15-251

Great Theoretical Ideas in Computer Science

Fibonacci Numbers and the Golden Ratio

Lecture 15 (October 16, 2007)

Leonardo Fibonacci

In 1202, Fibonacci proposed a problem about the growth of rabbit populations

Rabbit Reproduction

A rabbit lives forever

The population starts as single newborn pair

Every month, each productive pair begets a new pair which will become productive after 2 months old

 F_n = # of rabbit pairs at the beginning of the n^{th} month

month	1	2	3	4	5	6	7
rabbits	1	1	2	3	5	8	13

Fibonacci Numbers

month	1	2	3	4	5	6	7
rabbits	1	1	2	3	5	8	13

Stage 0, Initial Condition, or Base Case: Fib(1) = 1; Fib(2) = 1

Inductive Rule: For n>3, Fib(n) = Fib(n-1) + Fib(n-2)

Sneezwort (Achilleaptarmica)

Each time the plant starts a new shoot it takes two months before it is strong enough to support branching.

Counting Petals

5 petals: buttercup, wild rose, larkspur, columbine (aquilegia)

8 petals: delphiniums

13 petals: ragwort, corn marigold, cineraria,

some daisies

21 petals: aster, black-eyed susan,

chicory

34 petals: plantain, pyrethrum

55, 89 petals: michaelmas daisies, the

asteraceae family.

Definition of ϕ **(Euclid)**

Ratio obtained when you divide a line segment into two unequal parts such that the ratio of the whole to the larger part is the same as the ratio of the larger to the smaller.

$$\phi = \frac{AC}{AB} = \frac{AB}{BC}$$

$$\phi^2 = \frac{AC}{BC}$$

$$\phi^{2} = \frac{AC}{BC}$$

$$\phi^{2} - \phi = \frac{AC}{BC} - \frac{AB}{BC} = \frac{BC}{BC} = 1$$

$$\phi^2 - \phi - 1 = 0$$

$$\phi = \frac{1 + \sqrt{5}}{2}$$

Expanding Recursively

$$\phi = 1 + \frac{1}{\phi}$$

$$= 1 + \frac{1}{1 + \frac{1}{\phi}}$$

$$= 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{\phi}}}$$

1,1,2,3,5,8,13,21,34,55,....

2/1 = 2 3/2 = 1.5 5/3 = 1.666... 8/5 = 1.6 13/8 = 1.625 21/13 = 1.6153846... 34/21 = 1.61904...

φ = 1.6180339887498948482045

Pineapple whorls

Church and Turing were both interested in the number of whorls in each ring of the spiral.

The ratio of consecutive ring lengths approaches the Golden Ratio.

Sequences That Sum To n

Let f_{n+1} be the number of different sequences of 1's and 2's that sum to n.

 $f_1 = 1$ 0 = the empty sum

 $f_2 = 1 \quad 1 = 1$

 $f_3 = 2 2 = 1 + 1$

2

Sequences That Sum To n

Let f_{n+1} be the number of different sequences of 1's and 2's that sum to n.

Sequences That Sum To n

Let f_{n+1} be the number of different sequences of 1's and 2's that sum to n.

Fibonacci Numbers Again

Let f_{n+1} be the number of different sequences of 1's and 2's that sum to n.

$$f_{n+1} = f_n + f_{n-1}$$

$$f_1 = 1$$
 $f_2 = 1$

Visual Representation: Tiling

Let f_{n+1} be the number of different ways to tile a 1 × n strip with squares and dominoes.

	_			
Visual	Repr	esent	ation:	Tilina

1 way to tile a strip of length 0

1 way to tile a strip of length 1:

2 ways to tile a strip of length 2:

$$f_{n+1} = f_n + f_{n-1}$$

 f_{n+1} is number of ways to tile length n.

f_{n-1} tilings that start with a domino.

Fibonacci Identities

Some examples:

$$F_{2n} = F_1 + F_3 + F_5 + \dots + F_{2n-1}$$

$$F_{m+n+1} = F_{m+1} F_{n+1} + F_m F_n$$

$$(F_n)^2 = F_{n-1} F_{n+1} + (-1)^n$$

$$F_{m+n+1} = F_{m+1} F_{n+1} + F_m F_n$$

$$(F_n)^2 = F_{n-1} F_{n+1} + (-1)^n$$

F_n tilings of a strip of length n-1

$$(F_n)^2 = F_{n-1} F_{n+1} + (-1)^n$$

 $(F_n)^2$ tilings of two strips of size n-1

