
12/5/2007

1

Complexity Theory:

The P vs NP question

Lecture 28 (Dec 4, 2007)

The $1M question

The Clay Mathematics Institute
Millenium Prize Problems

1. Birch and Swinnerton-Dyer Conjecture
2. Hodge Conjecture
3. Navier-Stokes Equations
4. P vs NP
5. Poincaré Conjecture
6. Riemann Hypothesis
7. Yang-Mills Theory

The P versus NP problem

Is perhaps one of the biggest open problems
in computer science (and mathematics!)
today.

(Even featured in the TV show NUMB3RS)

But what is the P-NP problem?

Sudoku

3x3x3

Sudoku

3x3x3

Sudoku

4x4x4

12/5/2007

2

Sudoku

4x4x4

Sudoku

n x n x n

..
.

Suppose it takes you S(n) to
solve n x n x n

V(n) time to verify the solution

Fact: V(n) = O(n2 x n2)

Question: is there some
constant such that

S(n) ≤ nconstant ?

Sudoku

n x n x n

..
.

P vs NP problem

=

Does there exist an
algorithm for n x n x n
Sudoku that runs in
time p(n) for some
polynomial p() ?

The P versus NP problem
(informally)

Is proving a theorem much more difficult
than checking the proof of a theorem?

Let’s start at the beginning…

Hamilton Cycle

Given a graph G = (V,E), a cycle that visits all
the nodes exactly once

12/5/2007

3

The Problem “HAM”

The Set “HAM”

Input: Graph G = (V,E)

Output: YES if G has a Hamilton cycle

NO if G has no Hamilton cycle

HAM = { graph G | G has a Hamilton cycle }

AND

AND

NOT

Circuit-Satisfiability

Input: A circuit C with one output

Output: YES if C is satisfiable

NO if C is not satisfiable

The Set “SAT”

SAT = { all satisfiable circuits C }

Bipartite Matching

Input: A bipartite graph G = (U,V,E)

Output: YES if G has a perfect matching

NO if G does not

The Set “BI-MATCH”

BI-MATCH = { all bipartite graphs that have a
perfect matching }

Sudoku

Input: n x n x n sudoku instance

Output: YES if this sudoku has a solution

NO if it does not

The Set “SUDOKU”

SUDOKU = { All solvable sudoku instances }

12/5/2007

4

Decision Versus Search Problems

Decision Problem

YES/NO answers

Does G have a
Hamilton cycle?

Search Problem

Find a Hamilton cycle
in G if one exists,
else return NO

Can G be
3-colored ?

Find a 3-coloring of
G if one exists, else

return NO

Reducing Search to Decision

Given an algorithm for decision Sudoku,
devise an algorithm to find a solution

Idea:
Fill in one-by-one and
use decision algorithm

Reducing Search to Decision

Given an algorithm for decision HAM,
devise an algorithm to find a solution

Idea:
Find the edges of the
cycle one by one

Decision/Search Problems

We’ll study decision problems because
they are almost the same (asymptotically)

as their search counterparts

Polynomial Time and
The Class “P” of

Decision Problems

What is an efficient algorithm?

polynomial time

O(nc) for some
constant c

non-polynomial
time

Is an O(n) algorithm efficient?

How about O(n log n)?

O(n2) ?

O(n10) ?

O(nlog n) ?

O(2n) ?

O(n!) ?

12/5/2007

5

We consider non-polynomial time
algorithms to be inefficient.

And hence a necessary condition for an
algorithm to be efficient is that it should

run in poly-time.

Does an algorithm
running in O(n100) time

count as efficient?

Asking for a poly-time algorithm for a
problem sets a (very) low bar when asking

for efficient algorithms.

The question is: can we achieve even this
for 3-coloring?

SAT?
Sudoku?

The Class P

We say a set L ⊆⊆⊆⊆ Σ* is in P if there is

a program A and

a polynomial p()

such that for any x in Σ*,

A(x) runs for at most p(|x|) time
and answers question “is x in L?” correctly.

The class of all sets L that can be
recognized in polynomial time.

The class of all decision problems that
can be decided in polynomial time.

The Class P

Why are we looking only at sets ⊆ Σ*?

What if we want to work with graphs or
boolean formulas?

Languages/Functions in P?

Example 1:
CONN = {graph G: G is a connected graph}

Algorithm A1:

If G has n nodes, then run depth first search
from any node, and count number of distinct
node you see. If you see n nodes, G ∈ CONN,
else not.

Time: p1(|x|) = Θ(|x|).

12/5/2007

6

Languages/Functions in P?

