15-251

Great Theoretical Ideas in Computer Science

Addition Rule

Let A and B be two disjoint finite sets

The size of $(A \cup B)$ is the sum of the size of A and the size of B

AUB = A+B

3

Counting I: One-To-One Correspondence and Choice Trees

Lecture 6, September 11, 2008



Addition Rule (2 possibly overlapping sets)

Let A and B be two finite sets

Addition of multiple disjoint sets:

Let A_1 , A_2 , A_3 , ..., A_n be disjoint, finite sets.

Partition Method

S = all possible outcomes of one white die and one black die.

5

Partition Method

To count the elements of a finite set S, partition the elements into non-overlapping subsets $A_1, A_2, A_3, ..., A_n$.

Partition Method
S = all possible outcomes of one white die and one black die.

Partition S into 6 sets:

 A_1 = the set of outcomes where the white die is 1.

 A_2 = the set of outcomes where the white die is 2.

 A_3 = the set of outcomes where the white die is 3.

 A_4 = the set of outcomes where the white die is 4.

 A_5 = the set of outcomes where the white die is 5.

 A_6 = the set of outcomes where the white die is 6.

Each of 6 disjoint sets has size 6 = 36 outcomes

Partition Method

S = all possible outcomes where the white die and the black die have different values

9

S = Set of all outcomes where the dice show different values. <math>|S| = ?

T = set of outcomes where dice agree. = $\{<1,1>,<2,2>,<3,3>,<4,4>,<5,5>,<6,6>\}$

$$| S \cup T | = # \text{ of outcomes} = 36$$

$$|S| + |T| = 36$$

$$|T| = 6$$

$$|S| = 36 - 6 = 30$$

11

S = Set of all outcomes where the dice show different values. |S| = ?

A_i ≡ set of outcomes where black die says i and the white die says something else.

$$|S| = \left| \bigcup_{i=1}^{6} A_i \right| = \sum_{i=1}^{6} |A_i| = \sum_{i=1}^{6} 5 = 30$$

S = Set of all outcomes where the black die shows a smaller number than the white die. |S| = ?

A_i = set of outcomes where the black die says i and the white die says something larger.

$$S = A_1 \cup A_2 \cup A_3 \cup A_4 \cup A_5 \cup A_6$$

 $|S| = 5 + 4 + 3 + 2 + 1 + 0 = 15$

S = Set of all outcomes where the black die shows a smaller number than the white die. |S| = ?

L = set of all outcomes where the black die shows a larger number than the white die.

$$|S| + |L| = 30$$

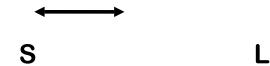
It is clear by symmetry that |S| = |L|.

Therefore | S | = 15

13

Pinning Down the Idea of Symmetry by Exhibiting a Correspondence

Put each outcome in S in correspondence with an outcome in L by swapping color of the dice.



Each outcome in S gets matched with exactly one outcome in L, with none left over.

Thus:
$$|S| = |L|$$

15

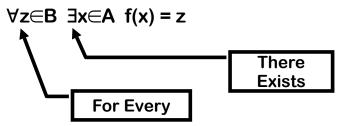
"It is clear by symmetry that |S| = |L|?"

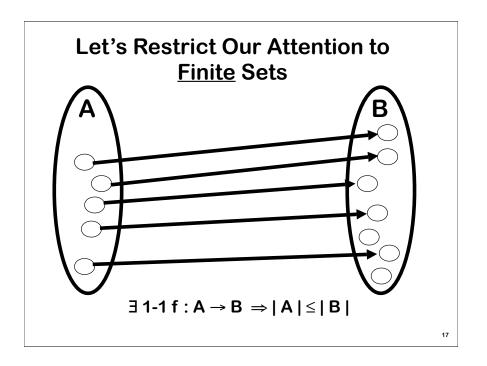
Let $f : A \rightarrow B$ Be a Function From a Set A to a Set B

