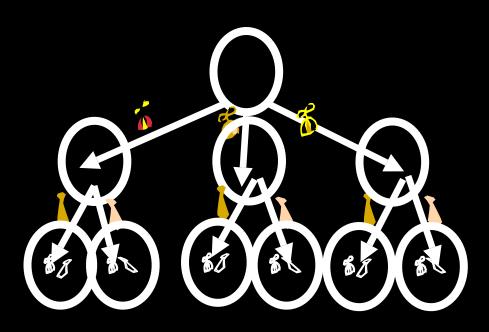
15-251

Great Theoretical Ideas in Computer Science

Counting I: One-To-One Correspondence and Choice Trees

Lecture 6, September 11, 2008



Addition Rule

Let A and B be two disjoint finite sets

The size of (A ∪ B) is the sum of the size of A and the size of B

Addition Rule

Let A and B be two disjoint finite sets

The size of $(A \cup B)$ is the sum of the size of A and the size of B

$$|A \cup B| = |A| + |B|$$

Addition Rule (2 possibly overlapping sets)

Let A and B be two finite sets

$$|A \cup B| =$$

$$|A| + |B| - |A \cap B|$$

Addition of multiple disjoint sets:

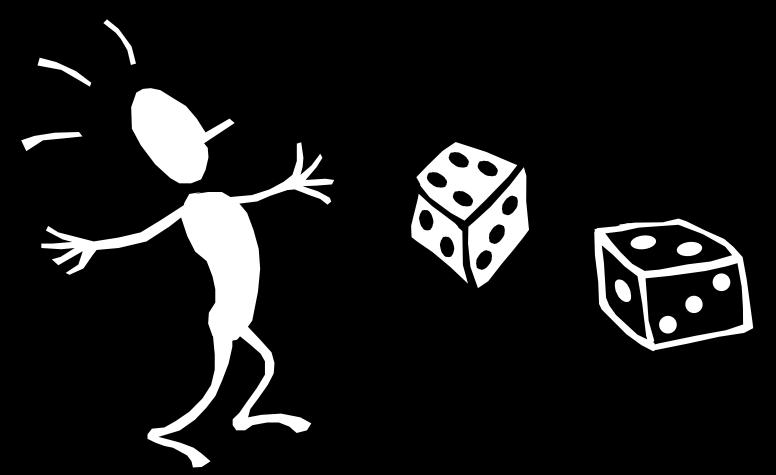
Let A₁, A₂, A₃, ..., A_n be disjoint, finite sets.

$$\begin{vmatrix} n \\ \mathbf{A}_{i} \\ i=1 \end{vmatrix} = \sum_{i=1}^{n} |\mathbf{A}_{i}|$$

To count the elements of a finite set S, partition the elements into non-overlapping subsets A_1 , A_2 , A_3 , ..., A_{n} .

$$\begin{vmatrix} n \\ \mathbf{A}_{i} \\ i=1 \end{vmatrix} = \sum_{i=1}^{n} |\mathbf{A}_{i}|$$

S = all possible outcomes of one white die and one black die.



S = all possible outcomes of one white die and one black die.

Partition S into 6 sets:

S = all possible outcomes of one white die and one black die.

Partition S into 6 sets:

 A_1 = the set of outcomes where the white die is 1.

S = all possible outcomes of one white die and one black die.

Partition S into 6 sets:

 A_1 = the set of outcomes where the white die is 1.

 A_2 = the set of outcomes where the white die is 2.

S = all possible outcomes of one white die and one black die.

Partition S into 6 sets:

 A_1 = the set of outcomes where the white die is 1.

 A_2 = the set of outcomes where the white die is 2.

 A_3 = the set of outcomes where the white die is 3.

 A_4 = the set of outcomes where the white die is 4.

 A_5 = the set of outcomes where the white die is 5.

 A_6 = the set of outcomes where the white die is 6.

S = all possible outcomes of one white die and one black die.

Partition S into 6 sets:

 A_1 = the set of outcomes where the white die is 1.

 A_2 = the set of outcomes where the white die is 2.

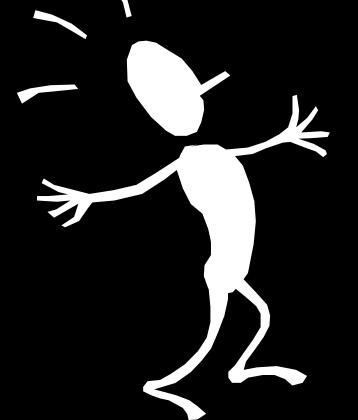
 A_3 = the set of outcomes where the white die is 3.

 A_4 = the set of outcomes where the white die is 4.

 A_5 = the set of outcomes where the white die is 5.

 A_6 = the set of outcomes where the white die is 6.

S = all possible outcomes where the white die and the black die have different values



A_i = set of outcomes where black die says i and the white die says something else.

A_i = set of outcomes where black die says i and the white die says something else.

$$|S| = \left| \bigcup_{i=1}^{6} A_i \right| = \sum_{i=1}^{6} |A_i| = \sum_{i=1}^{6} 5 = 30$$

```
T = set of outcomes where dice agree.
= \{<1,1>,<2,2>,<3,3>,<4,4>,<5,5>,<6,6>\}
```

T = set of outcomes where dice agree.
=
$$\{<1,1>,<2,2>,<3,3>,<4,4>,<5,5>,<6,6>\}$$

$$| S \cup T | = # \text{ of outcomes} = 36$$

T = set of outcomes where dice agree.
=
$$\{<1,1>,<2,2>,<3,3>,<4,4>,<5,5>,<6,6>\}$$

$$|S \cup T| = \# \text{ of outcomes} = 36$$

 $|S| + |T| = 36$

T = set of outcomes where dice agree.
=
$$\{<1,1>,<2,2>,<3,3>,<4,4>,<5,5>,<6,6>\}$$

$$|S \cup T| = \# \text{ of outcomes} = 36$$

 $|S| + |T| = 36$
 $|T| = 6$

T = set of outcomes where dice agree.
=
$$\{<1,1>,<2,2>,<3,3>,<4,4>,<5,5>,<6,6>\}$$

$$|S \cup T| = \# \text{ of outcomes} = 36$$

 $|S| + |T| = 36$
 $|T| = 6$
 $|S| = 36 - 6 = 30$

A_i = set of outcomes where the black die says i and the white die says something larger.

