15-251

Great Theoretical Ideas
in Computer Science

o

Bits of Wisdom on Solving
Problems, Writing Proofs, and
Enjoying the Pain: How to
Succeed in This Class

Lecture 4 (September 4, 2008)

oy,

A

What did our brains
evolve to do?

What were our brains
designed to do?

Our brains probably
did not evolve to do
math!

Over the last 30,000 years, our brains
have essentially stayed the same!

The human mind was designed by evolution
to deal with foraging in small bands on the
African Savannah. . . faulting our minds for
succumbing to games of chance is like
complaining that our wrists are poorly
designed for getting out of handcuffs

Steven Pinker
“How the Mind Works”

Our brains can perform simple,
concrete tasks very well

And that’s how math
is best approached!

Substitute concrete values for
the variables: x=0, x=100, ...

Draw simple pictures

Try out small examples of the
problem: What happens for n=1? n=2?

“l don’t have any magical ability...l look at the
problem, and it looks like one I’ve already
done. When nothing’s working out, then | think
of a small trick that makes it a little better.
| play with the problem, and after a while,
| figure out what’s going on.”

Terry Tao (Fields Medalist,
considered to be the best
problem solver in the world)

Novice The better the problem
solver, the less brain
activity is evident.
The real masters show
almost no brain activity!
.“ Expert
—

Simple and to the point

Quick Test...

Use a lot of paper,
or a board!!!

Count the green squares
(you will have three seconds)

How many were there?

Bottles of water

You have a 5 gallon bottle,
a 3 gallon bottle,
and lots of water.

How can you measure out
exactly 4 gallons?

New bottles of water puzzle

You have a 6 gallon bottle,
a 3 gallon bottle,
and lots of water.

How can you measure out
exactly 4 gallons?

(3, °)

\
(° 1 %)

Q’/e; 0)
!
(%% %)

Invariant

Suppose stage of system is given by (L,S)

(L gallons in larger one, S in smaller)

Set of valid moves

1. empty out either bottle

2. pour bottle into other until first one empty
3. pour bottle into other until second one full

4. Q“Ww‘)&-m walln e

Invariant: L,S are both multiples of 3.

(3,2
T A

3

Generalized bottles of water

You have a P gallon bottle,
a Q gallon bottle,
and lots of water.

When can you measure out

Yoo F=5 exactly 1 gallon?

&>
v, 83
(\K) V’f"/e"

To come later in the course

if P and Q have ged(P, Q) =1
(that is, they are relatively prime)

then you can find integers a and b so that
a*P + b*Q = 1 @:2 ?__ S

L: =Y =3

—_—e

How to use this?

(¢
£ (23)
(2,0) &—
(v,2)
—(5)2)
\u,?)

\4,052/—” (,3) — (\,D@/

And if you can measure out 1...

- (QS -3 :l>
= %95 —\23 =4

What if gcd(P,Q) = 1?

boauat . (L)

wav L, S one wu\(;l,,,rsf
124 Q)

?—;C: %C&(L, 7’3 =3
o=3

Exemplification:
Try out a problem or solution on small
examples. Look for the patterns.

S SRR

A volunteer, please

Z

Relax

| am just going to ask you a
Microsoft interview question

Four guys want to cross a bridge that can
only hold two people at one time. It is pitch
dark and they only have one flashlight, so
people must cross either alone or in pairs
(bringing the flashlight). Their walking
speeds allow themto crossin1, 2,5, and 10
minutes, respectively. Is it possible for them
to all cross in 17 minutes?
2 —2 54
—
> 50 2

\’L'ﬁ I'\‘L

2

\

Get The Problem Right!

Given any context you should double
check that you read/heard it correctly!

You should be able to repeat the
problem back to the source and have
them agree that you understand the
issue

Four guys want to cross a bridge that can
only hold two people at one time. It is pitch
dark and they only have one flashlight, so
people must cross either alone or in pairs
(bringing the flashlight). Their walking
speeds allow themto crossin 1, 2,5, and 10
minutes, respectively. Is it possible for them

to all cross in 17 minutes?
o

v

Intuitive, But-False \R

“0+1+5+1+2=19, so the four
guys just can’t cross in 17 minutes”

“Even if the fastest guy is the one to
shuttle the others back and forth - you
use atleast10+1+5+1+2>17
minutes”

Vocabulary Self-Proofing

As you talk to yourself, make sure
to tag assertions with phrases that
denote degrees of conviction

Keep track of what you actually know
- remember what you merely suspect

“0+1+5+1+2=19, so it would be
weird if the four guys could cross in
17 minutes”

“even if we use the fastest guy to
shuttle the others, they take too long.”

