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15-251
Great Theoretical Ideas 

in Computer Science

15-251
Proof  Techniques for 

Computer Scientists

Lecture 2 (August 28, 2008)

Inductive Reasoning

Induction

This is the primary way we’llThis is the primary way we’ll

1.1. prove theoremsprove theorems

2.2. construct and define objectsconstruct and define objects
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Dominoes

Domino Principle: 

Line up any number of  

dominos in a row; knock 

the first one over and 

they will all fall

n dominoes numbered 1 to n

FFkk≡≡ The The kkthth domino fallsdomino falls

If If we set them all up in a row then we we set them all up in a row then we 
know that each one is set up to know that each one is set up to 
knock over the next one:knock over the next one:

For For all 1 ≤ k < n:all 1 ≤ k < n:

FFkk⇒⇒ FFk+1k+1

n dominoes numbered 1 to n

FFkk≡≡ The The kkthth domino fallsdomino falls

For all 1 ≤ k < n:For all 1 ≤ k < n:

FFkk⇒⇒ FFk+1k+1

F1⇒ F2⇒ F3⇒…

F1⇒ All Dominoes Fall

n dominoes numbered 0 to n-1

FFkk≡≡ The The kkthth domino fallsdomino falls

For all 0 ≤ k < nFor all 0 ≤ k < n--1:1:

FFkk⇒⇒ FFk+1k+1

F0⇒ F1⇒ F2⇒…

F0⇒ All Dominoes Fall
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The Natural Numbers

NN = { 0, 1, 2, 3, . . .}= { 0, 1, 2, 3, . . .}

The Natural Numbers

NN = { 0, 1, 2, 3, . . .}= { 0, 1, 2, 3, . . .}

One domino for each natural number:One domino for each natural number:

0 1 2 3 4 5 ….

Plato: The Domino Principle 

works for an infinite row of 

dominoes

Aristotle: Never seen an 

infinite number of  anything, 

much less dominoes. 

Plato’s Dominoes
One for each natural number

Theorem: An infinite row of  dominoes, 

one domino for each natural number.

Knock over the first domino and they all will fall

Suppose they don’t all fall.  

Let k > 0 be the lowest numbered domino that remains 

standing. 

Domino k-1 ≥ 0 did fall, but k-1 will knock over domino k. 

Thus, domino k must fall and remain standing. 

Contradiction.

Proof: 
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Mathematical Induction
statements proved instead of

dominoes fallen

Infinite sequence of

dominoes

Infinite sequence of  

statements: S0, S1, …

Fk = “domino k fell” Fk = “Sk proved”

Conclude that Fk is true for all k

Establish: 1. F0

2. For all k, Fk⇒ Fk+1

Inductive Proofs

To Prove ∀∀∀∀k ∈∈∈∈ N, Sk

1. Establish “Base Case”:  S0

2. Establish that ∀∀∀∀k, Sk⇒ Sk+1

To proveTo proveTo proveTo prove

∀∀∀∀k, Sk⇒ Sk+1

Assume hypothetically that 

Sk for any particular k; 

Conclude that Sk+1

Theorem?

The sum of  the first 

n odd numbers is n2

Check on small values:

Theorem?

The sum of  the first 

n odd numbers is n2

Check on small values:

1 = 1

1+3 = 4

1+3+5 = 9

1+3+5+7 = 16
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Theorem?

The sum of  the first 

n odd numbers is n2

The kth odd number is 

(2k – 1), when k > 0

Sn is the statement that: 

“1+3+5+(2k-1)+...+(2n-1) = n2”

Sn = “1 + 3 + 5 + (2k-1) + . . +(2n-1) = n
2”

Establishing that ∀∀∀∀n ≥ 1 Sn

Sn = “1 + 3 + 5 + (2k-1) + . . +(2n-1) = n
2”

Establishing that ∀∀∀∀n ≥ 1 Sn

Base Case: S1

Assume “Induction Hypothesis”: Sk

That means: 

1+3+5+…+ (2k-1) = k2

1+3+5+…+ (2k-1)+(2k+1) = k2 +(2k+1)

Sum of  first k+1 odd numbers = (k+1)2

Domino Property:

Theorem

The sum of  the first n 

odd numbers is n2
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Inductive Proofs

To Prove ∀∀∀∀k ∈∈∈∈ N, Sk

1. Establish “Base Case”:  S0

2. Establish that ∀∀∀∀k, Sk⇒ Sk+1

To proveTo proveTo proveTo prove

∀∀∀∀k, Sk⇒ Sk+1

Assume hypothetically that 

Sk for any particular k; 

Conclude that Sk+1

Primes:

Note: 1 is not considered prime

A natural number n > 1 

is a prime if  it has 

no divisors besides 

1 and itself

Theorem?