A_i = set of outcomes where the black die says i and the white die says something larger.

$$S = A_1 \cup A_2 \cup A_3 \cup A_4 \cup A_5 \cup A_6$$

A_i = set of outcomes where the black die says i and the white die says something larger.

$$S = A_1 \cup A_2 \cup A_3 \cup A_4 \cup A_5 \cup A_6$$

 $|S| = 5 + 4 + 3 + 2 + 1 + 0 = 15$

L = set of all outcomes where the black die shows a larger number than the white die.

L = set of all outcomes where the black die shows a larger number than the white die.

$$|S| + |L| = 30$$

L ≡ set of all outcomes where the black die shows a larger number than the white die.

$$|S| + |L| = 30$$

It is clear by symmetry that | S | = | L |.

L ≡ set of all outcomes where the black die shows a larger number than the white die.

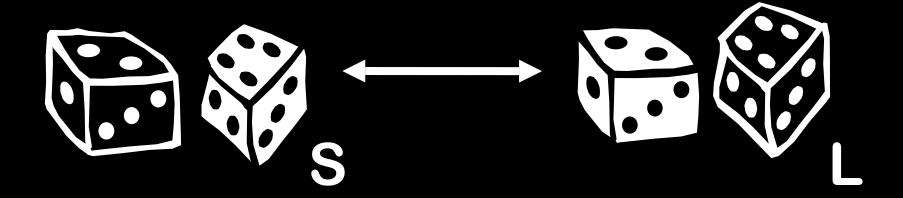
$$|S| + |L| = 30$$

It is clear by symmetry that | S | = | L |.

"It is clear by symmetry that |S| = |L|?"

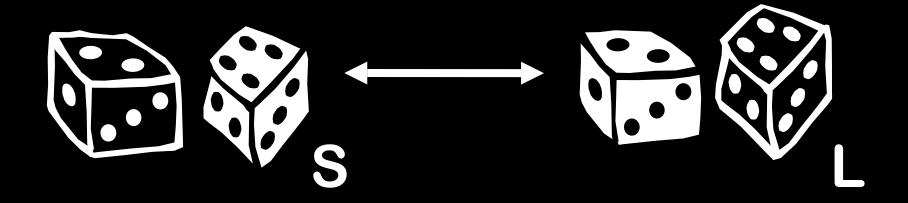
Pinning Down the Idea of Symmetry by Exhibiting a Correspondence

Put each outcome in S in correspondence with an outcome in L by swapping color of the dice.



Pinning Down the Idea of Symmetry by Exhibiting a Correspondence

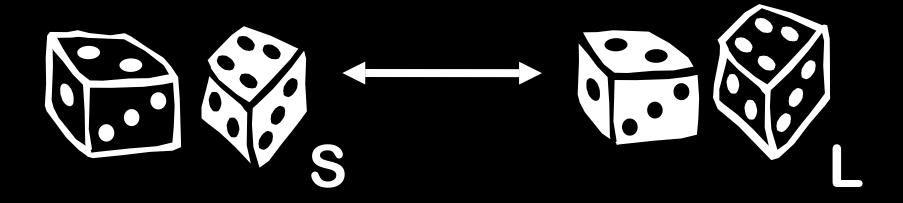
Put each outcome in S in correspondence with an outcome in L by swapping color of the dice.



Each outcome in S gets matched with exactly one outcome in L, with none left over.

Pinning Down the Idea of Symmetry by Exhibiting a Correspondence

Put each outcome in S in correspondence with an outcome in L by swapping color of the dice.



Each outcome in S gets matched with exactly one outcome in L, with none left over.

Let f: A → B Be a Function From a Set A to a Set B

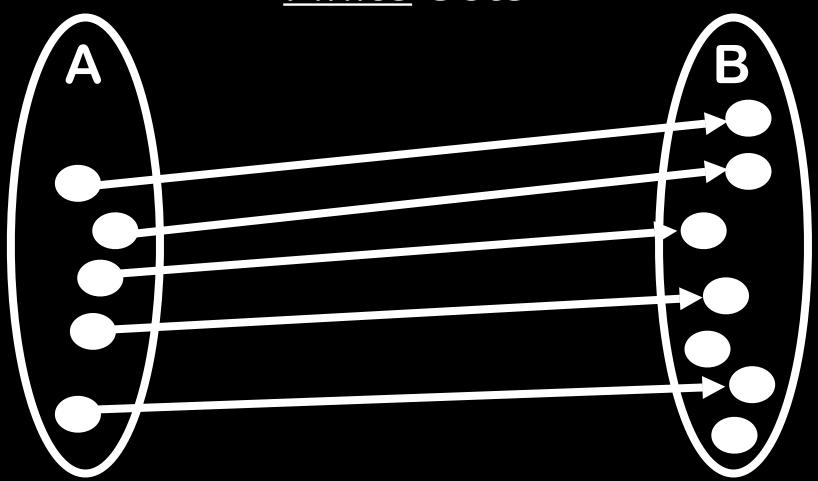
f is 1-1 if and only if $\forall x,y \in A, x \neq y \Rightarrow f(x) \neq f(y)$

