15-251

Great Theoretical Ideas in Computer Science

15-251

Proof Techniques for Computer Scientists

Induction

This is the primary way we'll

- 1. prove theorems
- 2. construct and define objects

Dominoes

Domino Principle: Line up any number of dominos in a row; knock the first one over and they will all fall

n dominoes numbered 1 to n

 $F_k \equiv$ The k^{th} domino falls

If we set them all up in a row then we know that each one is set up to knock over the next one:

For all
$$1 \le k < n$$
:
 $F_k \Rightarrow F_{k+1}$

n dominoes numbered $\underbrace{1}_{to} \underbrace{n}_{to}$

 $F_k \equiv$ The k^{th} domino falls For all $1 \le k < n$:

$$\boldsymbol{F_k} \Rightarrow \boldsymbol{F_{k+1}}$$

$$F_1 \Rightarrow F_2 \Rightarrow F_3 \Rightarrow ...$$

 $F_1 \Rightarrow All Dominoes Fall$

n dominoes numbered 0 to n-1

 $F_k \equiv$ The k^{th} domino falls For all $0 \le k < n-1$:

$$\mathbf{F}_{\mathbf{k}} \Rightarrow \mathbf{F}_{\mathbf{k+1}}$$

$$\begin{aligned} \textbf{F}_0 &\Rightarrow \textbf{F}_1 \Rightarrow \textbf{F}_2 \Rightarrow ... \\ \textbf{F}_0 &\Rightarrow \textbf{All Dominoes Fall} \end{aligned}$$

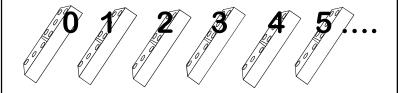
The Natural Numbers

$$\mathbb{N} = \{0, 1, 2, 3, \ldots\}$$

The Natural Numbers

$$\mathbb{N} = \{0, 1, 2, 3, \ldots\}$$

One domino for each natural number:



Plato: The Domino Principle works for an infinite row of dominoes

Aristotle: Never seen an infinite number of anything, much less dominoes.

Plato's Dominoes One for each natural number

Theorem: An infinite row of dominoes, one domino for each natural number.

Knock over the first domino and they all will fall

Proof:

Suppose they don't all fall.

Let k > 0 be the lowest numbered domino that remains standing.

Domino k-1 \geq 0 did fall, but k-1 will knock over domino k. Thus, domino k must fall and remain standing. Contradiction.

Mathematical Induction

statements proved instead of dominoes fallen

Infinite sequence of dominoes

Infinite sequence of statements: S_0 , S_1 , ...

 F_k = "domino k fell"

 $F_k = "S_k proved"$

Establish: 1. F₀

2. For all k, $F_k \Rightarrow F_{k+1}$

Conclude that F_k is true for all k

Inductive Proofs

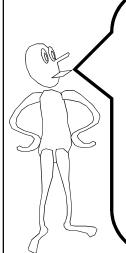
To Prove $\forall k \in \mathbb{N}, S_k$

- 1. Establish "Base Case": S₀
- 2. Establish that $\forall k, S_k \Rightarrow S_{k+1}$

To prove $\forall k, S_k \Rightarrow S_{k+1}$

Assume hypothetically that S_k for any particular k;

Conclude that S_{k+1}



Theorem?

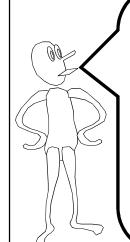
The sum of the first n odd numbers is n²

Check on small values:

$$1 = 1^{2}$$

1+3 = 4 = 2^{2}

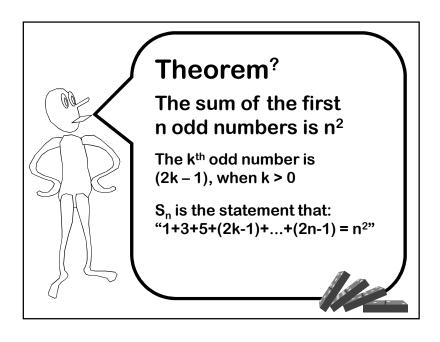
1+3+5 = 9 = 3^{2}

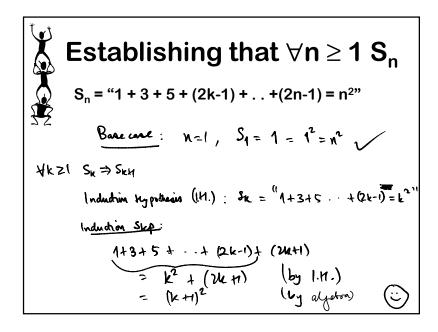


Theorem?

