

Graphs

Lecture 20 (Nov 1, 2007)

Notation

In this lecture:
n will denote the number of nodes in a graph e will denote the number of edges in a graph

How Many n-Node Trees?

1: 0
2: $\mathrm{O}-\mathrm{O}$
3: $\mathrm{O}-\mathrm{O}-\mathrm{O}$

4:

5:

Theorem: Let G be a graph with n nodes and e edges
The following are equivalent:

1. G is a tree (connected, acyclic)
2. Every two nodes of \mathbf{G} are joined by a unique path
3. \mathbf{G} is connected and $\mathrm{n}=\mathrm{e}+1$
4. G is acyclic and $n=e+1$
5. G is acyclic and if any two non-adjacent points are joined by a line, the resulting graph has exactly one cycle

$1 \Rightarrow 2 \quad 1 . \mathrm{G}$ is a tree (connected, acyclic)
 2. Every two nodes of \mathbf{G} are joined by a unique path

Proof: (by contradiction)
Assume \mathbf{G} is a tree that has two nodes connected by two different paths:

Then there exists a cycle!
$2 \Rightarrow 3 \quad \begin{aligned} & \text { 2. Every two nodes of G are } \\ & \text { joined by a unique path }\end{aligned}$
3. G is connected and $n=e+1$

Proof: (by induction)
Assume true for every graph with < \mathbf{n} nodes
Let \mathbf{G} have n nodes and let x and y be adjacent

Let n_{1}, e_{1} be number of nodes and edges in G_{1}
Then $\mathrm{n}=\mathrm{n}_{1}+\mathrm{n}_{2}=\mathrm{e}_{1}+\mathrm{e}_{2}+2=\mathrm{e}+1$

Corollary: Every nontrivial tree has at least two endpoints (points of degree 1)
Proof:
Assume all but one of the points in the tree have degree at least 2

In any graph, sum of the degrees $=\mathbf{2 e}$
Then the total number of edges in the tree is at least $(2 n-1) / 2=n-1 / 2>n-1$

$3 \Rightarrow 4 \quad 3 . G$ is connected and $n=e+1$

4. G is acyclic and $n=e+1$

Proof: (by contradiction)
Assume G is connected with $n=e+1$, and G has a cycle containing k nodes

Note that the cycle has k nodes and k edges
Start adding nodes and edges until you cover the whole graph
Number of edges in the graph will be at least n

How many labeled trees are there with three nodes?

How many labeled trees are there with five nodes?

5 labelings
$5 \times 4 \times 3$
labelings
$5!/ 2$
labelings

125 labeled trees

How many labeled trees are

 there with n nodes?3 labeled trees with 3 nodes
16 labeled trees with 4 nodes
125 labeled trees with 5 nodes
$\mathrm{n}^{\mathrm{n}-2}$ labeled trees with n nodes

The proof will use the correspondence principle
Each labeled tree on \mathbf{n} nodes corresponds to
A sequence in $\{1,2, \ldots, n\}^{n-2}$ (that is, $n-2$ numbers, each in the range [1..n])

How to reconstruct the unique tree from a sequence S :
Let $\mathrm{I}=\{1,2,3, \ldots, n\}$
Loop until S is empty
Let $\mathrm{i}=$ smallest \# in I but not in S
Let $s=$ first label in sequence S
Add edge $\{i, s\}$ to the tree
Delete ifrom I
Delete s from S
Add edge $\{a, b\}$, where $I=\{a, b\}$

133444

Cayley's Formula

The number of labeled trees on n nodes is $\mathrm{n}^{\mathrm{n}-2}$

How to make a sequence from a tree?
Loop through i from 1 to n-2
Let L be the degree-1 node with the lowest label

Define the $\mathrm{i}^{\text {th }}$ element of the sequence as the label of the node adjacent to L
Delete the node L from the tree
Example:

133444

Spanning Trees

A spanning tree of a graph G is a tree that touches every node of G and uses only edges from \mathbf{G}

Every connected graph has a spanning tree

Examples of Planar Graphs

http://www.planarity.net

Faces
A planar graph splits the plane into disjoint faces

Rather than using induction, we'll use the important notion of the dual graph

Dual = put a node in every face, and an edge between every adjacent face

Let G* be the dual graph of G

Let T be a spanning tree of G

Let T^{*} be the graph where there is an edge in dual graph for each edge in \mathbf{G} - \mathbf{T}

Then T^{*} is a spanning tree for G^{*}

$$
\begin{array}{rlrl}
\mathrm{n} & =e_{\mathrm{T}}+1 & \mathrm{n}+\mathrm{f} & =e_{\mathrm{T}}+\mathrm{e}_{\mathrm{T}^{*}}+2 \\
\mathrm{f}=\mathrm{e}_{\mathrm{T}^{*}}+1 & & =\mathrm{e}+2
\end{array}
$$

Corollary: Let G be a simple planar graph with $\mathrm{n}>2$ vertices. Then:

1. G has a vertex of degree at most 5
2. G has at most $3 n-6$ edges

Proof of 1:
In any graph, (sum of degrees) $=\mathbf{2 e}$
Assume all vertices have degree ≥ 6
Then $\mathrm{e} \geq 3 \mathrm{n}$
Furthermore, since G is simple, $\mathbf{3 f} \leq \mathbf{2 e}$
So $3 n+3 f \leq 3 e=>3(n-e+f) \leq 0$, contradict.

Graph Coloring

A coloring of a graph is an assignment of a color to each vertex such that no neighboring vertices have the same color

Graph Coloring

Arises surprisingly often in CS

Register allocation: assign temporary variables to registers for scheduling instructions. Variables that interfere, or are simultaneously active, cannot be assigned to the same register

Theorem: Every planar graph can be 6colored

Proof Sketch (by induction):
Assume every planar graph with less than n vertices can be 6-colored

Assume \mathbf{G} has \mathbf{n} vertices
Since G is planar, it has some node v with degree at most 5

Remove vand color by Induction Hypothesis

Not too difficult to give an inductive proof of 5-colorability, using same fact that some vertex has degree ≤ 5

4-color theorem remains challenging!

Adjacency Matrix

Suppose we have a graph G with n vertices. The adjacency matrix is the $n \times n$ matrix $A=\left[a_{i j}\right]$ with:
$a_{i j}=1$ if (i, j) is an edge
$a_{i j}=0$ if (i, j) is not an edge
Nres
Good for dense graphs!
$\stackrel{\sim}{\frac{B}{B}}$

Example

Counting Paths

The number of paths of length k from node i to node j is the entry in position (i, j) in the matrix A^{k}

$$
=\left(\begin{array}{llll}
3 & 2 & 2 & 2 \\
2 & 3 & 2 & 2 \\
2 & 2 & 3 & 2 \\
2 & 2 & 2 & 3
\end{array}\right)
$$

Adjacency List

Suppose we have a graph G with n vertices. The adjacency list is the list that contains all the nodes that each node is adjacent to

