

Deterministic Finite Automata

Lecture 19 (October 30, 2006)

Anatomy of a Deterministic Finite Automaton

The alphabet of finite autorgroh is the set where the symbols come from: $\{0,1\}$
The language of a finte adtomaton is the set of strings that it accepts

Notation

An alphabet Σ is a finite set (e.g., $\Sigma=\{0,1\}$)
A string over Σ is a finite-length sequence of elements of Σ. The set of all strings over Σ is denoted by Σ^{*}.

For x a string, $|x|$ is the length of x
The unique string of length 0 will be denoted by ε and will be called the empty or null string

A language over Σ is a set of strings over Σ

$$
\text { Langnge } \subseteq \Sigma^{*}
$$

"ABA" The Automaton

Input String	Result
aba	Accept
aabb	Reject
aabba	Accept
ε	Accept

What is the language accepted by this machine?

$L=$ any string ending with ab

What machine accepts this language?

$L=$ strings with an odd number of b 's and any number of a 's

What is the language accepted by
this machine?

$L(M)=$ any string with at least two a 's

Build an automaton that accepts all and only those strings that contain 001

Steven Rudich:

The "Grep" Problem

Input: Text T of length t, string S of length n Problem: Does string S appear inside text T ? Naïve method:

$$
a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, \ldots, a_{t}
$$

Cost: Roughly nt comparisons
$L=$ all strings containing $a b a b b$ as a consecutive substring

Invariant:
I am state s exactly when s is the longest suffix of the input (so far) forming a prefix of ababb.

Automata Solution

Build a machine M that accepts any string with S as a consecutive substring

Feed the text to M
Cost: t comparisons + time to build \mathbf{M}
As luck would have it, the Knuth, Morris, Pratt algorithm builds M quickly

A language is regular if it is recognized by a deterministic finite automaton
$L=\{w \mid w$ contains 001 $\}$ is regular
$L=\{w \mid w$ has an even number of $1 s\}$ is regular

Union Theorem

Given two languages, L_{1} and L_{2}, define the union of L_{1} and L_{2} as
$L_{1} \cup L_{2}=\left\{w \mid w \in L_{1}\right.$ or $\left.w \in L_{2}\right\}$
Theorem: The union of two regular languages is also a regular language

```
Idea: Run both \(M_{1}\) and \(M_{2}\) at the same time!
\(Q\) = pairs of states, one from \(M_{1}\) and one from \(M_{2}\)
\(=\left\{\left(q_{1}, q_{2}\right) \mid q_{1} \in Q_{1}\right.\) and \(\left.q_{2} \in Q_{2}\right\}\)
\(=\mathbf{Q}_{1} \times \mathbf{Q}_{\mathbf{2}}\)
```

Theorem: The union of two regular languages is also a regular language

Proof Sketch: Let

$M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{0}^{1}, F_{1}\right)$ be finite automaton for L_{1} and
$\boldsymbol{M}_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{0}^{2}, F_{2}\right)$ be finite automaton for L_{2}
We want to construct a finite automaton $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ that recognizes $L=L_{1} \cup L_{2}$

Automaton for Intersection

The Regular Operations

Union: $A \cup B=\{w \mid w \in A$ or $w \in B\}$
Intersection: $\mathbf{A} \cap \mathbf{B}=\{\mathbf{w} \mid \mathbf{w} \in \mathbf{A}$ and $\mathbf{w} \in \mathbf{B}\}$
Reverse: $A^{R}=\left\{w_{1} \ldots w_{k} \mid w_{k} \ldots w_{1} \in A\right\}$
Negation: $\neg A=\{w \mid w \notin A\}$
Concatenation: $A \cdot B=\{v w \mid v \in A$ and $w \in B\}$
Star: $A^{*}=\left\{w_{1} \ldots w_{k} \mid k \geq 0\right.$ and each $\left.w_{i} \in A\right\}$

Regular Languages Are Closed Under The Regular Operations

We have seen part of the proof for Union. The proof for intersection is very similar. The proof for negation is easy.
$\quad\left\{a b, a a b b, a a a b b b, \ldots a^{i} b^{i} \ldots\left(a^{n} a b^{n}\right) \ldots\right.$
Consider the language $L=\left\{a^{n} b^{n} \mid n>0\right\}$
i.e., a bunch of a's followed by an
equal number of b's
No finite automaton accepts this language
Can you prove this?