If it is possible, there \
must be more than
one guy doing the
‘, return trips: it must
be that someone gets
deposited on one side
and comes back for

the return trip later!

\- /

Suppose we leave 1 for a\
return trip later

We start with 1 and X and
then X returns

Total time: 2X

Thus, we start with
1,2 go over and

\ 2 comes back.... J

10

12510

-

12510
510

21

12510
510

11

12510
510
2 510

-

= 1IN

12510
510
2 510

12510
510
2 510

NS

12510
510
2 510

= 1IN

12510
510
2 510

12

-

12510
510 21
2 510 1
2 1510
12 510

_

12510
510 = 21
2 510 %1
2 T—=,151
12— 510
T 1251
\ @

o

5and 10
“Load Balancing”:

Handle our hardest
work loads in parallel!
Work backwards by
assuming 5 and 10
walk together

\-

~

/

13

12510
510 21
./ 2 1
2 1
12 510
12510

Words To The Wise

@ Keep It Simple

Don’t Fool Yourself

That really was a Microsoft question

Why do you think that they ask
such questions, as opposed to
asking for a piece of code to do
binary search?

The future belongs to the
computer scientist who has

* Content: An up to date grasp of
fundamental problems and solutions

* Method: Principles and techniques
to solve the vast array of unfamiliar
problems that arise in a rapidly
changing field

14

Representation:
Understand the relationship between
different representations of the same

information or idea

A NW-

Abstraction:
Abstract away the inessential
features of a problem

a
= H

>4

Toolkit:
Name abstract objects and ideas,
and put them in your toolkit. Know
their advantages and limitations.

Exemplification:
Try out a problem or solution on small
examples. Look for the patterns.

0© 0

L.‘.ﬁ %@@Oﬁ

15

Induction has many guises.
Master their interrelationship.

* Formal Arguments
e Invariants
* Recursion

* Recurrences

Modularity:
Decompose a complex problem
into simpler sub-problems

by
y, O

5

Improvement:
The best solution comes from a
process of repeatedly refining and
improving solutions and proofs.

3

X

Bracketing:
What are the best lower and upper
bounds that | can prove?

S sﬂ?u
0y (7
if < f(x) < %ﬁ

16

In this course you will have
to write a lot of proofs!

Think of Yourself as a (Logical) Lawyer

Your arguments should have no holes, because
the opposing lawyer will expose them

Statement,
Statement,

Statement,

S

(There is no
sound reason
to go from
Statament, to

Statement,
Prover \. Verifier

The verifier is very thorough,
(he can catch all your mistakes),
but he will not supply missing
details of a proof

S

A valid complaint on his part
is: | don’t understand

The verifier is similar to a
computer running a program
that you wrote! Verifier

17

Writing Proofs Is A Lot
Like Writing Programs

You have to write the correct sequence
of statements to satisfy the verifier

Errors than can
occur with a
program and with
a proof!

<

r

Syntax error
Undefined term
Infinite Loop

Outputis not quite
what was needed

Good code is well-commented and
written in a way that is easy for other
humans (and yourself) to understand

Similarly, good proofs should be easy to
understand. Although the formal proof
does not require certain explanatory
sentences (e.g., “the idea of this proof is
basically X”), good proofs usually do

Writing Proofs is Even Harder
than Writing Programs

The proof verifier will not accepta
proof unless every step is justified!

It’s as if a compiler required your
programs to have every line commented
(using a special syntax) as to why you

wrote that line

< P

%

Verifier

Prover

A successful mathematician plays both roles
in their head when writing a proof

18

Gratuitous Induction Proof

S, = “sum of first n integers = n(n+1)/2”
Want to prove: S, is true for alln >0

Basecase: S, =“1=1(1+1)/2”

I.H. Suppose S, is true for some k >0

Induction step:

1+2+ ... +k+ (kt1) =k(k+1)/2+ (k+1) (by I.H.)