f is onto if and only if

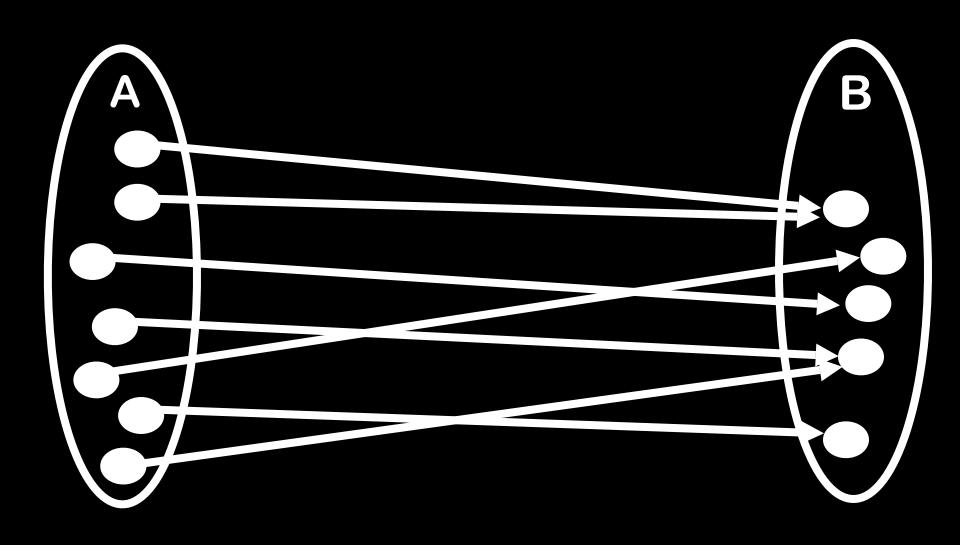
There **Exists**

For Every

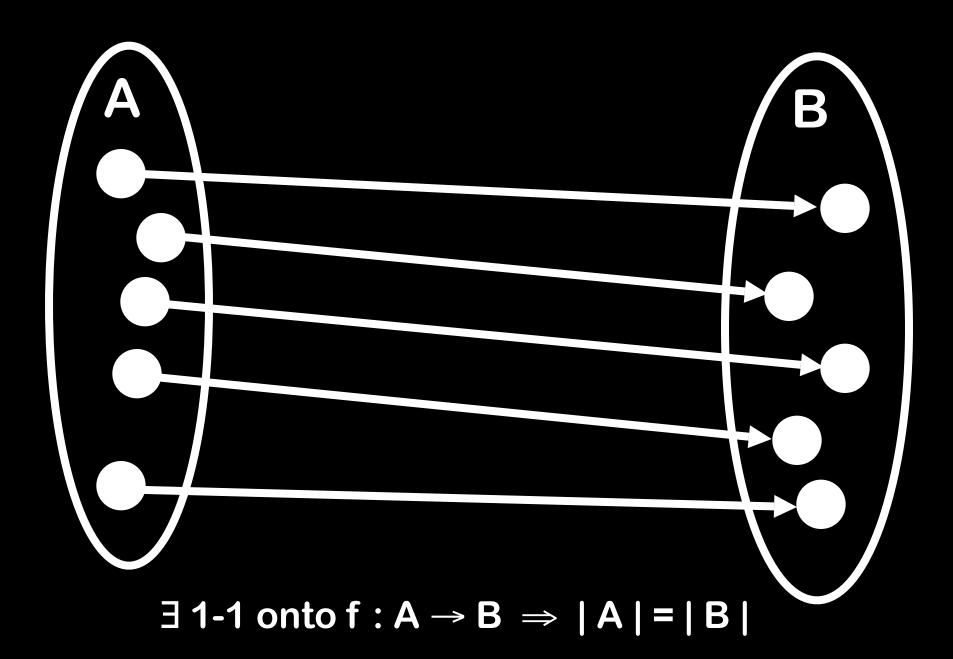
Let's Restrict Our Attention to Finite Sets



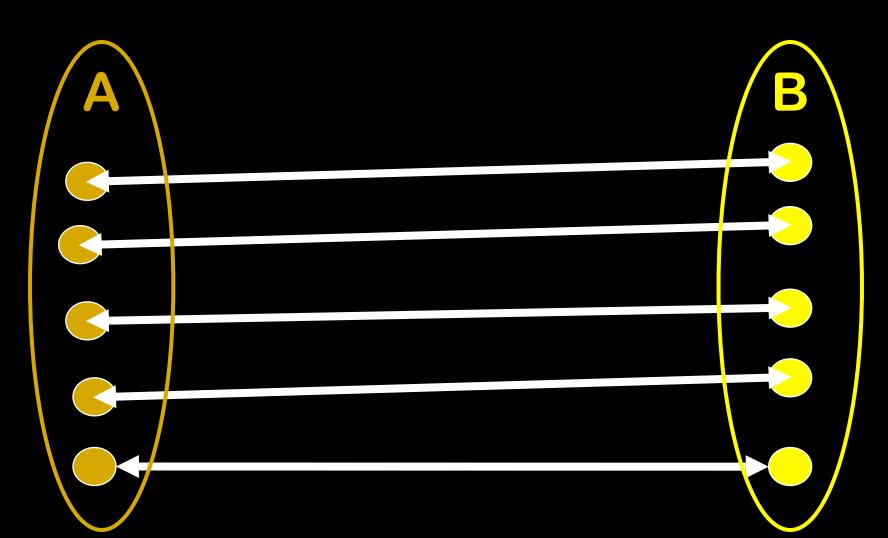
 \exists 1-1 f: A \rightarrow B \Rightarrow | A | \leq | B |



 \exists onto $f : A \rightarrow B \Rightarrow |A| \ge |B|$

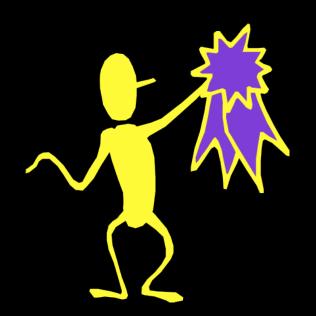


f being 1-1 onto means f⁻¹ is well defined and unique



Correspondence Principle

If two finite sets can be placed into 1-1 onto correspondence, then they have the same size



It's one of the most important mathematical ideas of all time!

Question: How many n-bit sequences are there?

Question: How many n-bit sequences are there?

```
      000000
      \Leftrightarrow
      0

      000001
      \Leftrightarrow
      1

      000010
      \Leftrightarrow
      2

      000011
      \Leftrightarrow
      3

      \vdots
      \vdots

      111111
      \Leftrightarrow
      2^{n}-1
```

Question: How many n-bit sequences are there?

```
      000000
      \Leftrightarrow
      0

      000001
      \Leftrightarrow
      1

      000010
      \Leftrightarrow
      2

      000011
      \Leftrightarrow
      3

      \vdots
      \vdots

      111111
      \Leftrightarrow
      2^{n}-1
```

Each sequence corresponds to a unique number from 0 to 2ⁿ-1. Hence 2ⁿ sequences.

```
A = { a,b,c,d,e } Has Many Subsets
{a}, {a,b}, {a,d,e}, {a,b,c,d,e},
{e}, Ø, ...
```

A = { a,b,c,d,e } Has Many Subsets {a}, {a,b}, {a,d,e}, {a,b,c,d,e}, {e}, Ø, ...

