?

52 × 51 × 50 × 49 × 48

How many orderings of  5 cards?

5!
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Ordered Versus Unordered

How many ordered 5 card sequences
can be formed from a 52-card deck?

52 × 51 × 50 × 49 × 48

How many orderings of  5 cards?

5!

How many unordered 5 card hands?
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Ordered Versus Unordered

How many ordered 5 card sequences
can be formed from a 52-card deck?

52 × 51 × 50 × 49 × 48

How many orderings of  5 cards?

5!

How many unordered 5 card hands?

(52×51×50×49×48)/5!  = 2,598,960
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n “choose” r

A combination or choice of  r out of 
n objects is an (unordered) set of  r 

of  the n objects

The number of  r combinations of  n objects:

n!
r!(n-r)!

=
n
r
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The number of  subsets of  
size r that can be formed 
from an n-element set is:

n!
r!(n-r)!

=
n
r
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Product Rule (Rephrased)
Suppose every object of  a set S can be 
constructed by a sequence of  choices with P1 
possibilities for the first choice, P2 for the 
second, and so on. 
IF 1. Each sequence of  choices 

constructs an object of  type S

2. No two different sequences create the
same object

There are P1P2P3…Pn objects of  type S

AND

THEN
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How Many 8-Bit Sequences 
Have 2 0’s and 6 1’s?
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How Many 8-Bit Sequences 
Have 2 0’s and 6 1’s?

Tempting, but incorrect:
 8 ways to place first 0, times
 7 ways to place second 0
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How Many 8-Bit Sequences 
Have 2 0’s and 6 1’s?

Tempting, but incorrect:
 8 ways to place first 0, times
 7 ways to place second 0

Violates condition 2 of  product rule! 
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Choosing position i for the first 0 and then 
position j for the second 0 gives same 

sequence as choosing position j for the first 0 
and position i for the second 0

2 ways of  
generating 

same object!

How Many 8-Bit Sequences 
Have 2 0’s and 6 1’s?

Tempting, but incorrect:
 8 ways to place first 0, times
 7 ways to place second 0

Violates condition 2 of  product rule! 
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How Many 8-Bit Sequences 
Have 2 0’s and 6 1’s?

1. Choose the set of  2 positions to put 
the 0’s. The 1’s are forced.
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How Many 8-Bit Sequences 
Have 2 0’s and 6 1’s?

1. Choose the set of  2 positions to put 
the 0’s. The 1’s are forced.

8
2
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How Many 8-Bit Sequences 
Have 2 0’s and 6 1’s?

1. Choose the set of  2 positions to put 
the 0’s. The 1’s are forced.

8
2

2. Choose the set of  6 positions to put the 
1’s. The 0’s are forced.
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How Many 8-Bit Sequences 
Have 2 0’s and 6 1’s?

1. Choose the set of  2 positions to put 
the 0’s. The 1’s are forced.

8
2

2. Choose the set of  6 positions to put the 
1’s. The 0’s are forced.

8
6
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“# of  ways to pick r out of  n elements”
=

“# of  ways to choose the (n-r) elements to omit”

Symmetry In The Formula

n!
r!(n-r)!

=
n

n-r
n
r =
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How Many Hands Have at Least 3 As?
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How Many Hands Have at Least 3 As?
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4
3

= 4 ways of  picking 3 out of  4 aces

How Many Hands Have at Least 3 As?
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4
3

49
2

= 4 ways of  picking 3 out of  4 aces

= 1176 ways of  picking 2 cards out of  
 the remaining 49 cards

How Many Hands Have at Least 3 As?
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4 × 1176 = 4704

4
3

49
2

= 4 ways of  picking 3 out of  4 aces

= 1176 ways of  picking 2 cards out of  
 the remaining 49 cards

How Many Hands Have at Least 3 As?
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How Many Hands Have at Least 3 As?
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= 1128 ways of  picking 2 cards 
 out of  the 48 non-ace cards

4
× 1128

4512

How Many Hands Have at Least 3 As?

How many hands have exactly 3 aces?

= 4 ways of  picking 3 out of  4 aces4
3

48
2

67



= 1128 ways of  picking 2 cards 
 out of  the 48 non-ace cards

4
× 1128

4512

4512
+ 48

4560

How Many Hands Have at Least 3 As?

How many hands have exactly 3 aces?

= 4 ways of  picking 3 out of  4 aces4
3

48
2

How many hands have exactly 4 aces?

= 1 way of  picking 4 out of  4 aces4
4

= 48 ways of  picking 1 cards 
 out of  the 48 non-ace cards

48
1
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4704 ≠ 4560

At least one of  
the two counting 
arguments is not 

correct!
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A♣ A♦ A♥    A♠ K♦
A♣ A♦ A♠    A♥ K♦
A♣ A♠ A♥    A♦ K♦
A♠ A♦ A♥    A♣ K♦

Four Different Sequences of  
Choices Produce the Same Hand

= 4 ways of  picking 3 out of  4 aces

= 1176 ways of  picking 2 cards out of  
 the remaining 49 cards

4
3

49
2
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Is the other argument 
correct? How do I 

avoid fallacious 
reasoning?
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REVERSIBILTY 
CHECK:

For each object can I 
reverse engineer the 
unique sequence of  

choices that 
constructed it?
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A♣ A♦ A♥    A♠ K♦
A♣ A♦ A ♠    A♥ K♦
A♣ A♠ A♥    A♦ K♦
A♠ A♦ A♥    A♣ K♦

A♣ A♦ A♥A♠ K♦

Scheme I
1. Choose 3 of  4 aces
2. Choose 2 of  the remaining cards

For this hand – you can’t reverse to a 
unique choice sequence.
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Is the other argument 
correct? How do I 

avoid fallacious 
reasoning?
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A♣ A♦ Q♦ A♠ K♦

Scheme II
1. Choose 3 out of  4 aces
2. Choose 2 out of  48 non-ace cards

REVERSE TEST: Aces came from choices in (1)
 and others came from choices in (2)
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A♣ A♦ A♥ A♠ K♦

Scheme II
1. Choose 4 out of  4 aces
2. Choose 1 out of  48 non-ace cards

REVERSE TEST: Aces came from choices in (1)
 and others came from choices in (2)
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Product Rule (Rephrased)
Suppose every object of  a set S can be 
constructed by a sequence of  choices with P1 
possibilities for the first choice, P2 for the 
second, and so on. 
IF 1. Each sequence of  choices 

constructs an object of  type S

2. No two different sequences create the
same object

There are P1P2P3…Pn objects of  type S

AND

THEN
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DEFENSIVE THINKING
ask yourself:

Am I creating objects of  
the right type?

Can I reverse engineer 
my choice sequence 

from any given object?
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 Correspondence Principle
If  two finite sets can be placed into 
1-1 onto correspondence, then 
they have the same size

 Choice Tree

 Product Rule
two conditions

 Reverse Test

 Counting by complementing

 Binomial coefficient

Here’s What 
You Need to 

Know…
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