The sum of the first n odd numbers is n²

Check on small values:





Establishing that $\forall n \ge 1 S_n$

$$S_n = "1 + 3 + 5 + (2k-1) + ... + (2n-1) = n^2"$$

Base Case: S₁

Domino Property:

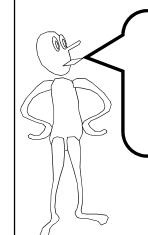
Assume "Induction Hypothesis": Sk

That means:

$$1+3+5+...+(2k-1) = k^2$$

$$1+3+5+...+(2k-1)+(2k+1) = k^2+(2k+1)$$

Sum of first k+1 odd numbers = $(k+1)^2$



Theorem

The sum of the first n odd numbers is n²

Inductive Proofs

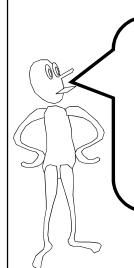
To Prove $\forall k \in \mathbb{N}, S_k$

- 1. Establish "Base Case": S₀
- 2. Establish that $\forall k, S_k \Rightarrow S_{k+1}$

To prove $\forall k, S_k \Rightarrow S_{k+1}$

Assume hypothetically that S_k for any particular k;

Conclude that S_{k+1}



Primes:

A natural number n > 1 is a prime if it has no divisors besides 1 and itself

Note: 1 is not considered prime

Theorem?

Every natural number n > 1 can be factored into primes

 S_n = "n can be factored into primes"

Base case:

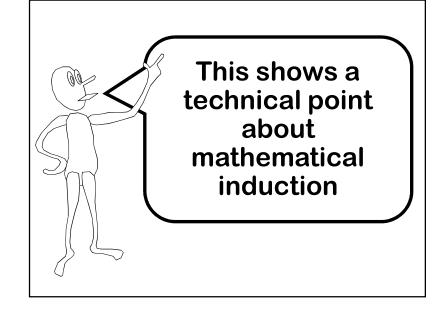
2 is prime \Rightarrow S₂ is true

How do we use the fact: $S_{k+} \Rightarrow S_{k}$

 S_{k-1} = "k-1 can be factored into primes" 5 to prove that:

S_k = "k can be factored into primes"

G



A different approach:

Assume 2,3,...,k-1 all can be factored into primes

Then show that k can be factored into primes

either k is pine

k = p.q.

p = factored into primes

factored into primes

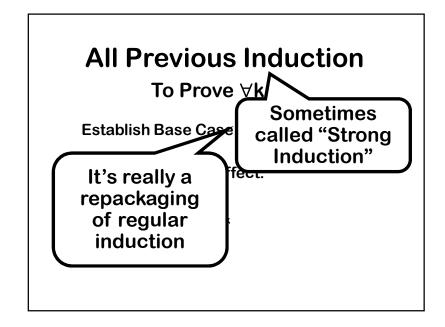
All Previous Induction

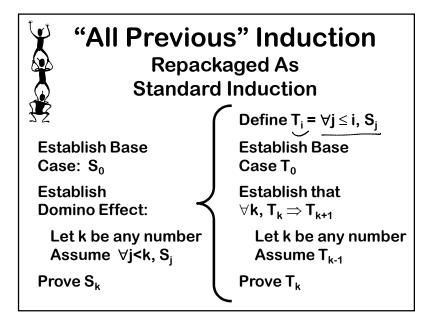
To Prove $\forall k, S_k$

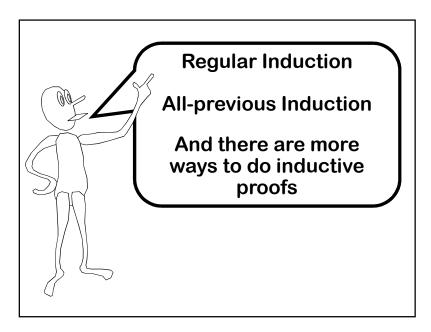
Establish Base Case: S₀

Establish Domino Effect:

Assume $\forall j < k, S_j$ use that to derive S_k







Method of Infinite Descent

Pierre de Fermat

Show that for any counter-example you can find a smaller one

Hence, if a counter-example exists there would be an infinite sequence of smaller and smaller counter examples

Theorem:

Every natural number > 1 can be factored into primes

Let n be a counter-example

Hence n is not prime, so n = ab

If both a and b had prime factorizations, then n would too

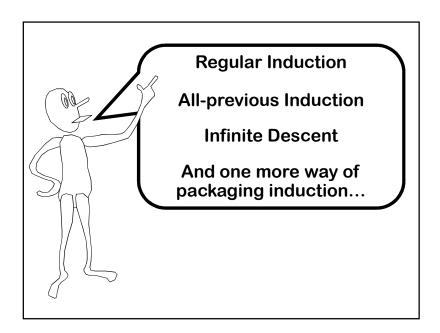
Thus a or b is a smaller counter-example