HAM, SUDOKU, SAT are not known to be in P

CO-HAM = { G | G does NOT have a
Hamilton cycle}

CO-HAM ∈ P if and only if HAM ∈ P

Onto the new class, NP

Verifying Membership

Is there a short “proof” I can give you for:

G ∈ HAM?

G ∈ BI-MATCH?

G ∈ SAT?

G ∈ CO-HAM?

NP
A set L ∈ NP

if there exists an algorithm A and a
polynomial p()

For all x ∈ L

there exists y with
|y| ≤ p(|x|)

such that A(x,y) = YES

in p(|x|) time

For all x′ ∉ L

For all y′ with
|y′| ≤ p(|x′|)

in p(|x|) time

we have A(x′,y′) = NO

can think of A as “proving” that x is in L

Recall the Class P

We say a set L ⊆⊆⊆⊆ Σ* is in P if there is

a program A and

a polynomial p()

such that for any x in Σ*,

A(x) runs for at most p(|x|) time
and answers question “is x in L?” correctly.

NP
A set L ∈ NP

if there exists an algorithm A and a
polynomial p()

For all x ∈ L

there exists a y with
|y| ≤ p(|x|)

such that A(x,y) = YES

in p(|x|) time

For all x′ ∉ L

For all y′ with
|y′| ≤ p(|x′|)

in p(|x|) time

Such that A(x′,y′) = NO

12/5/2007

7

The Class NP

The class of sets L for which there exist
“short” proofs of membership

(of polynomial length)

that can “quickly” verified
(in polynomial time).

Recall: A doesn’t have to find these proofs y; it just needs to be
able to verify that y is a “correct” proof.

P ⊆ NP

For any L in P, we can just take y to be the
empty string and satisfy the requirements.

Hence, every language in P is also in NP.

Languages/Functions in NP?

G ∈ HAM?

G ∈ BI-MATCH?

G ∈ SAT?

G ∈ CO-HAM?

Summary: P versus NP

Set L is in P if membership in L can be
decided in poly-time.

Set L is in NP if each x in L has a short “proof
of membership” that can be verified in poly-
time.

Fact: P ⊆ NP

Question: Does NP ⊆ P ?

Why Care?
Classroom Scheduling

Packing objects into bins

Scheduling jobs on machines

Finding cheap tours visiting a subset of cities

Allocating variables to registers

Finding good packet routings in networks

Decryption

…

NP Contains Lots of Problems
We Don’t Know to be in P

12/5/2007

8

OK, OK, I care...

But where do I begin
if I want to reason about

the P=NP problem?

How can we prove that
NP ⊆ P?

I would have to show that
every set in NP has a

polynomial time algorithm…

How do I do that?
It may take a long time!

Also, what if I forgot one of
the sets in NP?

We can describe
just one problem L in NP,

such that
if this problem L is in P,

then NP ⊆ P.

It is a problem that can
capture all other problems

in NP.

The “Hardest” Set in NP

Sudoku

n x n x n

..
.

Sudoku has a
polynomial time

algorithm

if and only if

P = NP

The “Hardest” Sets in NP

Sudoku

SAT

3-Colorability

Clique

HAM

Independent-Set

These problems are all
“polynomial-time equivalent”.

I.e., each of these can be reduced to any
of the others in poly-time

12/5/2007

9

“Poly-time reducible to each other”

Reducing problem Y to problem X in poly-time

Oracle for
problem X

Oracle for
problem Y

Instance IY of
problem Y

Instance
IX = F(IY) of
problem X

F is poly-time
computable

Answer

Answer

How do you prove these
are the hardest?

Theorem [Cook/Levin]:

SAT is one language in NP, such that if we
can show SAT is in P, then we have shown
NP ⊆ P.

SAT is a language in NP that can capture all
other languages in NP.

We say SAT is NP-complete.

AND

AND

NOT

3-colorability Circuit Satisfiability

Last lecture…

SAT and 3COLOR: Two problems that seem
quite different, but are substantially the
same.

Also substantially the same as CLIQUE and
INDEPENDENT SET. (Homework)

If you get a polynomial-time algorithm for one,
you get a polynomial-time algorithm for ALL.

Last lecture… Any language in NP

SAT

can be reduced
(in polytime to)
an instance of

hence SAT is NP-complete

3COLOR

can be reduced
(in polytime to)
an instance of

hence 3COLOR is NP-complete

12/5/2007

10

Here’s What
You Need to

Know…

Definition of P and NP

Definition of problems

SAT, 3-COLOR, HAM,
SUDOKU, BI-MATCH

SAT, 3-COLOR, HAM, SUDOKU
all essentially equivalent.

Solve any one in poly-time
⇒ solve all of them in poly-time