The entire set and the empty set are subsets with all the rights and privileges pertaining thereto

a	b	C	d	е
0	1	1	0	1

a	b	C	d	е	
0	1	1	0	1	
{	b	C		e }	1 means "TAKE IT" 0 means "LEAVE IT"

a	b	C	d	е	
0	1	1	0	1	
{	b	C		e }	1 means "TAKE IT" 0 means "LEAVE IT"

Each subset corresponds to a 5-bit sequence (using the "take it or leave it" code)

A =
$$\{a_1, a_2, a_3, ..., a_n\}$$

B = set of all n-bit strings

A =
$$\{a_1, a_2, a_3, ..., a_n\}$$

B = set of all n-bit strings

Claim: f is 1-1

A =
$$\{a_1, a_2, a_3, ..., a_n\}$$

B = set of all n-bit strings

Claim: f is 1-1

Any two distinct binary sequences b and b' have a position i at which they differ

Hence, f(b) is not equal to f(b') because they disagree on element a_i

A =
$$\{a_1, a_2, a_3, ..., a_n\}$$

B = set of all n-bit strings

A =
$$\{a_1, a_2, a_3, ..., a_n\}$$

B = set of all n-bit strings

Claim: f is onto

A =
$$\{a_1, a_2, a_3, ..., a_n\}$$

B = set of all n-bit strings

Claim: f is onto

Let S be a subset of $\{a_1,...,a_n\}$.

A =
$$\{a_1, a_2, a_3, ..., a_n\}$$

B = set of all n-bit strings

Claim: f is onto

Let S be a subset of $\{a_1,...,a_n\}$.

Define $b_k = 1$ if a_k in S and $b_k = 0$ otherwise.

A =
$$\{a_1, a_2, a_3, ..., a_n\}$$

B = set of all n-bit strings

Claim: f is onto

Let S be a subset of $\{a_1, ..., a_n\}$.

Define $b_k = 1$ if a_k in S and $b_k = 0$ otherwise.

Note that $f(b_1b_2...b_n) = S$.

The number of subsets of an n-element set is 2ⁿ

Let f : A → B Be a Function From Set A to Set B

f is 1-1 if and only if
$$\forall x,y \in A, x \neq y \Rightarrow f(x) \neq f(y)$$

f is onto if and only if ∀z∈B ∃x∈A such that f(x) = z

Let f: A → B Be a Function From Set A to Set B

f is a 1-to-1 correspondence iff ∀z∈B ∃ exactly one x∈A such that f(x) = z

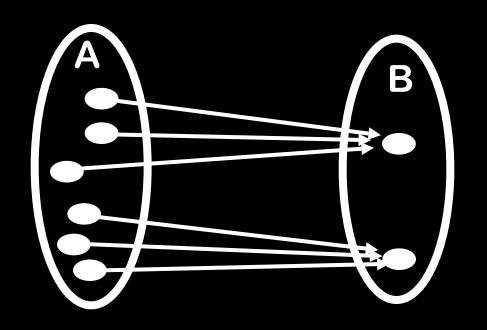
Let f: A → B Be a Function From Set A to Set B

f is a 1-to-1 correspondence iff $\forall z \in B \exists exactly one x \in A \text{ such that } f(x) = z$ f is a k-to-1 correspondence iff $\forall z \in B \exists exactly k x \in A \text{ such that } f(x) = z$

Let f: A → B Be a Function From Set A to Set B

f is a 1-to-1 correspondence iff ∀z∈B ∃ exactly one x∈A such that f(x) = z

f is a k-to-1 correspondence iff ∀z∈B ∃ exactly k x∈A such that f(x) = z



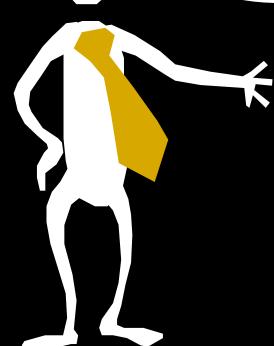
3 to 1 function

To count the number of horses in a barn, we can count the number of hoofs and then divide by 4



If a finite set A
has a k-to-1
correspondence
to finite set B,
then |B| = |A|/k

How many seats in this auditorium?



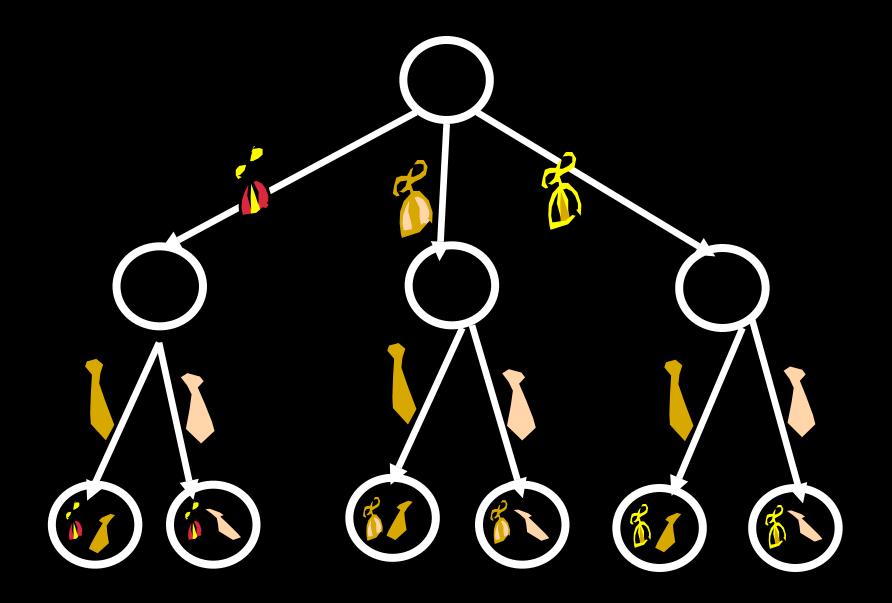
How many seats in this auditorium?

The auditorium can be partitioned into n rows with k seats each

Thus, we have nk seats in the room

Choice Trees

I own 3 beanies and 2 ties. How many different ways can I dress up in a beanie and a tie?



A Restaurant Has a Menu With 5 Appetizers, 6 Entrees, 3 Salads, and 7 Desserts

How many items on the menu?

A Restaurant Has a Menu With 5 Appetizers, 6 Entrees, 3 Salads, and 7 Desserts

How many items on the menu?

$$5 + 6 + 3 + 7 = 21$$

A Restaurant Has a Menu With 5 Appetizers, 6 Entrees, 3 Salads, and 7 Desserts

How many items on the menu?

$$5+6+3+7=21$$

How many ways to choose a complete meal?

A Restaurant Has a Menu With 5 Appetizers, 6 Entrees, 3 Salads, and 7 Desserts

How many items on the menu?

$$5 + 6 + 3 + 7 = 21$$

How many ways to choose a complete meal?

$$5 \times 6 \times 3 \times 7 = 630$$

A Restaurant Has a Menu With 5 Appetizers, 6 Entrees, 3 Salads, and 7 Desserts

How many items on the menu?

$$5 + 6 + 3 + 7 = 21$$

How many ways to choose a complete meal?

$$5 \times 6 \times 3 \times 7 = 630$$

How many ways to order a meal if I am allowed to skip some (or all) of the courses?