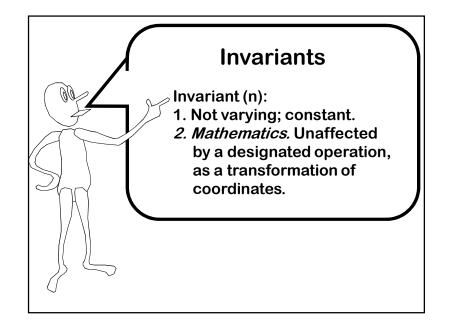
Method of Infinite Descent

you can find a smaller one

Pierre de Fermat Hence, if a counter-example exists there would be an infinite sequence of smaller and smaller counter examples

Show that for any counter-example





Invariant (n):

3. Programming.

A rule, such as the ordering of an ordered list, that applies throughout the life of a data structure or procedure. Each change to the data structure maintains the correctness of the invariant

Invariant Induction

Suppose we have a time varying world state: W_0 , W_1 , W_2 , ...

Each state change is assumed to come from a list of <u>permissible</u> operations. We seek to prove that statement S is true of all future worlds

Argue that S is true of the initial world

Show that if S is true of some world – then S remains true after one permissible operation is performed

Odd/Even Handshaking Theorem

At any party at any point in time define a person's parity as ODD/EVEN according to the number of hands they have shaken

Statement:

The number of people of odd parity must be even

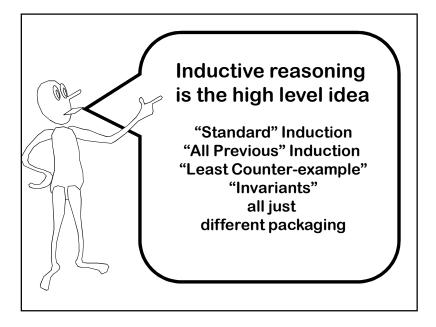
Statement: The number of people of odd parity must be even

Initial case: Zero hands have been shaken at the start of a party, so zero people have odd parity

Invariant Argument:

If 2 people of the same parity shake, they both change and hence the odd parity count changes by 2 – and remains even

If 2 people of different parities shake, then they both swap parities and the odd parity count is unchanged



One more useful tip...

Here's another problem

Let
$$A_m = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^m$$

Prove that all entries of A_m are at most $\boxed{m. \ge 1}$

Base case: $A_1 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$

all entries ≤ 1

1.11. $A_m = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$

And $= \begin{pmatrix} a & b \\ c & d \end{pmatrix}$

And $= \begin{pmatrix} a & b \\ c & d \end{pmatrix}$

And $= \begin{pmatrix} a & b \\ c & d \end{pmatrix}$

So, is it false?

$$A_{1}=\begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad A_{2}=\begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad A_{3}=\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Prove a stronger statement!

Claim:
$$A_m = \begin{bmatrix} 1 & m \\ 0 & 1 \end{bmatrix}$$

Since the time $A_n = \begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix}$

$$A_m = \begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix}$$

$$A_m = \begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix}$$

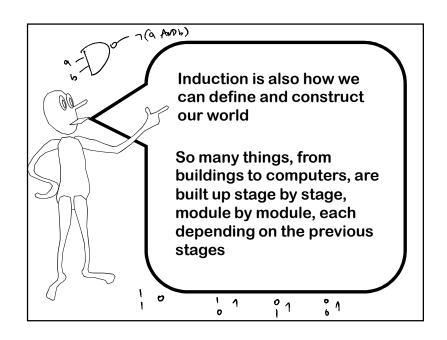
$$A_m = \begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix}$$

$$A_m = \begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix}$$

Corollary: All entries of A_m are at most m.

Often, to prove a statement inductively you may have to prove a stronger statement first!

Using induction to define mathematical objects



Inductive Definition

Example

Initial Condition, or Base Case:

F(0) = 1

Inductive definition of the powers of 2!

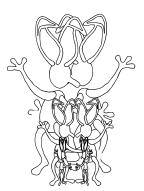
Inductive Rule:

For n > 0, F(n) = F(n-1) + F(n-1)

n	0	1	2	3	4	5	6	7
F(n)	1	2	4	8	16	32	64	128

Leonardo Fibonacci

In 1202, Fibonacci proposed a problem about the growth of rabbit populations



Rabbit Reproduction

A rabbit lives forever

The population starts as single newborn pair

Every month, each productive pair begets a new pair which will become productive after 2 months old

F_n= # of rabbit pairs at the beginning of the nth month

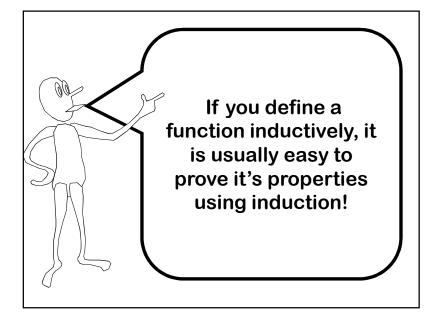
month	1	2	3	4	5	6	7
rabbits	4	1	2	3	5	8	13