Every natural number n > 1 

can be factored into primes

Sn = “n can be factored into primes”

Base case:
2 is prime ⇒ S2 is true

Sk-1 = “k-1 can be factored into primes”

How do we use the fact:

Sk = “k can be factored into primes”

to prove that:

This shows a 
technical point 

about 
mathematical 
induction
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Theorem?

Every natural number > 1 can 

be factored into primes

A different approach:

Assume 2,3,…,k-1 all can be factored 

into primes

Then show that k can be factored into 

primes

All Previous Induction
To Prove ∀∀∀∀k, Sk

Establish Base Case:  S0

Establish Domino Effect:

Assume  ∀∀∀∀j<k, Sj
use that to derive Sk

Establish Domino Effect:

Assume  ∀∀∀∀j<k, Sj
use that to derive Sk

Establish Base Case:  S0

All Previous Induction
To Prove ∀∀∀∀k, Sk

Sometimes 
called “Strong 
Induction”

It’s really a 
repackaging 
of  regular 
induction Let k be any number

“All Previous” Induction
Repackaged As

Standard Induction

Establish Base 

Case:  S0

Establish 

Domino Effect:

Let k be any number

Assume  ∀∀∀∀j<k, Sj

Prove Sk

Define Ti = ∀∀∀∀j ≤ i, Sj

Establish Base 

Case T0

Establish that 

∀k, Tk⇒ Tk+1

Assume Tk-1

Prove Tk
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Regular Induction

All-previous Induction 

And there are more 
ways to do inductive 

proofs 

Method of  Infinite Descent

Show that for any 

counter-example 

you can find a smaller one

Pierre de Fermat

Hence, if  a counter-example 

exists there would be an infinite 

sequence of  smaller and smaller 

counter examples

Theorem:
Every natural number > 1 can 

be factored into primes

Let n be a counter-example

Hence n is not prime, so n = ab

If  both a and b had prime factorizations, 

then n would too

Thus a or b is a smaller counter-example

Method of  Infinite Descent

Show that for any counter-example 

you can find a smaller one

Pierre de Fermat Hence, if  a counter-example exists 

there would be an infinite sequence of  

smaller and smaller counter examples
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Regular Induction

All-previous Induction 

Infinite Descent

And one more way of  
packaging induction…

Invariants

Invariant (n): 

1. Not varying; constant. 

2. Mathematics.Unaffected 
by a designated operation, 

as a transformation of  

coordinates.

Invariant (n): 

3. Programming.
A rule, such as the ordering of  

an ordered list, that applies 

throughout the life of  a data 

structure or procedure. 

Each change to the data 

structure maintains the 

correctness of  the invariant

Invariant Induction
Suppose we have a time varying 

world state: W0, W1, W2, …

Argue that S is true of  the initial world

Show that if  S is true of  some world – then 

S remains true after one permissible 

operation is performed

Each state change is assumed to 

come from a list of  permissible 

operations. We seek to prove that 

statement S is true of  all future worlds
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Odd/Even Handshaking Theorem 

At any party at any point in time define a 

person’s parity as ODD/EVEN according to 

the number of  hands they have shaken

Statement: 

The number of  people of  odd parity must 

be even

If  2 people of  the same parity shake, they 

both change and hence the odd parity count 

changes by 2 – and remains even

Statement: The number of  people of  odd 

parity must be even

Initial case: Zero hands have been shaken 

at the start of  a party, so zero people have 

odd parity

Invariant Argument:

If  2 people of  different parities shake, then 

they both swap parities and the odd parity 

count is unchanged

Inductive reasoning 

is the high level idea

“Standard” Induction

“All Previous” Induction 

“Least Counter-example”

“Invariants”

all just 

different packaging

One more useful tip…
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Here’s another problem

Let ALet Amm ==

Prove that  all entries of AProve that  all entries of Amm are at most m.are at most m.

1 1

0 1

m

So, is it false?

Prove a stronger statement!

Claim: AClaim: Amm = = 

Corollary:  All entries of ACorollary:  All entries of Amm are at most m.are at most m.

1 m

0 1

Often, to prove a 

statement inductively

you may have to 

prove a stronger 

statement first!
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Using induction to 

define mathematical objects

Induction is also how we 

can define and construct 

our world

So many things, from 

buildings to computers, are 

built up stage by stage, 

module by module, each 

depending on the previous 

stages

n 0 1 2 3 4 5 6 7

F(n)

Inductive Definition
Example

Initial Condition, or Base Case:

F(0) = 1

Inductive Rule:

For n > 0, F(n) = F(n-1) + F(n-1)

1 2 4 8 16 32 64 128

Inductive definition of  

the powers of  2!