A Restaurant Has a Menu With 5 Appetizers, 6 Entrees, 3 Salads, and 7 Desserts

How many items on the menu?

$$5 + 6 + 3 + 7 = 21$$

How many ways to choose a complete meal?

$$5 \times 6 \times 3 \times 7 = 630$$

How many ways to order a meal if I am allowed to skip some (or all) of the courses?

$$6 \times 7 \times 4 \times 8 = 1344$$

Hobson's Restaurant Has Only 1 Appetizer, 1 Entree, 1 Salad, and 1 Dessert

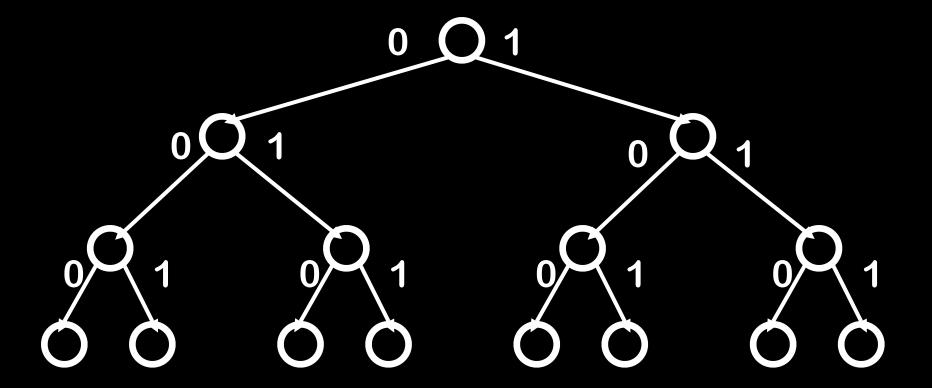
2⁴ ways to order a meal if I might not have some of the courses

Hobson's Restaurant Has Only 1 Appetizer, 1 Entree, 1 Salad, and 1 Dessert

2⁴ ways to order a meal if I might not have some of the courses

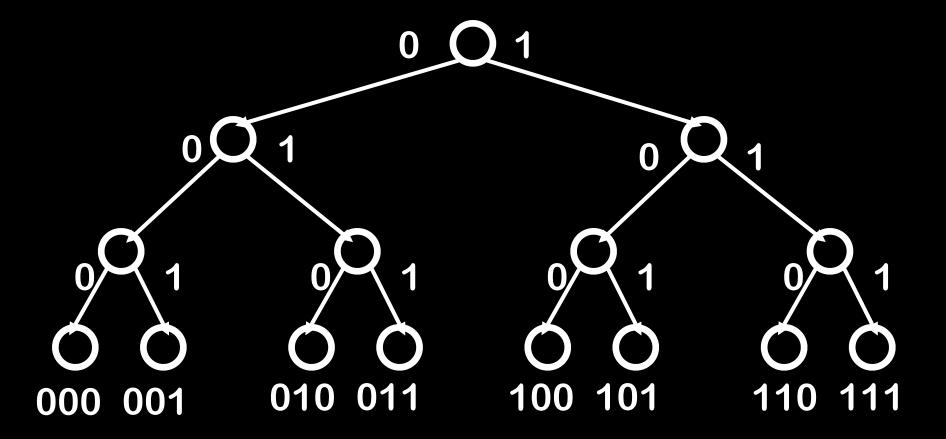
Same as number of subsets of the set {Appetizer, Entrée, Salad, Dessert}

Choice Tree For 2ⁿ n-bit Sequences

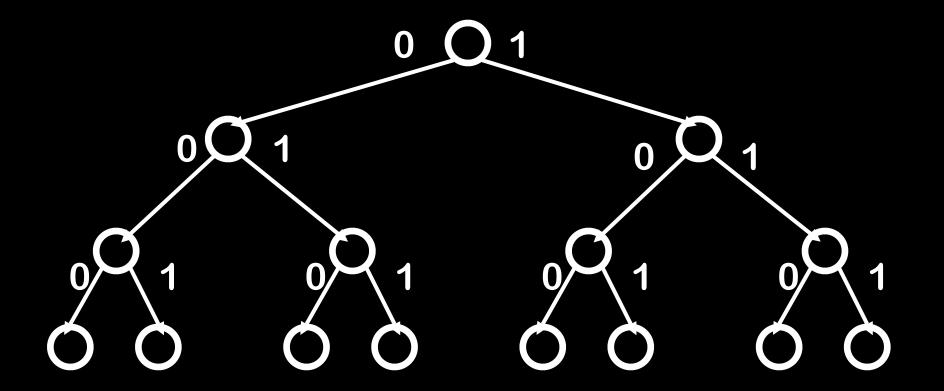


We can use a "choice tree" to represent the construction of objects of the desired type

Choice Tree For 2ⁿ n-bit Sequences



Label each leaf with the object constructed by the choices along the path to the leaf



- 2 choices for first bit
- × 2 choices for second bit
- × 2 choices for third bit
 - •
- × 2 choices for the nth

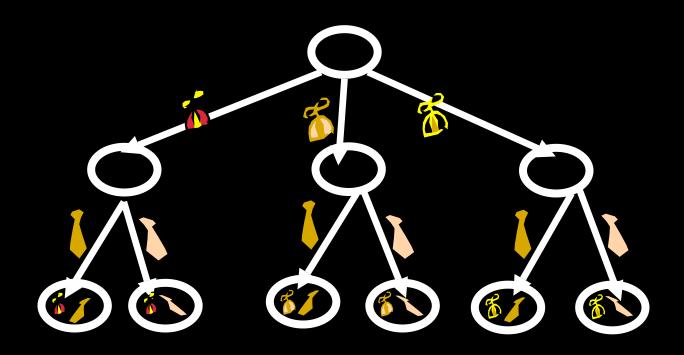
Leaf Counting Lemma

Let T be a depth-n tree when each node at depth 0 ≤ i ≤ n-1 has P_{i+1} children

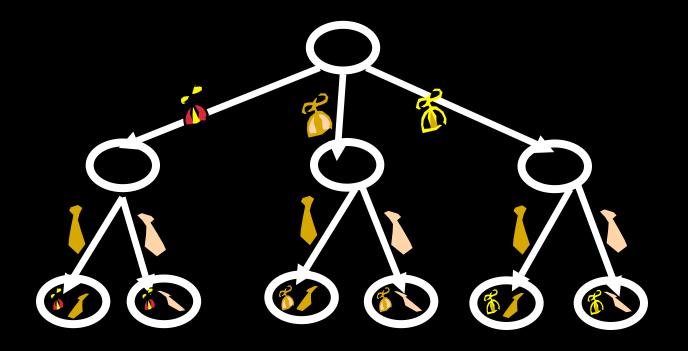
The number of leaves of T is given by:

$$P_1P_2...P_n$$

Choice Tree



A choice tree is a rooted, directed tree with an object called a "choice" associated with each edge and a label on each leaf



A choice tree provides a "choice tree representation" of a set S, if

- 1. Each leaf label is in S, and each element of S is some leaf label
- 2. No two leaf labels are the same

We will now combine the correspondence principle with the leaf counting lemma to make a powerful counting rule for choice tree representation.

