

Fibonacci Numbers and the Golden Ratio

Lecture 15 (October 16, 2007)

Leonardo Fibonacci

In 1202, Fibonacci proposed a problem about the growth of rabbit populations

Rabbit Reproduction

A rabbit lives forever

The population starts as single newborn pair
Every month, each productive pair begets a new pair which will become productive after 2 months old
$F_{n}=$ \# of rabbit pairs at the beginning of the $\mathrm{n}^{\text {th }}$ month

month	1	2	3	4	5	6	7
rabbits	1	1	2	3	5	8	13

Fibonacci Numbers

month	1	2	3	4	5	6	7
rabbits	1	1	2	3	5	8	13

Stage 0, Initial Condition, or Base Case: Fib(1) = 1; Fib (2) =1

Inductive Rule:
For $n>3, \operatorname{Fib}(n)=\operatorname{Fib}(n-1)+\operatorname{Fib}(n-2)$

Sneezwort (Achilleaptarmica)

Each time the plant starts a new shoot it takes two months before it is strong enough to support branching.

Counting Petals

5 petals: buttercup, wild rose, larkspur, columbine (aquilegia)
8 petals: delphiniums
13 petals: ragwort, corn marigold, cineraria,
some daisies
21 petals: aster, black-eyed susan, chicory
34 petals: plantain, pyrethrum
55, 89 petals: michaelmas daisies, the asteraceae family.

Definition of ϕ (Euclid)

Ratio obtained when you divide a line segment into two unequal parts such that the ratio of the whole to the larger part is the same as the ratio of the larger to the smaller.

$$
\begin{aligned}
& \phi=\frac{A C}{A B}=\frac{A B}{B C} \\
& \phi^{2}=\frac{A C}{B C} \\
& \phi^{2}-\phi=\frac{A C}{B C}-\frac{A B}{B C}=\frac{B C}{B C}=1
\end{aligned}
$$

Sequences That Sum Ton

Let f_{n+1} be the number of different sequences of 1 's and 2's that sum to n.

$$
\begin{array}{ll}
f_{1}=1 & 0=\text { the empty sum } \\
f_{2}=1 & 1=1 \\
f_{3}=2 & 2=1+1
\end{array}
$$

2

Sequences That Sum To n
Let f_{n+1} be the number of different
sequences of 1's and 2's that sum to n.
$4=2+2$
$2+1+1$
$1+2+1$
$1+1+2$
$1+1+1+1$

Fibonacci Numbers Again
Let f_{n+1} be the number of different sequences of 1 's and 2's that sum to n.

$$
\begin{aligned}
& f_{n+1}=f_{n}+f_{n-1} \\
& f_{1}=1 \quad f_{2}=1
\end{aligned}
$$

Visual Representation: Tiling

Let f_{n+1} be the number of different ways to tile a $1 \times n$ strip with squares and dominoes.

Fibonacci Identities

Some examples:

$F_{2 n}=F_{1}+F_{3}+F_{5}+\ldots+F_{2 n-1}$
$F_{m+n+1}=F_{m+1} F_{n+1}+F_{m} F_{n}$
$\left(F_{n}\right)^{2}=F_{n-1} F_{n+1}+(-1)^{n}$