Fibonacci Numbers

month	1	2	3	4	5	6	7
rabbits	1	1	2	3	5	8	13

Stage 0, Initial Condition, or Base Case: Fib(1) = 1; Fib (2) = 1

Inductive Rule: For $n \ge 3$, Fib(n) = Fib(n-1) + Fib(n-2)



Example

Theorem?: $F_1 + F_2 + ... + F_n = F_{n+2} - 1$

Example

Theorem?: $F_1 + F_2 + ... + F_n = F_{n+2} - 1$

Example

Theorem?:
$$F_1 + F_2 + ... + F_n = F_{n+2} - 1$$

Base cases:
$$n=1$$
, $F_1 = F_3 - 1$
 $n=2$, $F_1 + F_2 = F_4 - 1$

I.H.: True for all n < k.

Induction Step:
$$F_1 + F_2 + ... + F_k$$

= $(F_1 + F_2 + ... + F_{k-1}) + F_k$
= $(F_{k+1} - 1) + F_k$ (by I.H.)
= $F_{k+2} - 1$ (by defn.)

Another Example

$$T(1) = 1$$

 $T(n) = 4T(n/2) + n$

Notice that T(n) is inductively defined only for positive powers of 2, and undefined on other values

$$T(1) = 1$$
 $T(2) = 6$ $T(4) = 28$ $T(8) = 120$

Guess a closed-form formula for T(n)

Guess: $G(n) = 2n^2 - n$

Inductive Proof of Equivalence

Base Case: G(1) = 1 and T(1) = 1

Induction Hypothesis: T(x) = G(x) for x < n

Hence:
$$T(n/2) = G(n/2) = 2(n/2)^2 - n/2$$

$$T(n) = 4 T(n/2) + n$$

$$= 4 G(n/2) + n$$

$$= 4 [2(n/2)^2 - n/2] + n$$

$$= 2n^2 - 2n + n$$

$$= 2n^2 - n$$

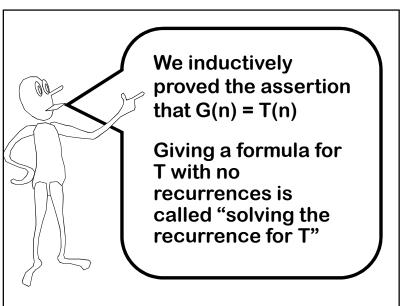
$$=G(n)$$

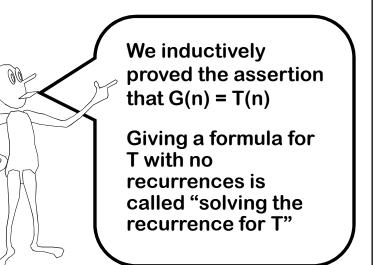
$$G(n) = 2n^2 - n$$

$$T(1) = 1$$

 $T(n) = 4T(n)/2$

$$T(n) = 4T(n/2) + n$$





Induction can arise in unexpected places

Technique 2

Guess Form, Calculate Coefficients

Guess:
$$T(n) = 1$$
, $T(n) = 4$ $T(n/2) + n$

Guess: $T(n) = an^2 + bn + c$

for some a,b,c

Calculate: $T(1) = 1$, so $a + b + c = 1$

$$T(n) = 4$$
 $T(n/2) + n$

$$an^2 + bn + c = 4$$
 $[a(n/2)^2 + b(n/2) + c] + n$

$$= an^2 + 2bn + 4c + n$$
 $(b+1)n + 3c = 0$

Therefore: b = -1 c = 0 a = 2

The Lindenmayer Game

Alphabet: {a,b} Start word: a **Productions Rules:** Sub(a) = abSub(b) = a $NEXT(w_1 w_2 ... w_n) =$ $Sub(w_1) Sub(w_2) ... Sub(w_n)$ Time 1: a ্র How long are the Time 2: áb strings at time n? Time 3: aba FIBONACCI(n) Time 4: abaab Time 5: abaababa

The Koch Game

Alphabet: { F, +, - }

Start word: F

Productions Rules: Sub(F) = F+F--F+F

Sub(+) = +

Sub(-) = -

 $NEXT(w_1 w_2 ... w_n) =$

 $Sub(w_1) Sub(w_2) ... Sub(w_n)$

Time 0: F

Time 1: F+F--F+F

Time 2: F+F--F+F+F+F--F+F--F+F

The Koch Game

Visual representation:

F draw forward one unit

- + turn 60 degree left
- turn 60 degrees right

The Koch Game

F+F--F+F+F+F--F+F--F+F

Visual representation:

- F draw forward one unit
- + turn 60 degree left
- turn 60 degrees right