Product Rule

IF set S has a choice tree representation with P₁ possibilities for the first choice, P₂ for the second, P₃ for the third, and so on, THEN

there are P₁P₂P₃...P_n objects in S

Proof:

There are $P_1P_2P_3...P_n$ leaves of the choice tree which are in 1-1 onto correspondence with the elements of S.

Product Rule (Rephrased)

Suppose every object of a set S can be constructed by a sequence of choices with P₁ possibilities for the first choice, P₂ for the second, and so on.

IF 1. Each sequence of choices constructs an object of type S

AND

2. No two different sequences create the same object

THEN

There are P₁P₂P₃...P_n objects of type S

What object are we making?

What object are we making? Ordering of a deck

What object are we making? Ordering of a deck

Construct an ordering of a deck by a sequence of 52 choices:

```
52 possible choices for the first card;
```

51 possible choices for the second card;

1 possible choice for the 52nd card.

What object are we making? Ordering of a deck

Construct an ordering of a deck by a sequence of 52 choices:

```
52 possible choices for the first card;
```

51 possible choices for the second card;

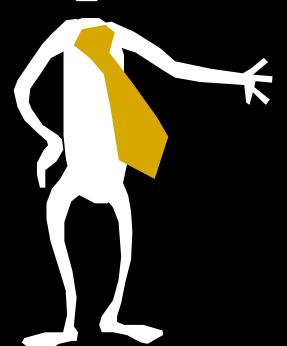
1 possible choice for the 52nd card.

By product rule: $52 \times 51 \times 50 \times ... \times 2 \times 1 = 52!$

A permutation or arrangement of n objects is an ordering of the objects

The number of permutations of n distinct objects is n!

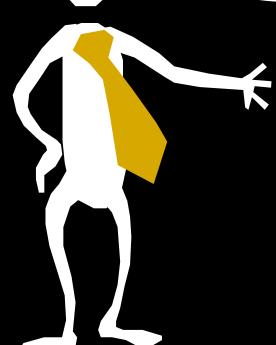
How many sequences of 7 letters are there?



26⁷

(26 choices for each of the 7 positions)

How many sequences of 7 letters contain at least two of the same letter?



How many sequences of 7 letters contain at least two of the same letter?

267 - 26×25×24×23×22×21×20

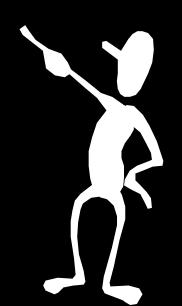
number of sequences containing all different letters

Sometimes it is easiest to count the number of objects with property Q, by counting the number of objects that do not have property Q.

Helpful Advice:

In logic, it can be useful to represent a statement in the contra positive.

In counting, it can be useful to represent a set in terms of its complement.



If 10 horses race, how many orderings of the top three finishers are there?

If 10 horses race, how many orderings of the top three finishers are there?

 $10 \times 9 \times 8 = 720$

Number of ways of ordering, permuting, or arranging r out of n objects

n choices for first place, n-1 choices for second place, . . .

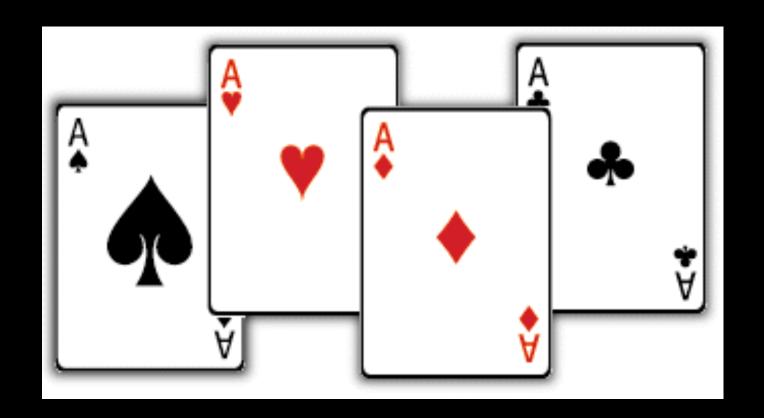
$$n \times (n-1) \times (n-2) \times ... \times (n-(r-1))$$

Number of ways of ordering, permuting, or arranging r out of n objects

n choices for first place, n-1 choices for second place, . . .

$$n \times (n-1) \times (n-2) \times ... \times (n-(r-1))$$

$$= \frac{n!}{(n-r)!}$$



From a deck of 52 cards how many ordered pairs can be formed?

From a deck of 52 cards how many ordered pairs can be formed?

52 × 51

From a deck of 52 cards how many ordered pairs can be formed?

52 × 51

How many unordered pairs?

From a deck of 52 cards how many ordered pairs can be formed?

52 × 51

How many unordered pairs?

52×51 / 2 ← divide by overcount

From a deck of 52 cards how many ordered pairs can be formed?

52 × 51

How many unordered pairs?

52×51 / 2 ← divide by overcount

Each unordered pair is listed twice on a list of the ordered pairs

From a deck of 52 cards how many ordered pairs can be formed?

52 × 51

How many unordered pairs?

52×51 / 2 ← divide by overcount

We have a 2-1 map from ordered pairs to unordered pairs.

Hence #unordered pairs = (#ordered pairs)/2

How many ordered 5 card sequences can be formed from a 52-card deck?

How many ordered 5 card sequences can be formed from a 52-card deck?

 $52 \times 51 \times 50 \times 49 \times 48$

How many ordered 5 card sequences can be formed from a 52-card deck?

 $52 \times 51 \times 50 \times 49 \times 48$

How many orderings of 5 cards?