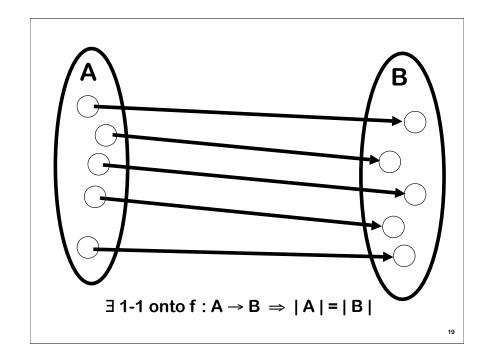
f is 1-1 if and only if

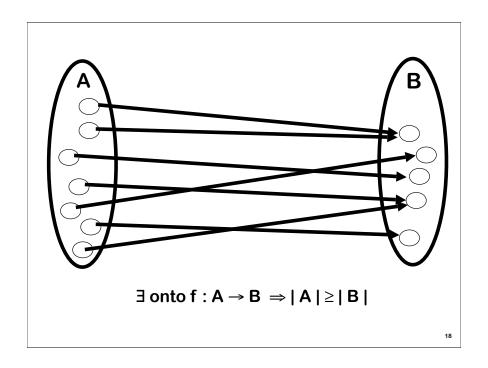
$$\forall x,y \in A, x \neq y \Rightarrow f(x) \neq f(y)$$

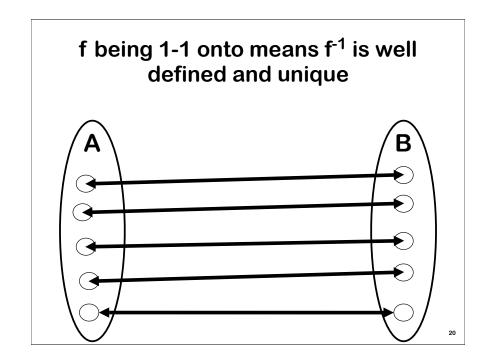
f is onto if and only if









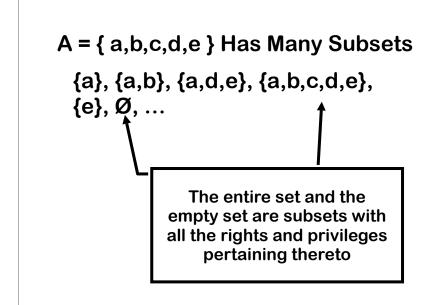


Correspondence Principle

If two finite sets can be placed into 1-1 onto correspondence, then they have the same size

It's one of the most important mathematical ideas of all time!

21



23

Question: How many n-bit sequences are there?

0000000 ↔ 0 000001 ↔ 1 000010 ↔ 2 000011 ↔ 3 : : : 111111 ↔ 2ⁿ-1

Each sequence corresponds to a unique number from 0 to 2ⁿ-1. Hence 2ⁿ sequences.

Question: How Many Subsets Can Be Made From The Elements of a 5-Element Set?

Each subset corresponds to a 5-bit sequence (using the "take it or leave it" code)

A =
$$\{a_1, a_2, a_3, ..., a_n\}$$

B = set of all n-bit strings

For bit string $b = b_1b_2b_3...b_n$, let $f(b) = \{ a_i | b_i=1 \}$

Claim: f is 1-1

Any two distinct binary sequences b and b' have a position i at which they differ

Hence, f(b) is not equal to f(b') because they disagree on element a

25

The number of subsets of an n-element set is 2ⁿ

27

A =
$$\{a_1, a_2, a_3, ..., a_n\}$$

B = set of all n-bit strings

For bit string $b = b_1b_2b_3...b_n$, let $f(b) = \{ a_i | b_i=1 \}$

Claim: f is onto

Let S be a subset of $\{a_1,...,a_n\}$. Define $b_k = 1$ if a_k in S and $b_k = 0$ otherwise. Note that $f(b_1b_2...b_n) = S$. Let f : A → B Be a Function From Set A to Set B

f is 1-1 if and only if $\forall x,y \in A$, $x \neq y \Rightarrow f(x) \neq f(y)$

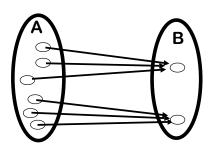
f is onto if and only if $\forall z \in B \exists x \in A \text{ such that } f(x) = z$