Leonardo Fibonacci

In 1202, Fibonacci proposed a problem 

about the growth of  rabbit populations
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month 1 2 3 4 5 6 7

rabbits

Rabbit Reproduction

A rabbit lives forever

The population starts as single newborn pair

Every month, each productive pair begets 

a new pair which will become productive 

after 2 months old

Fn= # of  rabbit pairs at the beginning of  

the nthmonth

1 1 3 52 8 13

Fibonacci Numbers

Stage 0, Initial Condition, or Base Case:

Fib(1) = 1; Fib (2) = 1

Inductive Rule:

For n>3, Fib(n) =

month 1 2 3 4 5 6 7

rabbits 1 1 3 52 8 13

Fib(n-1) + Fib(n-2)

If  you define a 

function inductively, it 

is usually easy to 

prove it’s properties 

using induction!

Example

Theorem?: F1 + F2 + … + Fn = Fn+2 – 1
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Example

Theorem?: F1 + F2 + … + Fn = Fn+2 – 1

Example

Theorem?: F1 + F2 + … + Fn = Fn+2 – 1

Base cases: n=1, F1 = F3 - 1

n=2, F1 + F2 = F4 - 1

I.H.: True for all n < k.

Induction Step: F1 + F2 + … + Fk

= (F1 + F2 + … + Fk-1) + Fk

= (Fk+1 – 1) + Fk (by I.H.)

= Fk+2 – 1 (by defn.)

Another Example
T(1) = 1

T(n) =  4T(n/2) + n

Notice that T(n) is inductively defined only 

for positive powers of  2, and undefined on 

other values

T(1) = T(2) = T(4) = T(8) =1 6 28 120

Guess a closed-form formula for T(n) 

Guess: G(n) = 2n2 - n 

G(n) = 2n2 - n

T(1) = 1
T(n) = 4T(n/2) + n

Inductive Proof  of  Equivalence

Base Case: G(1) = 1 and T(1) = 1

Induction Hypothesis:

T(x) = G(x) for x < n

Hence: T(n/2) = G(n/2) = 2(n/2)2 – n/2

T(n) = 4 T(n/2) + n

= 4 G(n/2) + n

= 4 [2(n/2)2 – n/2] + n

= 2n2 – 2n + n

= 2n2 – n

= G(n)
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We inductively 

proved the assertion 

that G(n) = T(n)

Giving a formula for 
T with no 
recurrences is 
called “solving the 
recurrence for T”

T(1) = 1, T(n) = 4 T(n/2) + n

Technique 2
Guess Form, Calculate Coefficients

Guess: T(n) = an2 + bn + c 

for some a,b,c

Calculate: T(1) = 1, so  a + b + c = 1  

T(n) = 4 T(n/2) + n

an2 + bn + c = 4 [a(n/2)2 + b(n/2) + c] + n

= an2 + 2bn + 4c + n 

(b+1)n + 3c = 0

Therefore: b = -1     c = 0     a = 2

Induction can arise in 

unexpected places

The Lindenmayer  Game
Alphabet: {a,b}

Start word: a

Sub(a) = ab Sub(b) = a

NEXT(w1w2… wn) = 

Sub(w1) Sub(w2) … Sub(wn)

Productions Rules:

How long are the 
strings at time n?

FIBONACCI(n)

Time 1: a

Time 2: ab

Time 3: aba

Time 4: abaab

Time 5: abaababa



16

The Koch Game

Productions Rules:

Alphabet: { F, +, - }

Start word: F

Sub(-) = -

NEXT(w1w2… wn) = 

Sub(w1) Sub(w2) … Sub(wn)

Time 0: F

Time 1: F+F--F+F

Time 2: F+F--F+F+F+F--F+F--F+F--F+F+F+F--F+F 

Sub(F) = F+F--F+F

Sub(+) = +

F+F--F+F

Visual representation:

F draw forward one unit

+ turn 60 degree left   

- turn 60 degrees right

The Koch Game

Visual representation:

F draw forward one unit

+ turn 60 degree left   

- turn 60 degrees right

The Koch Game

F+F--F+F+F+F--F+F--F+F--F+F+F+F--F+F
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Sub(X) = X+YF+           Sub(Y) = -FX-Y

Dragon Game
Sub(L) =  +RF-LFL-FR+

Sub(R) = -LF+RFR+FL-

Note: Make 90 

degree turns instead 

of  60 degrees

Hilbert Game

Peano-Gossamer Curve
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Sierpinski Triangle

Sub(F) =  F[-F]F[+F][F]

Interpret the stuff  inside 

brackets as a branch

Lindenmayer (1968)

Inductive ProofInductive Proof

Standard FormStandard Form

All Previous FormAll Previous Form

LeastLeast--Counter Example FormCounter Example Form

Invariant FormInvariant Form

Strengthening the Inductive ClaimStrengthening the Inductive Claim

Inductive DefinitionInductive Definition

Recurrence RelationsRecurrence Relations

Fibonacci NumbersFibonacci Numbers

Guess and VerifyGuess and Verify

Here’s What 

You Need to 

Know…