How many ordered 5 card sequences can be formed from a 52-card deck?

 $52 \times 51 \times 50 \times 49 \times 48$

How many orderings of 5 cards?

5!

How many ordered 5 card sequences can be formed from a 52-card deck?

 $52 \times 51 \times 50 \times 49 \times 48$

How many orderings of 5 cards?

5!

How many unordered 5 card hands?

How many ordered 5 card sequences can be formed from a 52-card deck?

$$52 \times 51 \times 50 \times 49 \times 48$$

How many orderings of 5 cards?

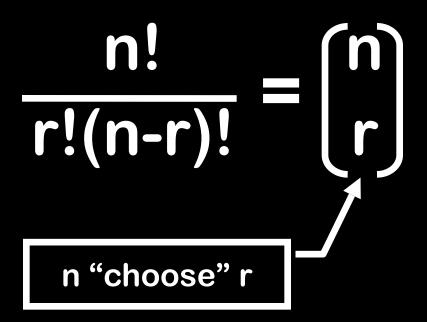
5!

How many unordered 5 card hands?

 $(52 \times 51 \times 50 \times 49 \times 48)/5! = 2,598,960$

A combination or choice of r out of n objects is an (unordered) set of r of the n objects

The number of r combinations of n objects:



The number of subsets of size r that can be formed from an n-element set is:

$$\frac{n!}{r!(n-r)!} = \binom{n}{r}$$

Product Rule (Rephrased)

Suppose every object of a set S can be constructed by a sequence of choices with P₁ possibilities for the first choice, P₂ for the second, and so on.

IF 1. Each sequence of choices constructs an object of type S

AND

2. No two different sequences create the same object

THEN

There are P₁P₂P₃...P_n objects of type S

Tempting, but incorrect:
8 ways to place first 0, times
7 ways to place second 0

Tempting, but incorrect:
8 ways to place first 0, times
7 ways to place second 0

Violates condition 2 of product rule!

Tempting, but incorrect:
8 ways to place first 0, times
7 ways to place second 0

Violates condition 2 of product rule!

Choosing position i for the first 0 and then position j for the second 0 gives same sequence as choosing position j for the first 0 and position i for the second 0

2 ways of generating same object!

1. Choose the set of 2 positions to put the 0's. The 1's are forced.

1. Choose the set of 2 positions to put the 0's. The 1's are forced.

1. Choose the set of 2 positions to put the 0's. The 1's are forced.

2. Choose the set of 6 positions to put the 1's. The 0's are forced.

1. Choose the set of 2 positions to put the 0's. The 1's are forced.

2. Choose the set of 6 positions to put the 1's. The 0's are forced.

Symmetry In The Formula

$$\binom{n}{r} = \frac{n!}{r!(n-r)!} = \binom{n}{n-r}$$

"# of ways to pick r out of n elements"

"# of ways to choose the (n-r) elements to omit"

= 4 ways of picking 3 out of 4 aces

43

= 4 ways of picking 3 out of 4 aces

(49) 2

= 1176 ways of picking 2 cards out of the remaining 49 cards

4 3

= 4 ways of picking 3 out of 4 aces

(49) 2

= 1176 ways of picking 2 cards out of the remaining 49 cards

 $4 \times 1176 = 4704$

How many hands have exactly 3 aces?

How many hands have exactly 3 aces?

How many hands have exactly 4 aces?



