

Cantor's Legacy: Infinity And Diagonalization

Lecture 24 (April 12, 2007)

The Theoretical Computer:

no bound on amount of memory no bound on amount of time

Ideal Computer is defined as a computer with infinite RAM

You can run a Java program and never have any overflow, or out of memory errors

An Ideal Computer

It can be programmed to print out:
2: 2.0000000000000000000000...
1/3: 0.33333333333333333333...
ф: 1.6180339887498948482045...
e: 2.7182818284559045235336...
π : 3.14159265358979323846264...

Printing Out An Infinite Sequence

A program P prints out the infinite sequence
$\mathbf{s}_{0}, \mathrm{~s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{k}}, \ldots$
if when P is executed on an ideal computer, it outputs a sequence of symbols such that

- The $\mathbf{k}^{\text {th }}$ symbol that it outputs is $\mathbf{s}_{\mathbf{k}}$
- For every $\mathbf{k} \in \mathbb{N}$, \mathbf{P} eventually outputs the $k^{\text {th }}$ symbol. l.e., the delay between symbol k and symbol $k+1$ is not infinite

Computable Real Numbers

A real number R is computable if there is a (finite) program that prints out the decimal representation of \mathbf{R} from left to right.

Thus, each digit of R will eventually be output.
Are all real numbers computable?

Describable Numbers

A real number R is describable if it can be denoted unambiguously by a finite piece of English text

2: "Two."
π : "The area of a circle of radius one."

Are all real numbers describable?

List of questions	
Are all real numbers computable?	$? ?$
Are all real numbers describable?	$? ?$

List of questions

Are all real numbers computable?

Are all real numbers describable? ??

Is every computable number describable? ??

Is every describable number computable? ??

List of questions	
Are all real numbers computable?	
Are all real numbers describable?	$? ?$
Is every computable number describable? ??	
Is every describable number computable? ??	

Computable r: some program outputs r Describable r: some sentence denotes r Is every computable real number, also a describable real number?

And what about the other way?

Computable \Rightarrow Describable

Theorem:
Every computable real is also describable
Proof:
Let R be a computable real that is output by a program P. The following is an unambiguous description of R:
"The real number output by the following program:" P

List of questions	
Are all real numbers computable?	
Are all real numbers describable?	$? ?$
Is every computable number describable? Yes	
Is every describable number computable? ??	

Correspondence Principle

If two finite sets can be placed into bijection, then they have the same size

Correspondence Definition

In fact, we can use the correspondence as the definition:

Two finite sets are defined to have the same size if and only if they can be placed into bijection

Cantor's Definition (1874)

Two sets are defined to have the same size if and only if they can be placed into bijection

Two sets are defined to have the same cardinality if and only if they can be placed into bijection.

Do \mathbb{N} and \mathbb{E} have the same cardinality?
$\mathbb{N}=\{0,1,2,3,4,5,6,7, \ldots\}$
$\mathbb{E}=\{0,2,4,6,8,10,12, \ldots\}$
The even, natural numbers.

E and N do have the same cardinality!
$\mathrm{N}=0,1,2,3,4,5, \ldots$
$E=0,2,4,6,8,10, \ldots$

$$
f(x)=2 x \text { is a bijection }
$$

Do \mathbb{N} and \mathbb{Z} have the same cardinality?

$$
\begin{aligned}
& \mathbb{N}=\{0,1,2,3,4,5,6,7, \ldots\} \\
& \mathbb{Z}=\{\ldots,-2,-1,0,1,2,3, \ldots\}
\end{aligned}
$$

A Useful Transitivity Lemma

Lemma:

If
$f: A \rightarrow B$ is a bijection, and $g: B \rightarrow C$ is a bijection.
Then $h(x)=g(f(x))$ defines a function $h: A \rightarrow C$ that is a bijection

$$
f(x)=\begin{aligned}
\lceil x / 2\rceil & \text { if } x \text { is odd } \\
-x / 2 & \text { if } x \text { is even }
\end{aligned}
$$

