
12/5/2007

1

Complexity Theory: 

The P vs NP question

Lecture 28 (Dec 4, 2007)

The $1M question

The Clay Mathematics Institute
Millenium Prize Problems

1. Birch and Swinnerton-Dyer Conjecture 
2. Hodge Conjecture 
3. Navier-Stokes Equations 
4. P vs NP 
5. Poincaré Conjecture 
6. Riemann Hypothesis 
7. Yang-Mills Theory 

The P versus NP problem

Is perhaps one of the biggest open problems 
in computer science (and mathematics!) 
today.

(Even featured in the TV show NUMB3RS)

But what is the P-NP problem?

Sudoku

3x3x3

Sudoku

3x3x3

Sudoku

4x4x4
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Sudoku

4x4x4

Sudoku

n x n x n

..
.

Suppose it takes you S(n) to 
solve n x n x n

V(n) time to verify the solution

Fact: V(n) = O(n2 x n2)

Question: is there some 
constant such that

S(n) ≤ nconstant  ?

Sudoku

n x n x n

..
.

P vs NP problem

=

Does there exist an 
algorithm for n x n x n 
Sudoku that runs in 
time p(n) for some 
polynomial p( ) ?  

The P versus NP problem 
(informally)

Is proving a theorem much more difficult 
than checking the proof  of  a theorem?

Let’s start at the beginning…

Hamilton Cycle

Given a graph G = (V,E), a cycle that visits all 
the nodes exactly once
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The Problem “HAM”

The Set “HAM”

Input: Graph G = (V,E)

Output: YES if  G has a Hamilton cycle

NO if  G has no Hamilton cycle

HAM = { graph G | G has a Hamilton cycle }

AND

AND

NOT

Circuit-Satisfiability

Input: A circuit C with one output

Output: YES if  C is satisfiable

NO if  C is not satisfiable

The Set “SAT”

SAT = { all satisfiable circuits C }

Bipartite Matching

Input: A bipartite graph G = (U,V,E)

Output: YES if  G has a perfect matching

NO if  G does not

The Set “BI-MATCH”

BI-MATCH = { all bipartite graphs that have a 
perfect matching }

Sudoku

Input: n x n x n sudoku instance

Output: YES if  this sudoku has a solution

NO if  it does not

The Set “SUDOKU”

SUDOKU = { All solvable sudoku instances }
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Decision Versus Search Problems

Decision Problem

YES/NO answers

Does G have a 
Hamilton cycle?

Search Problem

Find a Hamilton cycle 
in G if  one exists, 
else return NO

Can G be 
3-colored ?

Find a 3-coloring of  
G if  one exists, else 

return NO

Reducing Search to Decision

Given an algorithm for decision Sudoku, 
devise an algorithm to find a solution

Idea:
Fill in one-by-one and 
use decision algorithm

Reducing Search to Decision

Given an algorithm for decision HAM, 
devise an algorithm to find a solution

Idea:
Find the edges of  the 
cycle one by one

Decision/Search Problems

We’ll study decision problems because 
they are almost the same (asymptotically) 

as their search counterparts

Polynomial Time and 
The Class “P” of  

Decision Problems

What is an efficient algorithm?

polynomial time

O(nc) for some 
constant c

non-polynomial
time

Is an O(n) algorithm efficient?

How about O(n log n)?

O(n2) ?

O(n10) ?

O(nlog n) ?

O(2n) ?

O(n!) ?
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We consider non-polynomial time 
algorithms to be inefficient.

And hence a necessary condition for an 
algorithm to be efficient is that it should 

run in poly-time.

Does an algorithm
running in O(n100) time 

count as efficient?

Asking for a poly-time algorithm for a 
problem sets a (very) low bar when asking 

for efficient algorithms.

The question is: can we achieve even this
for 3-coloring? 

SAT?
Sudoku?

The Class P

We say a set L ⊆⊆⊆⊆ Σ* is in P if  there is

a program A and

a polynomial p()

such that for any x in Σ*, 

A(x) runs for at most p(|x|) time
and answers question “is x in L?” correctly.

The class of all sets L that can be 
recognized in polynomial time.

The class of all decision problems that 
can be decided in polynomial time.

The Class P

Why are we looking only at sets ⊆ Σ*?

What if  we want to work with graphs or 
boolean formulas?

Languages/Functions in P?

Example 1:
CONN = {graph G: G is a connected graph}

Algorithm A1:

If  G has n nodes, then run depth first search 
from any node, and count number of  distinct 
node you see. If  you see n nodes, G ∈ CONN, 
else not.

Time: p1(|x|) = Θ(|x|).
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Languages/Functions in P?