= (k +1)(k+2)/2
Y|
Thus S,,, Nl Sy = Sen

> Ynw2!l S, @

Gratuitous Induction Proof

S, = “sum of first n integers = n(n+1)/2”
Want to prove: S, is true for alln >0

Basecase: S, =“1=1(1+1)/2”
I.H. Suppose@s true for some k>0

Induction step:

142++n+(n+1) =n(n+1)/2+ (n+1) (by I.H.)

ek w? =(n+1)(n+2)/2

Thus S, wrong variable

10 Proof by Throwing in the

Kitchen Sink

The author writes down every theorem
or result known to mankind and then
adds a few more just for good measure

When questioned later, the author correctly
observes that the proof contains all the key
facts needed to actually prove the result

Very popular strategy on 251 exams

Believed to result in partial credit with
sufficient whining

19

10| Proof by Throwing in the

Kitchen Sink

Tl Lla H'§ -l Lla

9

Proof by Example

Like writing a program with
functions that do most
everything you’d ever want to do
(e.g. sorting integers, calculating
derivatives), which in the end
simply prints “hello world”

surtnierctie wiimimty

v

The author gives only the case n =2 and
suggests that it contains most of the ideas
of the general proof.

Like writing a program that
only works for a few inputs

8

Proof by Cumbersome Notation

Best done with access to at least four
alphabets and special symbols.

Helps to speak several foreign languages.

Like writing a program
that’s really hard to read
because the variable
names are screwy

Proof by Lengthiness

An issue or two of a journal devoted to
your proof is useful. Works well in
combination with Proof strategy #10
(throwing in the kitchen sink) and

Proof strategy #8 (cumbersome notation).

Like writing 10,000 lines
of code to simply print
“hello world”

20

6 f

f©7,

Proof by Switcharoo

Concluding that p is true when both p = q
and q are true

Makes as much sense as:
If (PRINT “X is prime”) {
PRIME(X);

) 7

Switcharoo Example

S, = “sum of first n integers = n(n+1)/2”
Want to prove: S, is true for alln >0
Basecase: S, =“1=1(1+1)/2”

I.H. Suppose S is true for some k > 0 Sk

Induction step: by S, ., 3 >S5
1+ 2+ ...+ K+ (k+1) = (k + 1)(k+2)/2

Hence blah blah, S, is true

Switcharoo Example

S, = “sum of first n integers = n(n+1)/2”
Want to prove: S, is true for aliln >0

Basecase: S, =“1=1(1+1)/2”
I.H. Suppose S, is true for some k>0
Induction step: bS5
[A+2+ +k+(kH) = (k+ 1)(k+2)i2] 7
“b-)/x KO, oy - eknlch)
2z ™

kny -l
\va\oc SV() V”?*‘—

e i iimTiicaa —5—t

Proof by “Itis Clear That...”

“Itis clear that that the worst case is this:”

Like a program that calls a
function that you never wrote

21

4 | proof by Assuming The Result

Assume X is true

Therefore, X is true!

Like a program with this code:
RECURSIVE(X) {

return RECURSIVE(X);

“Assuming the Result” Example

S, = “sum of first n integers = n(n+1)/2”
Want to prove: S, is true for alln >0

Basecase: S, =“1=1(1+1)/2”

I.H. Suppose S is true for all k > 0

Induction step:

1+2+ ... +k+ (k+1) =k(k+1)/2+ (k+1) (by I.H.)
= (k + 1)(k+2)/2

Thus S,

3

Not Covering All Cases

Usual mistake in inductive proofs: A proof
is given for N = 1 (base case), and another
proof is given that, for any N > 2, if it is true
for N, then it is true for N+1

Like a program with this function:

RECURSIVE(X) {
if (X > 2) { return 2*RECURSIVE(X-1); }
if (X=1){return1;}

“Not Covering All Cases” Example

S, = “sum of first n integers = n(n+1)/2”
Want to prove: S, is true for alln >0

Base case “0=0(0+1)/2” S =1
6 .

I.H. Suppose S, is true for some k >0 34 =2%

2 S =5

Induction step:

1+2+ ... +k+ (k+1) =k(k+1)/2+ (k+1) (by I.H.)
= (k + 1)(k+2)/2

Thus S,

292

2

Incorrectly Using “By Definition”

“By definition, {a"b"|n>0}is nota
regular language”

Like a program that assumes a
procedure does something
other than what it actually does

Proof by OMGWTFBBQ

Here’s What
You Need to
Know...

Solving Problems
* Always try small examples!
* Use enough paper

Writing Proofs

* Writing proofs is sort of like
writing programs, except every
step in a proof has to be justified
* Be careful; search for your
own errors

23