26

Let f : A → B Be a Function From Set A to Set B

f is a 1-to-1 correspondence iff $\forall z \in B \exists \text{ exactly one } x \in A \text{ such that } f(x) = z$

f is a k-to-1 correspondence iff ∀z∈B ∃ exactly k x∈A such that f(x) = z



3 to 1 function

29

If a finite set A
has a k-to-1
correspondence
to finite set B,
then |B| = |A|/k

31

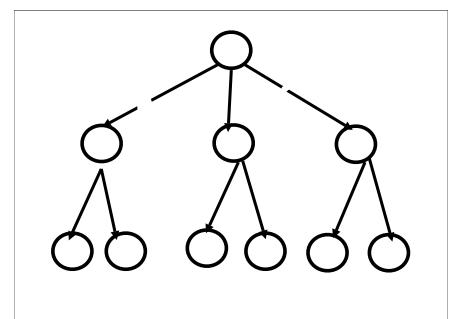
To count the number of horses in a barn, we can count the number of hoofs and then divide by 4 How many seats in this auditorium?

Count without Counting: The auditorium can be partitioned into n rows with k seats each

Thus, we have nk seats in the room

30

Choice Trees



3

I own 3 beanies and 2 ties. How many different ways can I dress up in a beanie and a tie?

A Restaurant Has a Menu With 5 Appetizers, 6 Entrees, 3 Salads, and 7 Desserts

How many items on the menu?

$$5 + 6 + 3 + 7 = 21$$

How many ways to choose a complete meal?

$$5 \times 6 \times 3 \times 7 = 630$$

How many ways to order a meal if I am allowed to skip some (or all) of the courses?

$$6 \times 7 \times 4 \times 8 = 1344$$

34

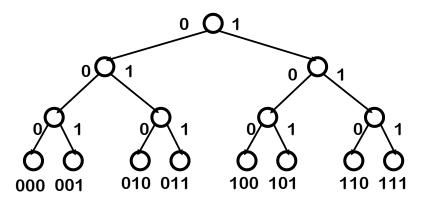
Hobson's Restaurant Has Only 1 Appetizer, 1 Entree, 1 Salad, and 1 Dessert

2⁴ ways to order a meal if I might not have some of the courses

Same as number of subsets of the set {Appetizer, Entrée, Salad, Dessert}

37

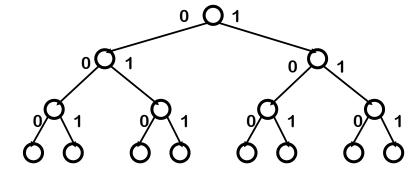
Choice Tree For 2ⁿ n-bit Sequences



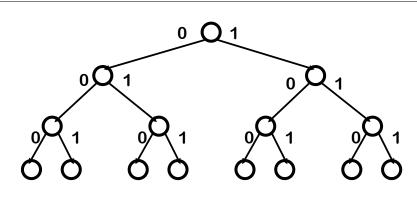
Label each leaf with the object constructed by the choices along the path to the leaf

39

Choice Tree For 2ⁿ n-bit Sequences



We can use a "choice tree" to represent the construction of objects of the desired type



2 choices for first bit

- × 2 choices for second bit
- × 2 choices for third bit

: :

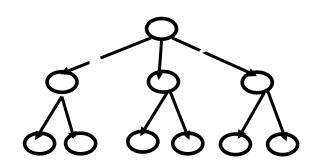
× 2 choices for the nth

Leaf Counting Lemma

Let T be a depth-n tree when each node at depth $0 \le i \le n-1$ has P_{i+1} children

The number of leaves of T is given by: $P_1P_2...P_n$

41

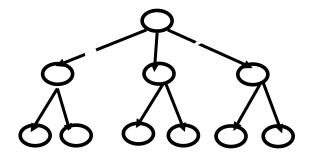


A choice tree provides a "choice tree representation" of a set S, if

- 1. Each leaf label is in S, and each element of S is some leaf label
- 2. No two leaf labels are the same

43

Choice Tree



A choice tree is a rooted, directed tree with an object called a "choice" associated with each edge and a label on each leaf

We will now combine the correspondence principle with the leaf counting lemma to make a powerful counting rule for choice tree representation.