HAM, SUDOKU, SAT are not known to be in P

CO-HAM = { G | G does NOT have a 
Hamilton cycle}

CO-HAM ∈ P if  and only if  HAM ∈ P 

Onto the new class, NP

Verifying Membership

Is there a short “proof” I can give you for:

G ∈ HAM?

G ∈ BI-MATCH?

G ∈ SAT?

G ∈ CO-HAM?

NP
A set L ∈ NP

if  there exists an algorithm A and a 
polynomial p( )

For all x ∈ L

there exists y with 
|y| ≤ p(|x|)

such that A(x,y) = YES

in p(|x|) time

For all x′ ∉ L

For all y′ with 
|y′| ≤ p(|x′|)

in p(|x|) time

we have A(x′,y′) = NO

can think of  A as “proving” that x is in L

Recall the Class P

We say a set L ⊆⊆⊆⊆ Σ* is in P if  there is

a program A and

a polynomial p()

such that for any x in Σ*, 

A(x) runs for at most p(|x|) time
and answers question “is x in L?” correctly.

NP
A set L ∈ NP

if  there exists an algorithm A and a 
polynomial p( )

For all x ∈ L

there exists a y with 
|y| ≤ p(|x|)

such that A(x,y) = YES

in p(|x|) time

For all x′ ∉ L

For all y′ with 
|y′| ≤ p(|x′|)

in p(|x|) time

Such that A(x′,y′) = NO



12/5/2007

7

The Class NP

The class  of sets L for which there exist 
“short” proofs of membership 

(of polynomial length) 

that can “quickly” verified 
(in polynomial time).

Recall: A doesn’t have to find these proofs y; it just needs to be 
able to verify that y is a “correct” proof.

P ⊆ NP

For any L in P, we can just take y to be the 
empty string and satisfy the requirements.

Hence, every language in P is also in NP.

Languages/Functions in NP?

G ∈ HAM?

G ∈ BI-MATCH?

G ∈ SAT?

G ∈ CO-HAM?

Summary: P versus NP

Set L is in P if  membership in L can be 
decided in poly-time.

Set L is in NP if  each x in L has a short “proof  
of  membership” that can be verified in poly-
time.

Fact: P ⊆ NP

Question: Does NP ⊆ P ?

Why Care?
Classroom Scheduling

Packing objects into bins

Scheduling jobs on machines

Finding cheap tours visiting a subset of cities

Allocating variables to registers

Finding good packet routings in networks

Decryption

…

NP Contains Lots of  Problems
We Don’t Know to be in P
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OK, OK, I care...

But where do I begin
if  I want to reason about

the P=NP problem?

How can we prove that
NP ⊆ P?

I would have to show that
every set in NP has a

polynomial time algorithm…

How do I do that?
It may take a long time!

Also, what if  I forgot one of  
the sets in NP?

We can describe 
just one problem L in NP, 

such that 
if  this problem L is in P, 

then NP ⊆ P.

It is a problem that can
capture all other problems

in NP.

The “Hardest” Set in NP

Sudoku

n x n x n

..
.

Sudoku has a 
polynomial time 

algorithm 

if  and only if  

P = NP

The “Hardest” Sets in NP

Sudoku

SAT

3-Colorability

Clique

HAM

Independent-Set

These problems are all 
“polynomial-time equivalent”.

I.e., each of  these can be reduced to any
of  the others in poly-time
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“Poly-time reducible to each other”

Reducing problem Y to problem X in poly-time

Oracle for
problem X

Oracle for
problem Y

Instance IY of
problem Y

Instance 
IX = F(IY ) of
problem X

F is poly-time
computable

Answer

Answer

How do you prove these 
are the hardest?

Theorem [Cook/Levin]:

SAT is one language in NP, such that if  we 
can show SAT is in P, then we have shown 
NP ⊆ P.

SAT is a language in NP that can capture all 
other languages in NP.

We say SAT is NP-complete.

AND

AND

NOT

3-colorability Circuit Satisfiability

Last lecture…

SAT and 3COLOR: Two problems that seem 
quite different, but are substantially the 
same.

Also substantially the same as CLIQUE and 
INDEPENDENT SET. (Homework)

If you get a polynomial-time algorithm for one,
you get a polynomial-time algorithm for ALL.

Last lecture… Any language in NP

SAT

can be reduced 
(in polytime to)
an instance of  

hence SAT is NP-complete

3COLOR

can be reduced 
(in polytime to)
an instance of

hence 3COLOR is NP-complete
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Here’s What 
You Need to 

Know…

Definition of  P and NP

Definition of  problems

SAT, 3-COLOR, HAM, 
SUDOKU, BI-MATCH

SAT, 3-COLOR, HAM, SUDOKU
all essentially equivalent.

Solve any one in poly-time
⇒ solve all of  them in poly-time