Do N and Q have the same cardinality?
$N=\{0,1,2,3,4,5,6,7, \ldots$.
Q = The Rational Numbers

Cantor's 1877 letter to Dedekind:
"I see it, but I don't believe it! "

Do N and R have the same cardinality? l.e., is R countable?

$$
N=\{0,1,2,3,4,5,6,7, \ldots\}
$$

$R=$ The real numbers
Hence N, E, Z, Q are all countable
We call a set countable if it can be placed into a bijection with the natural numbers N

Theorem: The set $\mathrm{R}_{[0,1]}$ of reals between 0 and 1 is not countable

Proof: (by contradiction)
Suppose $R_{[0,1]}$ is countable
Let f be a bijection from N to $R_{[0,1]}$
Make a list L as follows:
0 : decimal expansion of $f(0)$
1: decimal expansion of $f(1)$
k : decimal expansion of $f(k)$
...

Position after decimal point

L	0	1	2	3	4
0	d_{0}^{2}				
1		d_{1}^{6}			
2			d_{2}^{5}		
3				$d_{3}{ }^{1}$	
\ldots					\ldots^{3}

Define the following real number Confuse $_{\mathrm{L}}=0 . \mathrm{C}_{0} \mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3} \mathrm{C}_{4} \mathrm{C}_{5} \ldots$

$$
C_{k}=\left\{\begin{array}{l}
5, \text { if } d_{k}=6 \\
6, \text { otherwise }
\end{array}\right.
$$

Diagonalized!

By design, Confuse ${ }_{L}$ can't be on the list L!
Indeed, note that Confuse L_{L} differs from the $k^{\text {th }}$ element on the list L in the $k^{\text {th }}$ position.

This contradicts the assumption that the list L is complete; i.e., that the map $f: N$ to $R_{[0,1]}$ is onto.

Sanity Check

Why can't the same argument be used to show that the set of rationals \mathbf{Q} is uncountable?

Note that CONFUSE $_{L}$ is not necessarily rational. And so there is no contradiction from the fact that it is missing from the list L

List of questions

Are all real numbers computable?

Are all real numbers describable?

Is every computable number describable? Yes

Is every describable number computable? ??

Theorem: Every infinite subset S of Σ^{*} is countable

Proof:
Sort S by first by length and then alphabetically
Map the first word to 0 , the second to 1, and so on...

Thus:

The set of all possible Java programs is countable.

The set of all possible finite length pieces of English text is countable.

There are countably many descriptions and uncountably many reals.

Hence:
Most real numbers are not describable!

To end, here's an important digression about infinity...

We know there are at least 2 infinities. (The number of naturals, the number of reals.)

Are there more?

Definition: Power Set

The power set of S is the set of all subsets of \mathbf{S}.

The power set is denoted as $\mathrm{P}(\mathrm{S})$
Proposition:
If S is finite, the power set of S has cardinality $2^{|s|}$

How do sizes of S and $P(S)$ relate if S is infinite?

Theorem: S can't be put into bijection with P(S)

Suppose $f: S \rightarrow P(S)$ is a bijection.
Let $\operatorname{CONFUSE}_{f}=\{x \mid x \in S, x \notin f(x)\}$
Since f is onto, exists $y \in S$ such that $f(y)=$ CONFUSE $_{f}$. Is y in CONFUSE $_{f}$?

YES: Definition of CONFUSE $_{f}$ implies no NO: Definition of CONFUSE $_{f}$ implies yes

CONFUSE $=\left\{S_{3}, S_{5}, S_{6}\right.$,

\square For any set S (finite or infinite), the cardinality of $P(S)$ is strictly greater than the cardinality of S.

This proves that there are at least a
This proves that there are at least a countable number of infinities.

The first infinity is the size of all the countable sets. It is called:
Then $P(S)$ is also infinite, and its cardinality is a larger infinity than the cardinality of S.

Cantor called his conjecture that \aleph_{1} was the number of reals the "Continuum Hypothesis."

However, he was unable to prove it. This helped fuel his depression.