Product Rule

IF set S has a choice tree representation with P₁ possibilities for the first choice, P₂ for the second, P₃ for the third, and so on,

THEN

there are $P_1P_2P_3...P_n$ objects in S

Proof:

There are $P_1P_2P_3...P_n$ leaves of the choice tree which are in 1-1 onto correspondence with the elements of S.

45

How Many Different Orderings of Deck With 52 Cards?

What object are we making? Ordering of a deck

Construct an ordering of a deck by a sequence of 52 choices:

52 possible choices for the first card;

51 possible choices for the second card;

: :

1 possible choice for the 52nd card.

By product rule: $52 \times 51 \times 50 \times ... \times 2 \times 1 = 52!$

47

Product Rule (Rephrased)

Suppose every object of a set S can be constructed by a sequence of choices with P_1 possibilities for the first choice, P_2 for the second, and so on.

IF 1. Each sequence of choices constructs an object of type S

AND

2. No two different sequences create the same object

THEN

There are $P_1P_2P_3...P_n$ objects of type S

A permutation or arrangement of n objects is an ordering of the objects

The number of permutations of n distinct objects is n!

How many sequences of 7 letters are there?

26⁷

(26 choices for each of the 7 positions)

Sometimes it is easiest to count the number of objects with property Q, by counting the number of objects that do not have property Q.

49

How many sequences of 7 letters contain at least two of the same letter?

267 - 26×25×24×23×22×21×20

number of sequences containing all different letters

Helpful Advice:

In logic, it can be useful to represent a statement in the contra positive.

In counting, it can be useful to represent a set in terms of its complement.

51

5

If 10 horses race, how many orderings of the top three finishers are there?

$$10 \times 9 \times 8 = 720$$

A A Y

5

Number of ways of ordering, permuting, or arranging r out of n objects

n choices for first place, n-1 choices for second place, . . .

$$= \frac{n!}{(n-r)!}$$

Ordered Versus Unordered

From a deck of 52 cards how many ordered pairs can be formed?

52 × 51

How many unordered pairs?

52×51 / 2 ← divide by overcount

Each unordered pair is listed twice on a list of the ordered pairs

54

Ordered Versus Unordered

From a deck of 52 cards how many ordered pairs can be formed?

52 × 51

How many unordered pairs?

 $52 \times 51/2 \leftarrow \text{divide by overcount}$

We have a 2-1 map from ordered pairs to unordered pairs.

Hence #unordered pairs = (#ordered pairs)/2

A combination or choice of r out of n objects is an (unordered) set of r of the n objects

The number of r combinations of n objects:

$$\frac{n!}{r!(n-r)!} = \binom{n}{r}$$

59

Ordered Versus Unordered

How many ordered 5 card sequences can be formed from a 52-card deck?

52 × 51 × 50 × 49 × 48

How many orderings of 5 cards?

5!

How many unordered 5 card hands?

 $(52 \times 51 \times 50 \times 49 \times 48)/5! = 2,598,960$

The number of subsets of size r that can be formed from an n-element set is:

$$\frac{n!}{r!(n-r)!} = \binom{n}{r}$$

58

Product Rule (Rephrased)

Suppose every object of a set S can be constructed by a sequence of choices with P_1 possibilities for the first choice, P_2 for the second, and so on.

IF 1. Each sequence of choices constructs an object of type S

AND

2. No two different sequences create the same object

THEN

There are $P_1P_2P_3...P_n$ objects of type S

61

How Many 8-Bit Sequences Have 2 0's and 6 1's?

1. Choose the set of 2 positions to put the 0's. The 1's are forced.

8 2

2. Choose the set of 6 positions to put the 1's. The 0's are forced.

6

е

How Many 8-Bit Sequences Have 2 0's and 6 1's?

Tempting, but incorrect:
8 ways to place first 0, times
7 ways to place second 0

Violates condition 2 of product rule!