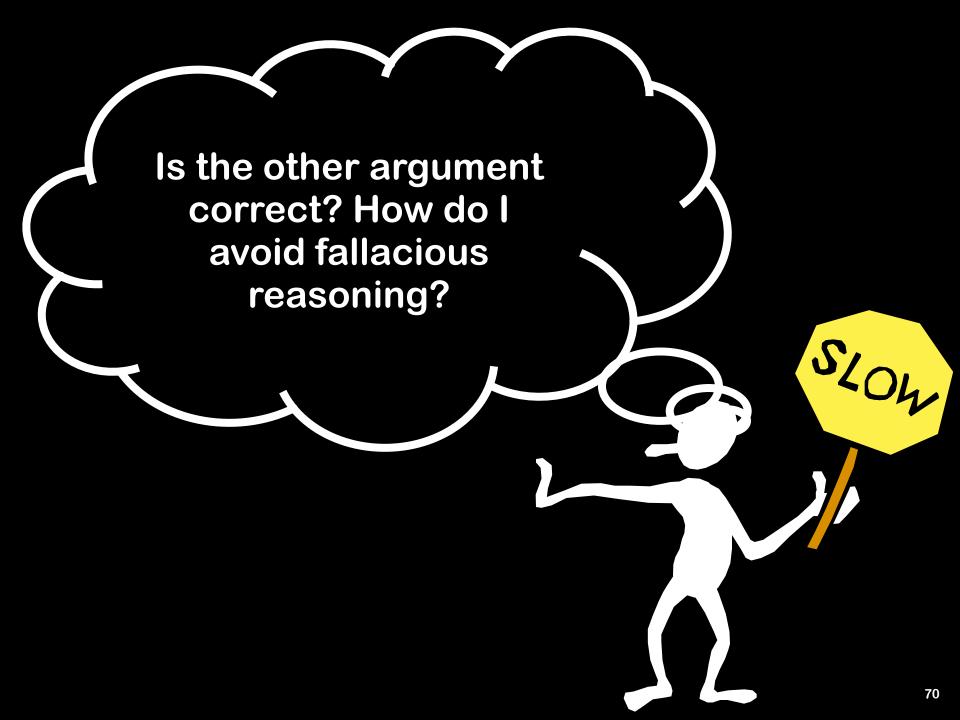
≠ **4560**

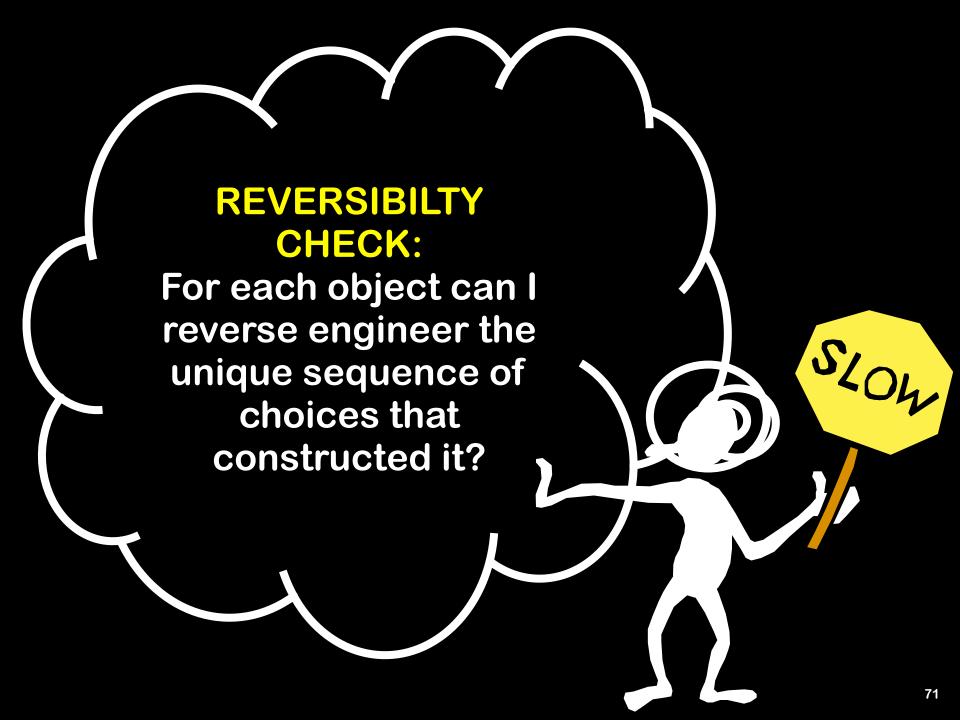
At least one of the two counting arguments is not correct!

Four Different Sequences of Choices Produce the Same Hand

$$\begin{pmatrix} 4 \\ 3 \end{pmatrix}$$
 = 4 ways of picking 3 out of 4 aces

A ♣ A ♦ A ♥	AAK+
A ♣ A ♦ A ♠	A♥ K◆
A A A A V	A♦ K♦
$A \wedge A \wedge A \vee$	A*K*



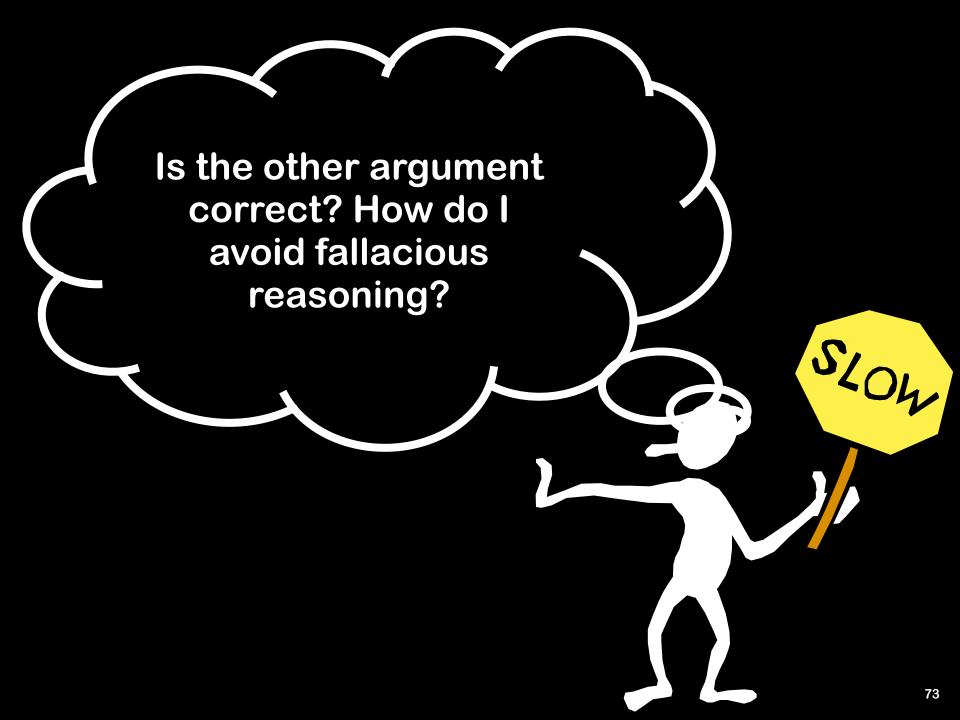


Scheme I

- 1. Choose 3 of 4 aces
- 2. Choose 2 of the remaining cards

For this hand – you can't reverse to a unique choice sequence.

A	AAK +
A	A♥ K◆
A	A + K +
AA AA AY	A&K \



Scheme II

- 1. Choose 3 out of 4 aces
- 2. Choose 2 out of 48 non-ace cards

REVERSE TEST: Aces came from choices in (1) and others came from choices in (2)

Scheme II

- 1. Choose 4 out of 4 aces
- 2. Choose 1 out of 48 non-ace cards

REVERSE TEST: Aces came from choices in (1) and others came from choices in (2)

Product Rule (Rephrased)

Suppose every object of a set S can be constructed by a sequence of choices with P₁ possibilities for the first choice, P₂ for the second, and so on.

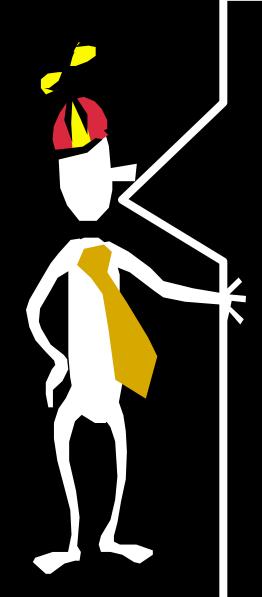
IF 1. Each sequence of choices constructs an object of type S

AND

2. No two different sequences create the same object

THEN

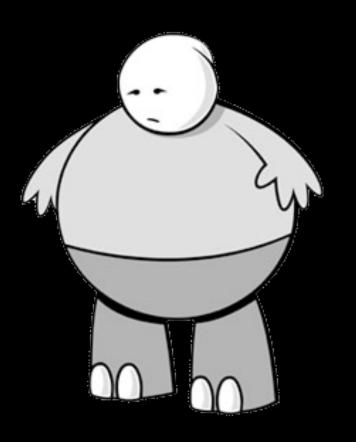
There are P₁P₂P₃...P_n objects of type S



DEFENSIVE THINKING ask yourself:

Am I creating objects of the right type?

Can I reverse engineer my choice sequence from any given object?



Here's What You Need to Know...

Correspondence Principle

If two finite sets can be placed into 1-1 onto correspondence, then they have the same size

Choice Tree

Product Rule two conditions

Reverse Test

Counting by complementing

Binomial coefficient