Choosing position i for the first 0 and then position j for the second 0 gives same sequence as choosing position j for the first 0 and position i for the second 0

2 ways of generating same object!

Symmetry In The Formula

$$\binom{n}{r} = \frac{n!}{r!(n-r)!} = \binom{n}{n-r}$$

"# of ways to pick r out of n elements"

"# of ways to choose the (n-r) elements to omit"

62

•

How Many Hands Have at Least 3 As?

How Many Hands Have at Least 3 As?

How many hands have exactly 3 aces?

$$\binom{4}{3}$$
 = 4 ways of picking 3 out of 4 aces

How many hands have exactly 4 aces?

$$\begin{bmatrix} 4 \\ 4 \end{bmatrix}$$
 = 1 way of picking 4 out of 4 aces

67

65

How Many Hands Have at Least 3 As?

$$4 \times 1176 = 4704$$

4704 ≠ **4560**

At least one of the two counting arguments is not correct!

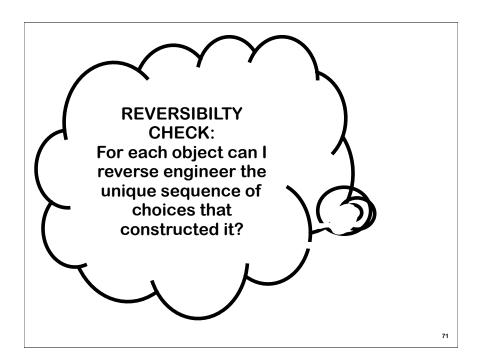
Four Different Sequences of Choices Produce the Same Hand

 $\begin{bmatrix} 4 \\ 3 \end{bmatrix}$ = 4 ways of picking 3 out of 4 aces

(49) = 1176 ways of picking 2 cards out of the remaining 49 cards

A . A ♦ A ♥	A♠ K♦
A . A ♦ A.	A♥K♦
A ♣ A ♠ A ♥	A♦ K♦
A ♠ A ♦ A ♥	A♣ K♦

69



Is the other argument correct? How do I avoid fallacious reasoning?

Scheme I

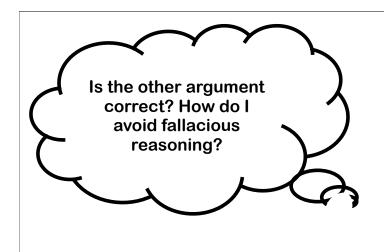
- 1. Choose 3 of 4 aces
- 2. Choose 2 of the remaining cards

A& A A A YA A K A

For this hand – you can't reverse to a unique choice sequence.

A . A ♦ A ♥	A♠ K♦
A . A ♦ A .	A♥ K♦
A ♣ A♠ A♥	A♦ K♦
A ♠ A ♦ A ♥	A . K♦

70



Scheme II

- 1. Choose 4 out of 4 aces
- 2. Choose 1 out of 48 non-ace cards

A♣ A♦ A♥ A♠ K♦

REVERSE TEST: Aces came from choices in (1) and others came from choices in (2)

75

Scheme II

- 1. Choose 3 out of 4 aces
- 2. Choose 2 out of 48 non-ace cards

A* A ◆ Q ◆ A ★ K ◆

REVERSE TEST: Aces came from choices in (1) and others came from choices in (2)

Product Rule (Rephrased)

Suppose every object of a set S can be constructed by a sequence of choices with P_1 possibilities for the first choice, P_2 for the second, and so on.

IF 1. Each sequence of choices constructs an object of type S

AND

2. No two different sequences create the same object

THEN

There are $P_1P_2P_3...P_n$ objects of type S

74

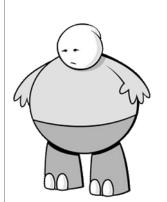
.

DEFENSIVE THINKING ask yourself:

Am I creating objects of the right type?

Can I reverse engineer my choice sequence from any given object?

77



Here's What You Need to Know...

Correspondence Principle

If two finite sets can be placed into 1-1 onto correspondence, then they have the same size

Choice Tree

Product Rule two conditions

Reverse Test

Counting by complementing

Binomial coefficient